Citation: Siyu Zhang, Kunhong Gu, Bing'an Lu, Junwei Han, Jiang Zhou. Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 230902. doi: 10.3866/PKU.WHXB202309028 shu

Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies

  • Corresponding author: Junwei Han, hanjunwei@csu.edu.cn Jiang Zhou, zhou_jiang@csu.edu.cn
  • Received Date: 18 September 2023
    Revised Date: 9 October 2023
    Accepted Date: 16 October 2023
    Available Online: 20 December 2023

    Fund Project: the National Natural Science Foundation of China 52174269the National Natural Science Foundation of China 52374293the Natural Science Foundation of Hunan Province 2021JJ10064the Natural Science Foundation of Hunan Province 2021JJ20062

  • Rechargeable lithium-ion batteries (LIBs) have garnered global attention as a prominent solution for storing intermittent renewable energy, addressing energy scarcity, and mitigating environmental pollution. In the previous century, Sony introduced the "lithium-ion battery" concept, heralding a new era for LIBs and effectively bringing them into commercial use. The initial commercially available LIBs utilized lithium cobalt oxide as the cathode material and graphite as the anode material. Capitalizing on their attributes encompassing elevated energy density, substantial specific capacity, portability, and ecological compatibility, LIBs have secured substantial market share throughout the commercialization trajectory. Their commercial viability and scope have been markedly enhanced through the continuous advancement of LIBs' cathode materials and innovative implementations encompassing battery design, assembly, and thermal management. In recent years, the rapid expansion of sectors such as cellular phones and new energy vehicles, coupled with the drive towards "carbon peaking" and "carbon neutrality, " has propelled the robust growth of the LIBs sector, which has resulted in widespread adoption across diverse industrial domains and daily applications spanning road transportation, materials, chemicals, and information technology. However, the swift proliferation of the LIBs industry has incited an influx of end-of-life (EOL) batteries, which pose risks of flammability, explosiveness, and the presence of toxic and hazardous elements, including fluorides. These aspects collectively pose a formidable environmental and human health hazard, warranting urgent and harmless disposal measures. Simultaneously, EOL LIBs are rich reservoirs of resources like lithium, nickel, cobalt, and manganese, boasting metal contents in cathode waste that significantly exceed those found in their natural mineral counterparts, presenting a substantial opportunity for resource reclamation. Therefore, extracting valuable metals from LIBs cathode waste simultaneously addresses critical environmental and human health concerns linked to improper EOL LIBs disposal while playing a pivotal role in mitigating metal resource shortages. This dual-purpose endeavor aligns with the overarching goal of promoting sustainable resource circulation. The recovery of LIBs cathode materials is a central topic of global research discussion. This study comprehensively overviews valuable metal extraction from LIBs cathode waste using hydrometallurgical methodologies. It delves deeply into diverse approaches encompassing inorganic, organic, and deep eutectic solvents (DESs), scrutinizing environmental, technical, and industrial feasibilities. The objective is to optimize extraction techniques and mitigate their environmental impact. Furthermore, this paper meticulously discusses the utilization of environmentally friendly reducing agents like green biomass waste, coupled with the efficient and eco-conscious EOL LIBs internal cycle mechanical activation technology, to enhance the leaching of valuable metals from cathode waste. This inquiry culminates in identifying potential research avenues and challenges within the EOL LIBs recycling process.
  • 加载中
    1. [1]

      Lu, H.; Hou, R.; Chu, S.; Zhou, H.; Guo, S. Acta Phys. -Chim. Sin. 2023, 39, 2211057.  doi: 10.3866/PKU.WHXB202211057

    2. [2]

      Du, K.; Ang, E. H.; Wu, X.; Liu, Y. Energy Environ. Mater. 2022, 5, 1012. doi: 10.1002/eem2.12271  doi: 10.1002/eem2.12271

    3. [3]

      Nykvist, B.; Sprei, F.; Nilsson, M. Energy Policy 2019, 124, 144. doi: 10.1016/j.enpol.2018.09.035  doi: 10.1016/j.enpol.2018.09.035

    4. [4]

      Fan, Y.; Kong, Y.; Jiang, P.; Zhang, G.; Cong, J.; Shi, X.; Liu, Y.; Zhang, P.; Zhang, R.; Huang, Y. Chem. Eng. J. 2023, 463, 142278. doi: 10.1016/j.cej.2023.142278  doi: 10.1016/j.cej.2023.142278

    5. [5]

      Fan, M.; Chang, X.; Meng, Q.; Wan, L. J.; Guo, Y. G. SusMat 2021, 1, 241. doi: 10.1002/sus2.16  doi: 10.1002/sus2.16

    6. [6]

      Zhu, A.; Bian, X.; Han, W.; Cao, D.; Wen, Y.; Zhu, K.; Wang, S. Resour. Conserv. Recycl. 2023, 188, 106690. doi: 10.1016/j.resconrec.2022.106690  doi: 10.1016/j.resconrec.2022.106690

    7. [7]

      Zhong, X.; Liu, W.; Han, J.; Jiao, F.; Qin, W.; Liu, T. J. Clean Prod. 2020, 263, 121439. doi: 10.1016/j.jclepro.2020.121439  doi: 10.1016/j.jclepro.2020.121439

    8. [8]

      Qin, Z.; Zhang, Y.; Luo, W.; Zhang, T.; Wang, T.; Ni, L.; Wang, H.; Zhang, N.; Liu, X.; Zhou, J.; et al. Angew. Chem. Int. Edit. 2023, 62, e202218672. doi: 10.1002/anie.202218672  doi: 10.1002/anie.202218672

    9. [9]

      Zhou, L.; Zhang, K.; Hu, Z.; Tao, Z.; Mai, L.; Kang, Y. M.; Chou, S. L.; Chen, J. Adv. Energy Mater. 2018, 8, 1701415. doi: 10.1002/aenm.201701415  doi: 10.1002/aenm.201701415

    10. [10]

      Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeong, J.; Kim, K.; Dong, P.; Kwon, K. J. Clean Prod. 2021, 294, 126329. doi: 10.1016/j.jclepro.2021.126329  doi: 10.1016/j.jclepro.2021.126329

    11. [11]

      Wei, Q.; Wu, Y.; Li, S.; Chen, R.; Ding, J.; Zhang, C. Sci. Total Environ. 2023, 866, 161380. doi: 10.1016/j.scitotenv.2022.161380  doi: 10.1016/j.scitotenv.2022.161380

    12. [12]

      Wang, K.; Zhang, G.; Luo, M.; Li, J. Chem. Eng. J. 2023, 472, 145006. doi: 10.1016/j.cej.2023.145006  doi: 10.1016/j.cej.2023.145006

    13. [13]

      Mao, J.; Ye, C.; Zhang, S.; Xie, F.; Zeng, R.; Davey, K.; Guo, Z.; Qiao, S. Energy Environ. Sci. 2022, 15, 2732. doi: 10.1039/d2ee00162d  doi: 10.1039/d2ee00162d

    14. [14]

      Xiao, J.; Niu, B.; Xu, Z. J. Hazard. Mater. 2021, 418, 126319. doi: 10.1016/j.jhazmat.2021.126319  doi: 10.1016/j.jhazmat.2021.126319

    15. [15]

      Xiao, J.; Li, J.; Xu, Z. Environ. Sci. Technol. 2020, 54, 9. doi: 10.1021/acs.est.9b03725  doi: 10.1021/acs.est.9b03725

    16. [16]

      Zhang, S.; Zhang, C.; Zhang, X.; Ma, E. ACS Sustain. Chem. Eng. 2022, 10, 5611. doi: 10.1021/acssuschemeng.2c00276  doi: 10.1021/acssuschemeng.2c00276

    17. [17]

      Su, F.; Zhou, X.; Liu, X.; Yang, J.; Tang, J.; Yang, W.; Li, Z.; Wang, H.; Ma, Y. Chem. Eng. J. 2023, 455, 140914. doi: 10.1016/j.cej.2022.140914  doi: 10.1016/j.cej.2022.140914

    18. [18]

      Rautela, R.; Yadav, B. R.; Kumar, S. J. Power Sources 2023, 580, 233428. doi: 10.1016/j.jpowsour.2023.233428  doi: 10.1016/j.jpowsour.2023.233428

    19. [19]

      Vieceli, N.; Benjamasutin, P.; Promphan, R.; Hellström, P.; Paulsson, M.; Petranikova, M. ACS Sustain. Chem. Eng. 2023, 11, 9662. doi: 10.1021/acssuschemeng.3c01238  doi: 10.1021/acssuschemeng.3c01238

    20. [20]

      Wang, M.; Liu, K.; Yu, J.; Zhang, C. C.; Zhang, Z.; Tan, Q. Circular Economy 2022, 1, 100012. doi: 10.1016/j.cec.2022.100012  doi: 10.1016/j.cec.2022.100012

    21. [21]

      Zhu, S.; Li, H.; Hu, Z.; Zhang, Q.; Zhao, J.; Zhang, L. Acta Phys. -Chim. Sin 2022, 38, 2103052.  doi: 10.3866/PKU.WHXB202103052

    22. [22]

      Liu, X.; Li, Y.; Zeng, L.; Li, X.; Chen, N.; Bai, S.; He, H.; Wang, Q.; Zhang, C. Adv. Mater. 2022, 34, e2108327. doi: 10.1002/adma.202108327  doi: 10.1002/adma.202108327

    23. [23]

      He, S.; Zhou, A.; Jiang, T.; Liu, Z. J. Power Sources 2023, 580, 233406. doi: 10.1016/j.jpowsour.2023.233406  doi: 10.1016/j.jpowsour.2023.233406

    24. [24]

      Zhang, S.; Zhang, C.; Zhang, X.; Ma, E. Waste Manage. 2023, 161, 245. doi: 10.1016/j.wasman.2023.02.031  doi: 10.1016/j.wasman.2023.02.031

    25. [25]

      Joulié, M.; Laucournet, R.; Billy, E. J. Power Sources 2014, 247, 551. doi: 10.1016/j.jpowsour.2013.08.128  doi: 10.1016/j.jpowsour.2013.08.128

    26. [26]

      Qi, Y.; Wang, M.; Yuan, L.; Chen, X. Chem. Eng. J. 2023, 466, 143030. doi: 10.1016/j.cej.2023.143030  doi: 10.1016/j.cej.2023.143030

    27. [27]

      Chen, X.; Ma, H.; Luo, C.; Zhou, T. J. Hazard. Mater. 2017, 326, 77. doi: 10.1016/j.jhazmat.2016.12.021  doi: 10.1016/j.jhazmat.2016.12.021

    28. [28]

      Zhou, X.; Yang, W.; Liu, X.; Tang, J.; Su, F.; Li, Z.; Yang, J.; Ma, Y. Waste Manage. 2023, 155, 53. doi: 10.1016/j.wasman.2022.10.034  doi: 10.1016/j.wasman.2022.10.034

    29. [29]

      Golmohammadzadeh, R.; Rashchi, F.; Vahidi, E. Waste Manage. 2017, 64, 244. doi: 10.1016/j.wasman.2017.03.037  doi: 10.1016/j.wasman.2017.03.037

    30. [30]

      Lie, J.; Liu, J. Sep. Purif. Technol. 2021, 266, 118458. doi: 10.1016/j.seppur.2021.118458  doi: 10.1016/j.seppur.2021.118458

    31. [31]

      Gao, W.; Zhang, X.; Zheng, X.; Lin, X.; Cao, H.; Zhang, Y.; Sun, Z. Environ. Sci. Technol. 2017, 51, 1662. doi: 10.1021/acs.est.6b03320  doi: 10.1021/acs.est.6b03320

    32. [32]

      Zeng, X.; Li, J.; Shen, B. J. Hazard. Mater. 2015, 295, 112. doi: 10.1016/j.jhazmat.2015.02.064  doi: 10.1016/j.jhazmat.2015.02.064

    33. [33]

      Asadi Dalini, E.; Karimi, G.; Zandevakili, S.; Goodarzi, M. Miner. Process Extr. Metall. Rev. 2020, 42, 451. doi: 10.1080/08827508.2020.1781628  doi: 10.1080/08827508.2020.1781628

    34. [34]

      Musariri, B.; Akdogan, G.; Dorfling, C.; Bradshaw, S. Miner. Eng. 2019, 137, 108. doi: 10.1016/j.mineng.2019.03.027  doi: 10.1016/j.mineng.2019.03.027

    35. [35]

      Yao, X.; Xu, Z.; Yao, Z.; Cheng, W.; Gao, H.; Zhao, Q.; Li, J.; Zhou, A. Mater. Today Commun. 2019, 19, 262. doi: 10.1016/j.mtcomm.2019.02.001  doi: 10.1016/j.mtcomm.2019.02.001

    36. [36]

      Meshram, P.; Mishra, A.; Abhilash; Sahu, R. Chemosphere 2020, 242, 125291. doi: 10.1016/j.chemosphere.2019.125291  doi: 10.1016/j.chemosphere.2019.125291

    37. [37]

      Li, P.; Luo, S. H.; Su, F.; Zhang, L.; Yan, S.; Lei, X.; Mu, W.; Wang, Q.; Zhang, Y.; Liu, X.; et al. ACS Appl. Mater. Interfaces 2022, 14, 11359. doi: 10.1021/acsami.1c23258  doi: 10.1021/acsami.1c23258

    38. [38]

      Zhang, J.; Hu, X.; He, T.; Yuan, X.; Li, X.; Shi, H.; Yang, L.; Shao, P.; Wang, C.; Luo, X. Waste Manage. 2023, 165, 19. doi: 10.1016/j.wasman.2023.04.020  doi: 10.1016/j.wasman.2023.04.020

    39. [39]

      Gao, G.; Luo, X.; Lou, X.; Guo, Y.; Su, R.; Guan, J.; Li, Y.; Yuan, H.; Dai, J.; Jiao, Z. J. Mater. Cycles Waste Manage. 2019, 21, 942. doi: 10.1007/s10163-019-00850-4  doi: 10.1007/s10163-019-00850-4

    40. [40]

      Chen, H.; Gu, S.; Guo, Y.; Dai, X.; Zeng, L.; Wang, K.; He, C.; Dodbiba, G.; Wei, Y.; Fujita, T. Hydrometallurgy 2021, 205, 105746. doi: 10.1016/j.hydromet.2021.105746  doi: 10.1016/j.hydromet.2021.105746

    41. [41]

      Zhuang, L.; Sun, C.; Zhou, T.; Li, H.; Dai, A. Waste Manage. 2019, 85, 175. doi: 10.1016/j.wasman.2018.12.034  doi: 10.1016/j.wasman.2018.12.034

    42. [42]

      Fu, Y.; He, Y.; Chen, H.; Ye, C.; Lu, Q.; Li, R.; Xie, W.; Wang, J. J. Ind. Eng. Chem. 2019, 79, 154. doi: 10.1016/j.jiec.2019.06.023  doi: 10.1016/j.jiec.2019.06.023

    43. [43]

      Roy, J. J.; Zaiden, N.; Do, M. P.; Cao, B.; Srinivasan, M. Joule 2023, 7, 450. doi: 10.1016/j.joule.2023.01.004  doi: 10.1016/j.joule.2023.01.004

    44. [44]

      Echavarri-Bravo, V.; Amari, H.; Hartley, J.; Maddalena, G.; Kirk, C.; Tuijtel, M. W.; Browning, N. D.; Horsfall, L. E. Green Chem. 2022, 24, 8512. doi: 10.1039/d2gc02450k  doi: 10.1039/d2gc02450k

    45. [45]

      Mishra, D.; Kim, D. J.; Ralph, D. E.; Ahn, J. G.; Rhee, Y. H. Waste Manage. 2008, 28, 333. doi: 10.1016/j.wasman.2007.01.010  doi: 10.1016/j.wasman.2007.01.010

    46. [46]

      Xin, B.; Zhang, D.; Zhang, X.; Xia, Y.; Wu, F.; Chen, S.; Li, L. Bioresour. Technol. 2009, 100, 6163. doi: 10.1016/j.biortech.2009.06.086  doi: 10.1016/j.biortech.2009.06.086

    47. [47]

      Zeng, G.; Deng, X.; Luo, S.; Luo, X.; Zou, J. J. Hazard. Mater. 2012, 199200, 164. doi: 10.1016/j.jhazmat.2011.10.063  doi: 10.1016/j.jhazmat.2011.10.063

    48. [48]

      Liao, X.; Ye, M.; Liang, J.; Li, S.; Liu, Z.; Deng, Y.; Guan, Z.; Gan, Q.; Fang, X.; Sun, S. J. Clean Prod. 2022, 380, 134991. doi: 10.1016/j.jclepro.2022.134991  doi: 10.1016/j.jclepro.2022.134991

    49. [49]

      Jegan Roy, J.; Srinivasan, M.; Cao, B. ACS Sustain. Chem. Eng. 2021, 9, 3060. doi: 10.1021/acssuschemeng.0c06573  doi: 10.1021/acssuschemeng.0c06573

    50. [50]

      Do, M. P.; Jegan Roy, J.; Cao, B.; Srinivasan, M. ACS Sustain. Chem. Eng. 2022, 10, 2634. doi: 10.1021/acssuschemeng.1c06885  doi: 10.1021/acssuschemeng.1c06885

    51. [51]

      Roy, J. J.; Madhavi, S.; Cao, B. J. Clean Prod. 2021, 280, 124242. doi: 10.1016/j.jclepro.2020.124242  doi: 10.1016/j.jclepro.2020.124242

    52. [52]

      Moazzam, P.; Boroumand, Y.; Rabiei, P.; Baghbaderani, S. S.; Mokarian, P.; Mohagheghian, F.; Mohammed, L. J.; Razmjou, A. Chemosphere 2021, 277, 130196. doi: 10.1016/j.chemosphere.2021.130196  doi: 10.1016/j.chemosphere.2021.130196

    53. [53]

      Biswal, B. K.; Jadhav, U. U.; Madhaiyan, M.; Ji, L.; Yang, E. H.; Cao, B. ACS Sustain. Chem. Eng. 2018, 6, 12343. doi: 10.1021/acssuschemeng.8b02810  doi: 10.1021/acssuschemeng.8b02810

    54. [54]

      Bahaloo-Horeh, N.; Mousavi, S. M. Waste Manage. 2017, 60, 666. doi: 10.1016/j.wasman.2016.10.034  doi: 10.1016/j.wasman.2016.10.034

    55. [55]

      Lobos, A. Bioleaching Potential of Filamentous Fungi to Mobilize Lithium and Cobalt from Spent Rechargeable Li-Ion Batteries. M. S. Dissertation, University of South Florida, Florida, 2017.

    56. [56]

      Wu, C.; Li, B.; Yuan, C.; Ni, S.; Li, L. Waste Manage. 2019, 93, 153. doi: 10.1016/j.wasman.2019.04.039  doi: 10.1016/j.wasman.2019.04.039

    57. [57]

      Qi, Y.; Meng, F.; Yi, X.; Shu, J.; Chen, M.; Sun, Z.; Sun, S.; Xiu, F. R. J. Clean Prod. 2020, 251, 119665. doi: 10.1016/j.jclepro.2019.119665  doi: 10.1016/j.jclepro.2019.119665

    58. [58]

      Wang, C.; Wang, S.; Yan, F.; Zhang, Z.; Shen, X.; Zhang, Z. Waste Manage. 2020, 114, 253. doi: 10.1016/j.wasman.2020.07.008  doi: 10.1016/j.wasman.2020.07.008

    59. [59]

      Ma, Y.; Tang, J.; Wanaldi, R.; Zhou, X.; Wang, H.; Zhou, C.; Yang, J. J. Hazard. Mater. 2021, 402, 123491. doi: 10.1016/j.jhazmat.2020.123491  doi: 10.1016/j.jhazmat.2020.123491

    60. [60]

      Wang, H.; Huang, K.; Zhang, Y.; Chen, X.; Jin, W.; Zheng, S.; Zhang, Y.; Li, P. ACS Sustain. Chem. Eng. 2017, 5, 11489. doi: 10.1021/acssuschemeng.7b02700  doi: 10.1021/acssuschemeng.7b02700

    61. [61]

      Smith, E. L.; Abbott, A. P.; Ryder, K. S. Chem. Rev. 2014, 114, 11060. doi: 10.1021/cr300162p  doi: 10.1021/cr300162p

    62. [62]

      Padwal, C.; Pham, H. D.; Jadhav, S.; Do, T. T.; Nerkar, J.; Hoang, L. T. M.; Kumar Nanjundan, A.; Mundree, S. G.; Dubal, D. P. Adv. Energy Sustain. Res. 2021, 3, 2100133. doi: 10.1002/aesr.202100133  doi: 10.1002/aesr.202100133

    63. [63]

      Han, H.; Chen, L.; Zhao, J.; Yu, H.; Wang, Y.; Yan, H.; Wang, Y.; Xue, Z.; Mu, T. Acta Phys. -Chim. Sin. 2023, 39, 2212043.  doi: 10.3866/PKU.WHXB202212043

    64. [64]

      Pateli, I. M.; Thompson, D.; Alabdullah, S. S. M.; Abbott, A. P.; Jenkin, G. R. T.; Hartley, J. M. Green Chem. 2020, 22, 5476. doi: 10.1039/d0gc02023k  doi: 10.1039/d0gc02023k

    65. [65]

      Wang, K.; Hu, T.; Shi, P.; Min, Y.; Wu, J.; Xu, Q. ACS Sustain. Chem. Eng. 2021, 10, 1149. doi: 10.1021/acssuschemeng.1c06381  doi: 10.1021/acssuschemeng.1c06381

    66. [66]

      Wang, S.; Zhang, Z.; Lu, Z.; Xu, Z. Green Chem. 2020, 22, 4473. doi: 10.1039/d0gc00701c  doi: 10.1039/d0gc00701c

    67. [67]

      Chang, X.; Fan, M.; Gu, C. F.; He, W. H.; Meng, Q.; Wan, L. J.; Guo, Y. G. Angew. Chem. Int. Edit. 2022, 61, e202202558. doi: 10.1002/anie.202202558  doi: 10.1002/anie.202202558

    68. [68]

      Chen, L.; Chao, Y.; Li, X.; Zhou, G.; Lu, Q.; Hua, M.; Li, H.; Ni, X.; Wu, P.; Zhu, W. Green Chem. 2021, 23, 2177. doi: 10.1039/d0gc03820b  doi: 10.1039/d0gc03820b

    69. [69]

      He, X.; Wen, Y.; Wang, X.; Cui, Y.; Li, L.; Ma, H. Waste Manage. 2023, 157, 8. doi: 10.1016/j.wasman.2022.11.044  doi: 10.1016/j.wasman.2022.11.044

    70. [70]

      Chen, Y.; Liu, C.; Wang, Y.; Tian, Y.; Li, Y.; Feng, M.; Guo, Y.; Han, J.; Mu, T. Energy Fuels 2023, 37, 5361. doi: 10.1021/acs.energyfuels.3c00313  doi: 10.1021/acs.energyfuels.3c00313

    71. [71]

      Yang, Z.; Tang, S.; Huo, X.; Zhang, M.; Guo, M. Environ. Res. 2023, 233, 116337. doi: 10.1016/j.envres.2023.116337  doi: 10.1016/j.envres.2023.116337

    72. [72]

      Tang, S.; Zhang, M.; Guo, M. ACS Sustain. Chem. Eng. 2022, 10, 975. doi: 10.1021/acssuschemeng.1c06902  doi: 10.1021/acssuschemeng.1c06902

    73. [73]

      Huang, F.; Li, T.; Yan, X.; Xiong, Y.; Zhang, X.; Lu, S.; An, N.; Huang, W.; Guo, Q.; Ge, X. ACS Omega 2022, 7, 11452. doi: 10.1021/acsomega.2c00742  doi: 10.1021/acsomega.2c00742

    74. [74]

      Tran, M. K.; Rodrigues, M. T. F.; Kato, K.; Babu, G.; Ajayan, P. M. Nat. Energy 2019, 4, 339. doi: 10.1038/s41560-019-0368-4  doi: 10.1038/s41560-019-0368-4

    75. [75]

      Wang, H.; Li, M.; Garg, S.; Wu, Y.; Nazmi Idros, M.; Hocking, R.; Duan, H.; Gao, S.; Yago, A. J.; Zhuang, L.; et al. ChemSusChem 2021, 14, 2972. doi: 10.1002/cssc.202100954  doi: 10.1002/cssc.202100954

    76. [76]

      Hua, Y.; Sun, Y.; Yan, F.; Wang, S.; Xu, Z.; Zhao, B.; Zhang, Z. Chem. Eng. J. 2022, 436, 133200. doi: 10.1016/j.cej.2021.133200  doi: 10.1016/j.cej.2021.133200

    77. [77]

      Binnemans, K.; Jones, P. T. J. Sust. Metall. 2023, 9, 423. doi: 10.1007/s40831-023-00681-6  doi: 10.1007/s40831-023-00681-6

    78. [78]

      Meshram, P.; Pandey, B. D.; Mankhand, T. R. Chem. Eng. J. 2015, 281, 418. doi: 10.1016/j.cej.2015.06.071  doi: 10.1016/j.cej.2015.06.071

    79. [79]

      Chen, X.; Luo, C.; Zhang, J.; Kong, J.; Zhou, T. ACS Sustain. Chem. Eng. 2015, 3, 3104. doi: 10.1021/acssuschemeng.5b01000  doi: 10.1021/acssuschemeng.5b01000

    80. [80]

      Chen, Y.; Chang, D.; Liu, N.; Hu, F.; Peng, C.; Zhou, X.; He, J.; Jie, Y.; Wang, H.; Wilson, B. P.; et al. Jom 2019, 71, 4465. doi: 10.1007/s11837-019-03775-3  doi: 10.1007/s11837-019-03775-3

    81. [81]

      Wu, Z.; Soh, T.; Chan, J. J.; Meng, S.; Meyer, D.; Srinivasan, M.; Tay, C. Y. Environ. Sci. Technol. 2020, 54, 9681. doi: 10.1021/acs.est.0c02873  doi: 10.1021/acs.est.0c02873

    82. [82]

      Guo, Y.; Li, Y.; Lou, X.; Guan, J.; Li, Y.; Mai, X.; Liu, H.; Zhao, C. X.; Wang, N.; Yan, C.; et al. J. Mater. Sci. 2018, 53, 13790. doi: 10.1007/s10853-018-2229-0  doi: 10.1007/s10853-018-2229-0

    83. [83]

      Li, D.; Zhang, B.; Ou, X.; Zhang, J.; Meng, K.; Ji, G.; Li, P.; Xu, J. Chin. Chem. Lett. 2021, 32, 2333. doi: 10.1016/j.cclet.2020.11.074  doi: 10.1016/j.cclet.2020.11.074

    84. [84]

      Jiang, Y.; Chen, X.; Yan, S.; Ou, Y.; Zhou, T. Green Chem. 2022, 24, 5987. doi: 10.1039/d2gc01929a  doi: 10.1039/d2gc01929a

    85. [85]

      Wang, M.; Liu, K.; Xu, Z.; Dutta, S.; Valix, M.; Alessi, D. S.; Huang, L.; Zimmerman, J. B.; Tsang, D. C. W. Environ. Sci. Technol. 2023, 57, 3940. doi: 10.1021/acs.est.2c07689  doi: 10.1021/acs.est.2c07689

    86. [86]

      Saeki, S.; Lee, J.; Zhang, Q.; Saito, F. Int. J. Miner. Process. 2004, 74, S373. doi: 10.1016/j.minpro.2004.08.002  doi: 10.1016/j.minpro.2004.08.002

    87. [87]

      Guan, J.; Li, Y.; Guo, Y.; Su, R.; Gao, G.; Song, H.; Yuan, H.; Liang, B.; Guo, Z. ACS Sustain. Chem. Eng. 2016, 5, 1026. doi: 10.1021/acssuschemeng.6b02337  doi: 10.1021/acssuschemeng.6b02337

    88. [88]

      Xie, J.; Huang, K.; Nie, Z.; Yuan, W.; Wang, X.; Song, Q.; Zhang, X.; Zhang, C.; Wang, J.; Crittenden, J. C. Resour. Conserv. Recycl. 2021, 168, 105261. doi: 10.1016/j.resconrec.2020.105261  doi: 10.1016/j.resconrec.2020.105261

    89. [89]

      Liang, Z.; Peng, G.; Hu, J.; Hou, H.; Cai, C.; Yang, X.; Chen, S.; Liu, L.; Liang, S.; Xiao, K.; et al. Waste Manage. 2022, 150, 290. doi: 10.1016/j.wasman.2022.07.014  doi: 10.1016/j.wasman.2022.07.014

    90. [90]

      Cai, L.; Lin, J.; Fan, E.; Wu, F.; Chen, R.; Li, L. ACS Sustain. Chem. Eng. 2022, 10, 10649. doi: 10.1021/acssuschemeng.2c02553  doi: 10.1021/acssuschemeng.2c02553

    91. [91]

      Wang, M.; Tan, Q.; Li, J. Environ. Sci. Technol. 2018, 52, 13136. doi: 10.1021/acs.est.8b03469  doi: 10.1021/acs.est.8b03469

    92. [92]

      Rao, F.; Sun, Z.; Lv, W.; Zhang, X.; Guan, J.; Zheng, X. Waste Manage. 2023, 156, 247. doi: 10.1016/j.wasman.2022.11.042  doi: 10.1016/j.wasman.2022.11.042

    93. [93]

      Yu, J.; Li, J.; Zhang, S.; Wei, F.; Liu, Y.; Li, J. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2217698120. doi: 10.1073/pnas.2217698120  doi: 10.1073/pnas.2217698120

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    3. [3]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    4. [4]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    5. [5]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    7. [7]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    13. [13]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    14. [14]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    17. [17]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    18. [18]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    19. [19]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(11)
  • Abstract views(850)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return