Citation:
Siyu Zhang, Kunhong Gu, Bing'an Lu, Junwei Han, Jiang Zhou. Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies[J]. Acta Physico-Chimica Sinica,
;2024, 40(10): 230902.
doi:
10.3866/PKU.WHXB202309028
-
Rechargeable lithium-ion batteries (LIBs) have garnered global attention as a prominent solution for storing intermittent renewable energy, addressing energy scarcity, and mitigating environmental pollution. In the previous century, Sony introduced the "lithium-ion battery" concept, heralding a new era for LIBs and effectively bringing them into commercial use. The initial commercially available LIBs utilized lithium cobalt oxide as the cathode material and graphite as the anode material. Capitalizing on their attributes encompassing elevated energy density, substantial specific capacity, portability, and ecological compatibility, LIBs have secured substantial market share throughout the commercialization trajectory. Their commercial viability and scope have been markedly enhanced through the continuous advancement of LIBs' cathode materials and innovative implementations encompassing battery design, assembly, and thermal management. In recent years, the rapid expansion of sectors such as cellular phones and new energy vehicles, coupled with the drive towards "carbon peaking" and "carbon neutrality," has propelled the robust growth of the LIBs sector, which has resulted in widespread adoption across diverse industrial domains and daily applications spanning road transportation, materials, chemicals, and information technology. However, the swift proliferation of the LIBs industry has incited an influx of end-of-life (EOL) batteries, which pose risks of flammability, explosiveness, and the presence of toxic and hazardous elements, including fluorides. These aspects collectively pose a formidable environmental and human health hazard, warranting urgent and harmless disposal measures. Simultaneously, EOL LIBs are rich reservoirs of resources like lithium, nickel, cobalt, and manganese, boasting metal contents in cathode waste that significantly exceed those found in their natural mineral counterparts, presenting a substantial opportunity for resource reclamation. Therefore, extracting valuable metals from LIBs cathode waste simultaneously addresses critical environmental and human health concerns linked to improper EOL LIBs disposal while playing a pivotal role in mitigating metal resource shortages. This dual-purpose endeavor aligns with the overarching goal of promoting sustainable resource circulation. The recovery of LIBs cathode materials is a central topic of global research discussion. This study comprehensively overviews valuable metal extraction from LIBs cathode waste using hydrometallurgical methodologies. It delves deeply into diverse approaches encompassing inorganic, organic, and deep eutectic solvents (DESs), scrutinizing environmental, technical, and industrial feasibilities. The objective is to optimize extraction techniques and mitigate their environmental impact. Furthermore, this paper meticulously discusses the utilization of environmentally friendly reducing agents like green biomass waste, coupled with the efficient and eco-conscious EOL LIBs internal cycle mechanical activation technology, to enhance the leaching of valuable metals from cathode waste. This inquiry culminates in identifying potential research avenues and challenges within the EOL LIBs recycling process.
-
Keywords:
- Lithium-ion battery,
- Leaching,
- Hydrometallurgy,
- Biomass waste,
- Mechanochemistry
-
-
-
[1]
-
[2]
(2) Du, K.; Ang, E. H.; Wu, X.; Liu, Y. Energy Environ. Mater. 2022, 5, 1012. doi: 10.1002/eem2.12271
-
[3]
(3) Nykvist, B.; Sprei, F.; Nilsson, M. Energy Policy 2019, 124, 144. doi: 10.1016/j.enpol.2018.09.035
-
[4]
(4) Fan, Y.; Kong, Y.; Jiang, P.; Zhang, G.; Cong, J.; Shi, X.; Liu, Y.; Zhang, P.; Zhang, R.; Huang, Y. Chem. Eng. J.2023, 463, 142278. doi: 10.1016/j.cej.2023.142278
-
[5]
(5) Fan, M.; Chang, X.; Meng, Q.; Wan, L. J.; Guo, Y. G. SusMat 2021, 1, 241. doi: 10.1002/sus2.16
-
[6]
(6) Zhu, A.; Bian, X.; Han, W.; Cao, D.; Wen, Y.; Zhu, K.; Wang, S. Resour. Conserv. Recycl. 2023, 188, 106690. doi: 10.1016/j.resconrec.2022.106690
-
[7]
(7) Zhong, X.; Liu, W.; Han, J.; Jiao, F.; Qin, W.; Liu, T. J. Clean Prod. 2020, 263, 121439. doi: 10.1016/j.jclepro.2020.121439
-
[8]
(8) Qin, Z.; Zhang, Y.; Luo, W.; Zhang, T.; Wang, T.; Ni, L.; Wang, H.; Zhang, N.; Liu, X.; Zhou, J.; et al. Angew. Chem. Int. Edit. 2023, 62, e202218672. doi: 10.1002/anie.202218672
-
[9]
(9) Zhou, L.; Zhang, K.; Hu, Z.; Tao, Z.; Mai, L.; Kang, Y. M.; Chou, S. L.; Chen, J. Adv. Energy Mater. 2018,8, 1701415. doi: 10.1002/aenm.201701415
-
[10]
(10) Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeong, J.; Kim, K.; Dong, P.; Kwon, K. J. Clean Prod. 2021,294, 126329. doi: 10.1016/j.jclepro.2021.126329
-
[11]
(11) Wei, Q.; Wu, Y.; Li, S.; Chen, R.; Ding, J.; Zhang, C. Sci. Total Environ. 2023, 866, 161380. doi: 10.1016/j.scitotenv.2022.161380
-
[12]
(12) Wang, K.; Zhang, G.; Luo, M.; Li, J. Chem. Eng. J. 2023, 472, 145006. doi: 10.1016/j.cej.2023.145006
-
[13]
(13) Mao, J.; Ye, C.; Zhang, S.; Xie, F.; Zeng, R.; Davey, K.; Guo, Z.; Qiao, S. Energy Environ. Sci. 2022,15, 2732. doi: 10.1039/d2ee00162d
-
[14]
(14) Xiao, J.; Niu, B.; Xu, Z. J. Hazard. Mater. 2021, 418, 126319. doi: 10.1016/j.jhazmat.2021.126319
-
[15]
(15) Xiao, J.; Li, J.; Xu, Z. Environ. Sci. Technol. 2020, 54, 9. doi: 10.1021/acs.est.9b03725
-
[16]
(16) Zhang, S.; Zhang, C.; Zhang, X.; Ma, E. ACS Sustain. Chem. Eng. 2022, 10, 5611. doi: 10.1021/acssuschemeng.2c00276
-
[17]
(17) Su, F.; Zhou, X.; Liu, X.; Yang, J.; Tang, J.; Yang, W.; Li, Z.; Wang, H.; Ma, Y. Chem. Eng. J. 2023,455, 140914. doi: 10.1016/j.cej.2022.140914
-
[18]
(18) Rautela, R.; Yadav, B. R.; Kumar, S. J. Power Sources 2023, 580, 233428. doi: 10.1016/j.jpowsour.2023.233428
-
[19]
(19) Vieceli, N.; Benjamasutin, P.; Promphan, R.; Hellström, P.; Paulsson, M.; Petranikova, M. ACS Sustain. Chem. Eng. 2023,11, 9662. doi: 10.1021/acssuschemeng.3c01238
-
[20]
(20) Wang, M.; Liu, K.; Yu, J.; Zhang, C. C.; Zhang, Z.; Tan, Q. Circular Economy 2022, 1, 100012. doi: 10.1016/j.cec.2022.100012
-
[21]
-
[22]
(22) Liu, X.; Li, Y.; Zeng, L.; Li, X.; Chen, N.; Bai, S.; He, H.; Wang, Q.; Zhang, C. Adv. Mater. 2022, 34, e2108327. doi: 10.1002/adma.202108327
-
[23]
(23) He, S.; Zhou, A.; Jiang, T.; Liu, Z. J. Power Sources 2023, 580, 233406. doi: 10.1016/j.jpowsour.2023.233406
-
[24]
(24) Zhang, S.; Zhang, C.; Zhang, X.; Ma, E. Waste Manage. 2023, 161, 245. doi: 10.1016/j.wasman.2023.02.031
-
[25]
(25) Joulié, M.; Laucournet, R.; Billy, E. J. Power Sources 2014, 247, 551. doi: 10.1016/j.jpowsour.2013.08.128
-
[26]
(26) Qi, Y.; Wang, M.; Yuan, L.; Chen, X. Chem. Eng. J. 2023, 466, 143030. doi: 10.1016/j.cej.2023.143030
-
[27]
(27) Chen, X.; Ma, H.; Luo, C.; Zhou, T. J. Hazard. Mater. 2017, 326, 77. doi: 10.1016/j.jhazmat.2016.12.021
-
[28]
(28) Zhou, X.; Yang, W.; Liu, X.; Tang, J.; Su, F.; Li, Z.; Yang, J.; Ma, Y. Waste Manage. 2023, 155, 53. doi: 10.1016/j.wasman.2022.10.034
-
[29]
(29) Golmohammadzadeh, R.; Rashchi, F.; Vahidi, E. Waste Manage. 2017, 64, 244. doi: 10.1016/j.wasman.2017.03.037
-
[30]
(30) Lie, J.; Liu, J. Sep. Purif. Technol. 2021,266, 118458. doi: 10.1016/j.seppur.2021.118458
-
[31]
(31) Gao, W.; Zhang, X.; Zheng, X.; Lin, X.; Cao, H.; Zhang, Y.; Sun, Z. Environ. Sci. Technol. 2017, 51, 1662. doi: 10.1021/acs.est.6b03320
-
[32]
(32) Zeng, X.; Li, J.; Shen, B. J. Hazard. Mater.2015, 295, 112. doi: 10.1016/j.jhazmat.2015.02.064
-
[33]
(33) Asadi Dalini, E.; Karimi, G.; Zandevakili, S.; Goodarzi, M. Miner. Process Extr. Metall. Rev. 2020, 42, 451. doi: 10.1080/08827508.2020.1781628
-
[34]
(34) Musariri, B.; Akdogan, G.; Dorfling, C.; Bradshaw, S. Miner. Eng. 2019, 137, 108. doi: 10.1016/j.mineng.2019.03.027
-
[35]
(35) Yao, X.; Xu, Z.; Yao, Z.; Cheng, W.; Gao, H.; Zhao, Q.; Li, J.; Zhou, A. Mater. Today Commun. 2019, 19, 262. doi: 10.1016/j.mtcomm.2019.02.001
-
[36]
(36) Meshram, P.; Mishra, A.; Abhilash; Sahu, R. Chemosphere2020, 242, 125291. doi: 10.1016/j.chemosphere.2019.125291
-
[37]
(37) Li, P.; Luo, S. H.; Su, F.; Zhang, L.; Yan, S.; Lei, X.; Mu, W.; Wang, Q.; Zhang, Y.; Liu, X.; et al. ACS Appl. Mater. Interfaces 2022, 14, 11359. doi: 10.1021/acsami.1c23258
-
[38]
(38) Zhang, J.; Hu, X.; He, T.; Yuan, X.; Li, X.; Shi, H.; Yang, L.; Shao, P.; Wang, C.; Luo, X. Waste Manage. 2023,165, 19. doi: 10.1016/j.wasman.2023.04.020
-
[39]
(39) Gao, G.; Luo, X.; Lou, X.; Guo, Y.; Su, R.; Guan, J.; Li, Y.; Yuan, H.; Dai, J.; Jiao, Z. J. Mater. Cycles Waste Manage.2019, 21, 942. doi: 10.1007/s10163-019-00850-4
-
[40]
(40) Chen, H.; Gu, S.; Guo, Y.; Dai, X.; Zeng, L.; Wang, K.; He, C.; Dodbiba, G.; Wei, Y.; Fujita, T. Hydrometallurgy 2021,205, 105746. doi: 10.1016/j.hydromet.2021.105746
-
[41]
(41) Zhuang, L.; Sun, C.; Zhou, T.; Li, H.; Dai, A. Waste Manage. 2019, 85, 175. doi: 10.1016/j.wasman.2018.12.034
-
[42]
(42) Fu, Y.; He, Y.; Chen, H.; Ye, C.; Lu, Q.; Li, R.; Xie, W.; Wang, J. J. Ind. Eng. Chem. 2019, 79, 154. doi: 10.1016/j.jiec.2019.06.023
-
[43]
(43) Roy, J. J.; Zaiden, N.; Do, M. P.; Cao, B.; Srinivasan, M. Joule 2023, 7, 450. doi: 10.1016/j.joule.2023.01.004
-
[44]
(44) Echavarri-Bravo, V.; Amari, H.; Hartley, J.; Maddalena, G.; Kirk, C.; Tuijtel, M. W.; Browning, N. D.; Horsfall, L. E. Green Chem. 2022, 24, 8512. doi: 10.1039/d2gc02450k
-
[45]
(45) Mishra, D.; Kim, D. J.; Ralph, D. E.; Ahn, J. G.; Rhee, Y. H. Waste Manage. 2008, 28, 333. doi: 10.1016/j.wasman.2007.01.010
-
[46]
(46) Xin, B.; Zhang, D.; Zhang, X.; Xia, Y.; Wu, F.; Chen, S.; Li, L. Bioresour. Technol. 2009, 100, 6163. doi: 10.1016/j.biortech.2009.06.086
-
[47]
(47) Zeng, G.; Deng, X.; Luo, S.; Luo, X.; Zou, J. J. Hazard. Mater. 2012, 199–200, 164. doi: 10.1016/j.jhazmat.2011.10.063
-
[48]
(48) Liao, X.; Ye, M.; Liang, J.; Li, S.; Liu, Z.; Deng, Y.; Guan, Z.; Gan, Q.; Fang, X.; Sun, S. J. Clean Prod. 2022,380, 134991. doi: 10.1016/j.jclepro.2022.134991
-
[49]
(49) Jegan Roy, J.; Srinivasan, M.; Cao, B. ACS Sustain. Chem. Eng. 2021, 9, 3060. doi: 10.1021/acssuschemeng.0c06573
-
[50]
(50) Do, M. P.; Jegan Roy, J.; Cao, B.; Srinivasan, M. ACS Sustain. Chem. Eng. 2022, 10, 2634. doi: 10.1021/acssuschemeng.1c06885
-
[51]
(51) Roy, J. J.; Madhavi, S.; Cao, B. J. Clean Prod. 2021, 280, 124242. doi: 10.1016/j.jclepro.2020.124242
-
[52]
(52) Moazzam, P.; Boroumand, Y.; Rabiei, P.; Baghbaderani, S. S.; Mokarian, P.; Mohagheghian, F.; Mohammed, L. J.; Razmjou, A. Chemosphere 2021, 277, 130196. doi: 10.1016/j.chemosphere.2021.130196
-
[53]
(53) Biswal, B. K.; Jadhav, U. U.; Madhaiyan, M.; Ji, L.; Yang, E. H.; Cao, B. ACS Sustain. Chem. Eng. 2018,6, 12343. doi: 10.1021/acssuschemeng.8b02810
-
[54]
(54) Bahaloo-Horeh, N.; Mousavi, S. M. Waste Manage. 2017, 60, 666. doi: 10.1016/j.wasman.2016.10.034
-
[55]
(55) Lobos, A. Bioleaching Potential of Filamentous Fungi to Mobilize Lithium and Cobalt from Spent Rechargeable Li-Ion Batteries. M. S. Dissertation, University of South Florida, Florida, 2017.
-
[56]
(56) Wu, C.; Li, B.; Yuan, C.; Ni, S.; Li, L. Waste Manage. 2019, 93, 153. doi: 10.1016/j.wasman.2019.04.039
-
[57]
(57) Qi, Y.; Meng, F.; Yi, X.; Shu, J.; Chen, M.; Sun, Z.; Sun, S.; Xiu, F. R. J. Clean Prod. 2020, 251, 119665. doi: 10.1016/j.jclepro.2019.119665
-
[58]
(58) Wang, C.; Wang, S.; Yan, F.; Zhang, Z.; Shen, X.; Zhang, Z. Waste Manage. 2020, 114, 253. doi: 10.1016/j.wasman.2020.07.008
-
[59]
(59) Ma, Y.; Tang, J.; Wanaldi, R.; Zhou, X.; Wang, H.; Zhou, C.; Yang, J. J. Hazard. Mater. 2021, 402, 123491. doi: 10.1016/j.jhazmat.2020.123491
-
[60]
(60) Wang, H.; Huang, K.; Zhang, Y.; Chen, X.; Jin, W.; Zheng, S.; Zhang, Y.; Li, P. ACS Sustain. Chem. Eng. 2017,5, 11489. doi: 10.1021/acssuschemeng.7b02700
-
[61]
(61) Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114, 11060. doi: 10.1021/cr300162p
-
[62]
(62) Padwal, C.; Pham, H. D.; Jadhav, S.; Do, T. T.; Nerkar, J.; Hoang, L. T. M.; Kumar Nanjundan, A.; Mundree, S. G.; Dubal, D. P. Adv. Energy Sustain. Res. 2021, 3, 2100133. doi: 10.1002/aesr.202100133
-
[63]
-
[64]
(64) Pateli, I. M.; Thompson, D.; Alabdullah, S. S. M.; Abbott, A. P.; Jenkin, G. R. T.; Hartley, J. M. Green Chem. 2020,22, 5476. doi: 10.1039/d0gc02023k
-
[65]
(65) Wang, K.; Hu, T.; Shi, P.; Min, Y.; Wu, J.; Xu, Q. ACS Sustain. Chem. Eng. 2021, 10, 1149. doi: 10.1021/acssuschemeng.1c06381
-
[66]
(66) Wang, S.; Zhang, Z.; Lu, Z.; Xu, Z. Green Chem. 2020, 22, 4473. doi: 10.1039/d0gc00701c
-
[67]
(67) Chang, X.; Fan, M.; Gu, C. F.; He, W. H.; Meng, Q.; Wan, L. J.; Guo, Y. G. Angew. Chem. Int. Edit. 2022, 61, e202202558. doi: 10.1002/anie.202202558
-
[68]
(68) Chen, L.; Chao, Y.; Li, X.; Zhou, G.; Lu, Q.; Hua, M.; Li, H.; Ni, X.; Wu, P.; Zhu, W. Green Chem. 2021,23, 2177. doi: 10.1039/d0gc03820b
-
[69]
(69) He, X.; Wen, Y.; Wang, X.; Cui, Y.; Li, L.; Ma, H. Waste Manage. 2023, 157, 8. doi: 10.1016/j.wasman.2022.11.044
-
[70]
(70) Chen, Y.; Liu, C.; Wang, Y.; Tian, Y.; Li, Y.; Feng, M.; Guo, Y.; Han, J.; Mu, T. Energy Fuels 2023, 37, 5361. doi: 10.1021/acs.energyfuels.3c00313
-
[71]
(71) Yang, Z.; Tang, S.; Huo, X.; Zhang, M.; Guo, M. Environ. Res. 2023, 233, 116337. doi: 10.1016/j.envres.2023.116337
-
[72]
(72) Tang, S.; Zhang, M.; Guo, M. ACS Sustain. Chem. Eng. 2022, 10, 975. doi: 10.1021/acssuschemeng.1c06902
-
[73]
(73) Huang, F.; Li, T.; Yan, X.; Xiong, Y.; Zhang, X.; Lu, S.; An, N.; Huang, W.; Guo, Q.; Ge, X. ACS Omega 2022,7, 11452. doi: 10.1021/acsomega.2c00742
-
[74]
(74) Tran, M. K.; Rodrigues, M. T. F.; Kato, K.; Babu, G.; Ajayan, P. M. Nat. Energy 2019, 4, 339. doi: 10.1038/s41560-019-0368-4
-
[75]
(75) Wang, H.; Li, M.; Garg, S.; Wu, Y.; Nazmi Idros, M.; Hocking, R.; Duan, H.; Gao, S.; Yago, A. J.; Zhuang, L.; et al.ChemSusChem 2021, 14, 2972. doi: 10.1002/cssc.202100954
-
[76]
(76) Hua, Y.; Sun, Y.; Yan, F.; Wang, S.; Xu, Z.; Zhao, B.; Zhang, Z. Chem. Eng. J. 2022, 436, 133200. doi: 10.1016/j.cej.2021.133200
-
[77]
(77) Binnemans, K.; Jones, P. T. J. Sust. Metall. 2023, 9, 423. doi: 10.1007/s40831-023-00681-6
-
[78]
(78) Meshram, P.; Pandey, B. D.; Mankhand, T. R. Chem. Eng. J. 2015, 281, 418. doi: 10.1016/j.cej.2015.06.071
-
[79]
(79) Chen, X.; Luo, C.; Zhang, J.; Kong, J.; Zhou, T. ACS Sustain. Chem. Eng. 2015, 3, 3104. doi: 10.1021/acssuschemeng.5b01000
-
[80]
(80) Chen, Y.; Chang, D.; Liu, N.; Hu, F.; Peng, C.; Zhou, X.; He, J.; Jie, Y.; Wang, H.; Wilson, B. P.; et al. Jom2019, 71, 4465. doi: 10.1007/s11837-019-03775-3
-
[81]
(81) Wu, Z.; Soh, T.; Chan, J. J.; Meng, S.; Meyer, D.; Srinivasan, M.; Tay, C. Y. Environ. Sci. Technol. 2020,54, 9681. doi: 10.1021/acs.est.0c02873
-
[82]
(82) Guo, Y.; Li, Y.; Lou, X.; Guan, J.; Li, Y.; Mai, X.; Liu, H.; Zhao, C. X.; Wang, N.; Yan, C.; et al. J. Mater. Sci. 2018, 53, 13790. doi: 10.1007/s10853-018-2229-0
-
[83]
(83) Li, D.; Zhang, B.; Ou, X.; Zhang, J.; Meng, K.; Ji, G.; Li, P.; Xu, J. Chin. Chem. Lett. 2021, 32, 2333. doi: 10.1016/j.cclet.2020.11.074
-
[84]
(84) Jiang, Y.; Chen, X.; Yan, S.; Ou, Y.; Zhou, T. Green Chem. 2022, 24, 5987. doi: 10.1039/d2gc01929a
-
[85]
(85) Wang, M.; Liu, K.; Xu, Z.; Dutta, S.; Valix, M.; Alessi, D. S.; Huang, L.; Zimmerman, J. B.; Tsang, D. C. W. Environ. Sci. Technol. 2023, 57, 3940. doi: 10.1021/acs.est.2c07689
-
[86]
(86) Saeki, S.; Lee, J.; Zhang, Q.; Saito, F. Int. J. Miner. Process. 2004, 74, S373. doi: 10.1016/j.minpro.2004.08.002
-
[87]
(87) Guan, J.; Li, Y.; Guo, Y.; Su, R.; Gao, G.; Song, H.; Yuan, H.; Liang, B.; Guo, Z. ACS Sustain. Chem. Eng. 2016,5, 1026. doi: 10.1021/acssuschemeng.6b02337
-
[88]
(88) Xie, J.; Huang, K.; Nie, Z.; Yuan, W.; Wang, X.; Song, Q.; Zhang, X.; Zhang, C.; Wang, J.; Crittenden, J. C. Resour. Conserv. Recycl. 2021, 168, 105261. doi: 10.1016/j.resconrec.2020.105261
-
[89]
(89) Liang, Z.; Peng, G.; Hu, J.; Hou, H.; Cai, C.; Yang, X.; Chen, S.; Liu, L.; Liang, S.; Xiao, K.; et al. Waste Manage. 2022, 150, 290. doi: 10.1016/j.wasman.2022.07.014
-
[90]
(90) Cai, L.; Lin, J.; Fan, E.; Wu, F.; Chen, R.; Li, L. ACS Sustain. Chem. Eng. 2022, 10, 10649. doi: 10.1021/acssuschemeng.2c02553
-
[91]
(91) Wang, M.; Tan, Q.; Li, J. Environ. Sci. Technol. 2018, 52, 13136. doi: 10.1021/acs.est.8b03469
-
[92]
(92) Rao, F.; Sun, Z.; Lv, W.; Zhang, X.; Guan, J.; Zheng, X. Waste Manage. 2023, 156, 247. doi: 10.1016/j.wasman.2022.11.042
-
[93]
(93) Yu, J.; Li, J.; Zhang, S.; Wei, F.; Liu, Y.; Li, J. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2217698120. doi: 10.1073/pnas.2217698120
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[3]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[4]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[7]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[8]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[9]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[10]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[11]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[12]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[13]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[14]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[15]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[16]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[17]
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
-
[18]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[19]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[20]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[1]
Metrics
- PDF Downloads(11)
- Abstract views(715)
- HTML views(109)