Citation: Yanglin Jiang, Mingqing Chen, Min Liang, Yige Yao, Yan Zhang, Peng Wang, Jianping Zhang. Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 230902. doi: 10.3866/PKU.WHXB202309027 shu

Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone

  • Corresponding author: Peng Wang, wpeng_chem@ruc.edu.cn
  • Received Date: 15 September 2023
    Revised Date: 26 October 2023
    Accepted Date: 27 October 2023

    Fund Project: the Research Funds of Renmin University of China 21XNH085the Natural Science Foundation of China 21673289

  • Excited-state intramolecular proton transfer (ESIPT) is a fundamental photoreaction of significant importance in both chemical and biological systems. This phenomenon typically occurs in chromophores featuring intramolecular hydrogen bonding. Among the molecules undergoing ESIPT, 3-hydroxyflavone derivatives (3-HFs) have garnered significant attention due to their natural origins and environmentally responsive fluorescence properties. A particular 3-HF compound, 4′-N,N-diethylamino-3-hydroxybenzoflavone (D-HBF), distinguished by its extended π-system and red-shifted electronic absorption, has recently been identified as a potent fluorescent probe highly sensitive to changes in environmental polarity. In this study, we systematically explored the ESIPT reaction mechanism of D-HBF in three aprotic solvents: cyclohexane, diethyl ether, and tetrahydrofuran, each possessing varying polarities. Our investigation involved a combination of spectroscopic and theoretical methods. In all three solvents, we observed the characteristic dual emission bands associated with ESIPT, with the intensity ratio of these bands being influenced by the solvent. As solvent polarity increased, we noted a decrease in the rates of both the forward and reverse proton transfer (PT) reactions based on our analysis of fluorescent kinetics. However, the reverse PT was favored. Through density functional theory (DFT) and time-dependent DFT (TDDFT) calculations of bond lengths and bond angles of the intramolecular hydrogen bond in these solvents, we confirmed that the ESIPT reaction in D-HBF is driven by the strengthening of the excited-state hydrogen bond. Notably, upon increasing solvent polarity, the intramolecular hydrogen bonds in the excited N* state weakened, as evidenced by the up-shifted IR absorption frequency of the O―H stretching mode in the S1 state. Electron intensity analysis of frontier orbitals revealed characteristic intramolecular charge transfer (ICT) occurring in D-HBF upon photoexcitation, attributable to the introduction of a strong electron-donating group at the 4′ position (4′-N,N-diethylamino-). Calculations of potential energy curves for the S0 and S1 states confirmed that the PT process tends to occur in the S1 state rather than the S0 state, and a more polar solvent generates a more significant potential barrier, hindering the corresponding ESIPT reaction. An analysis of the Gibbs free energy of ESIPT further confirmed that increasing solvent polarity favors the equilibrium shifting toward the N* state. This research lays the foundation for potential future applications of D-HBF as a biological fluorescent probe sensitive to environmental polarity.
  • 加载中
    1. [1]

      Kuang, Z.; Guo, Q.; Wang, X.; Song, H.; Maroncelli, M.; Xia, A. J. Phys. Chem. Lett. 2018, 9, 4174. doi: 10.1021/acs.jpclett.8b01826  doi: 10.1021/acs.jpclett.8b01826

    2. [2]

      Chen, Y.; Yang, Y.; Zhao, Y.; Liu, S.; Li, Y. Org. Chem. Front. 2019, 6, 218. doi: 10.1039/c8qo01111g  doi: 10.1039/c8qo01111g

    3. [3]

      Skilitsi, A. I.; Agathangelou, D.; Shulov, L.; Conyard, J.; Haacke, S., Mély, Y.; Klymchenko, A.; Léonard, J. Phys. Chem. Chem. Phys. 2018, 20, 7885. doi: 10.1039/c7cp08584b  doi: 10.1039/c7cp08584b

    4. [4]

      Chou, P.-T.; Martinez, M. L.; Clements, J. H. Chem. Phys. Lett. 1993, 204, 395. doi: 10.1016/0009-2614(93)89175-H  doi: 10.1016/0009-2614(93)89175-H

    5. [5]

      Qin, T.; Liu, B.; Huang, Y.; Yang, K.; Zhu, K.; Luo, Z.; Pan, C.; Wang, L. Sens. Actuators B-Chem. 2018, 277, 484. doi: 10.1016/j.snb.2018.09.056  doi: 10.1016/j.snb.2018.09.056

    6. [6]

      Jiang, G.; Jin, Y.; Li, M.; Wang, H.; Xiong, M.; Zeng, W.; Yuan, H.; Liu, C.; Ren, Z.; Liu, C. Anal. Chem. 2020, 92, 10342. doi: 10.1021/acs.analchem.0c00390  doi: 10.1021/acs.analchem.0c00390

    7. [7]

      Hsieh, C.-C.; Jiang, C.-M.; Chou, P.-T. Acc. Chem. Res. 2010, 43, 1364. doi: 10.1021/ar1000499  doi: 10.1021/ar1000499

    8. [8]

      Demchenko, A. P.; Tang, K.-C.; Chou, P.-T. Chem. Soc. Rev. 2013, 42, 1379. doi: 10.1039/c2cs35195a  doi: 10.1039/c2cs35195a

    9. [9]

      Tomin, V. I.; Demchenko, A. P.; Chou, P.-T. J. Photochem. Photobiol. C 2015, 22, 1. doi: 10.1016/j.jphotochemrev.2014.09.005  doi: 10.1016/j.jphotochemrev.2014.09.005

    10. [10]

      Swinney, T. C.; Kelley, D. F. J. Chem. Phys. 1993, 99, 211. doi: 10.1063/1.465799  doi: 10.1063/1.465799

    11. [11]

      Chou, P.-T.; Martinez, M. L.; Clements, J. H. J. Phys. Chem. 1993, 97, 2618. doi: 10.1021/j100113a024  doi: 10.1021/j100113a024

    12. [12]

      Shynkar, V. V.; Mély, Y.; Duportail, G.; Piémont, E.; Kiymchenko, A. S.; Demchenko, A. P. J. Phys. Chem. A 2003, 107, 9522. doi: 10.1021/jp035855n  doi: 10.1021/jp035855n

    13. [13]

      Roshal, A. D.; Organero, J. A.; Douhal, A. Chem. Phys. Lett. 2003, 379, 53. doi: 10.1016/j.cplett.2003.08.008  doi: 10.1016/j.cplett.2003.08.008

    14. [14]

      Douhal, A.; Sanz, M.; Carranza, M. A.; Organero, J. A.; Santos, L. Chem. Phys. Lett. 2004, 394, 54. doi: 10.1016/j.cplett.2004.06.112  doi: 10.1016/j.cplett.2004.06.112

    15. [15]

      Chou, P.-T.; Pu, S.-C.; Cheng, Y.-M.; Yu, W.-S.; Yu, Y.-C.; Hung, F.-T. Hu, W.-P. J. Phys. Chem. A 2005, 109, 3777. doi: 10.1021/jp044205w  doi: 10.1021/jp044205w

    16. [16]

      Rumble, C. A.; Breffke, J.; Maroncelli, M. J. Phys. Chem. B 2017, 121, 630. doi: 10.1021/acs.jpcb.6b12146  doi: 10.1021/acs.jpcb.6b12146

    17. [17]

      Ghosh, D.; Batuta, S.; Das, S.; Begum, N. A.; Mandal, D. J. Phys. Chem. B 2015, 119, 5650. doi: 10.1021/acs.jpcb.5b00021  doi: 10.1021/acs.jpcb.5b00021

    18. [18]

      Ghosh, D.; Batuta, S.; Begum, N. A.; Mandal, D. Photochem. Photobiol. Sci. 2016, 15, 266. doi: 10.1039/c5pp00377f  doi: 10.1039/c5pp00377f

    19. [19]

      Chen, Y.; Yang, Y.; Zhao, Y.; Liu, S.; Li, Y. Phys. Chem. Chem. Phys. 2019, 21, 17711. doi: 10.1039/c9cp03752g  doi: 10.1039/c9cp03752g

    20. [20]

      Russo, M.; Štacko, P.; Nachtigallová, D.; Klάn, P. J. Org. Chem. 2020, 85, 3527. doi: 10.1021/acs.joc.9b03248  doi: 10.1021/acs.joc.9b03248

    21. [21]

      Lazarus, L. S.; Benninghoff, A. D.; Berreau, L. M. Acc. Chem. Res. 2020, 53, 2273. doi: 10.1021/acs.accounts.0c00402  doi: 10.1021/acs.accounts.0c00402

    22. [22]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision A. 03; Gaussian, Inc.: Wallingford CT, USA, 2016.

    23. [23]

      Zhao, C.-C.; Jiang, Y.-L.; Gao, R.-Y.; Yao, H.-D.; Wang, P.; Zhang, J.-P. Chem. Phys. Lett. 2021, 774, 138616. doi: 10.1016/j.cplett.2021.138616  doi: 10.1016/j.cplett.2021.138616

    24. [24]

      Tseng, H.-W.; Liu, J.-Q.; Chen, Y.-A.; Chao, C.-M.; Liu, K.-M.; Chen, C.-L.; Lin, T.-C.; Hung, C.-H.; Chou, Y.-L.; Lin, T.-C.; et al. J. Phys. Chem. Lett. 2015, 6, 1477. doi: 10.1021/acs.jpclett.5b00423  doi: 10.1021/acs.jpclett.5b00423

    25. [25]

      Tang, K.-C.; Chang M.-J.; Lin T.-Y.; Pan, H.-A.; Fang, T.-C.; Chen, K.-Y.; Hung, W.-Y.; Hsu, Y.-H.; Chou, P.-T. J. Am. Chem. Soc. 2011, 133, 17738. doi: 10.1021/ja2062693  doi: 10.1021/ja2062693

    26. [26]

      Hirshfeld, F. L. Theor. Chim. Acta. 1977, 44, 129. doi: 10.1007/BF00549096  doi: 10.1007/BF00549096

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    18. [18]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    19. [19]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(249)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return