Citation: Tong Zhou,  Xue Liu,  Liang Zhao,  Mingtao Qiao,  Wanying Lei. Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 230902. doi: 10.3866/PKU.WHXB202309020 shu

Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction

  • Corresponding author: Wanying Lei, leiwy@xauat.edu.cn
  • Received Date: 12 September 2023
    Revised Date: 18 October 2023
    Accepted Date: 19 October 2023

    Fund Project: This work was supported by the National Natural Science Foundation of China (51902243, 2302112), Key Research Project of Shaanxi Education Department (22JY039, 22JY037), the Fundamental Research Funds for Central Non-Profit Scientific Institution (1610232023008) and the Agricultural Science and Technology Innovation Program (ASTIP-TRIC07).

  • Artificial photosynthesis is an appealing approach for generating hydrogen peroxide (H2O2) from H2O and O2 with solar energy as the sole energy input. However, the current catalyst systems commonly face challenges such as the limited optical absorption, poor electron-hole pair separation efficiency, and restricted surface reactivity, which hinders the overall photoactivity. Here, we immobilize cubic-phase ultrathin In4SnS8 nanosheets (Eg=2.16 eV) with thickness of 5-10 nm on the surface of few-layer Ti3C2 to develop a sandwich-like hierarchical structure of Ti3C2/In4SnS8 nanohybrid via in situ hydrothermal strategy. The enlarged interfacial area and close contact between Ti3C2 and In4SnS8 benefit for carrier transportation among nanohybrids. Characterization through X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) corroborates the successful construction of Ti3C2/In4SnS8 nanostructures. Band structures investigation including valence band maximum and Mott-Schottky plots reveals the formation of Schottky junction in this 2D/2D heterostructure, that favors for ultrafast charge carrier separation and transportation from In4SnS8 to Ti3C2 and preventing the electrons backflow from Ti3C2 to In4SnS8. Photoluminescene analysis and photo/electrochemical measurements prove that the combination of Ti3C2 and In4SnS8 accelerates the transportation of photoexcited electron-hole pairs and efficiently suppresses charge carrier recombination. Unsurprisingly, 7 wt% Ti3C2/In4SnS8 catalysts exhibit the highest visible-light-driven photoreactivity with H2O2 production rates of 1.998 μmol·L-1·min-1 that is 2.2 times larger than that of single In4SnS8. Additionally, Ti3C2/In4SnS8 demonstrates a multifunctional capability in Cr(VI) reduction with the greatest reaction rates of 19.8×10-3 min-1 that is almost 4-fold larger than that of individual semiconductor. Moreover, the nanohybrids exhibit excellent photostability after 5 cycles testing in both reaction systems. The morphology, crystal structure and composition for Ti3C2/In4SnS8 remain unaltered after photoreaction. A comprehensive analysis including trapping agents and atmosphere experiments as well as electron paramagnetic resonance demonstrates that the H2O2 evolution pathway consists of two channels:a two-step successive 1e- oxygen reduction reaction and a one-step 2e- water oxidation reaction. This work may provide a viable protocol for designing efficient and multifunctional photocatalytic systems for solar-to-chemical energy conversion.
  • 加载中
    1. [1]

      (1) Zhao, Y.; Zhang, P.; Yang, Z.; Li, L.; Gao, J.; Chen, S.; Xie, T.; Diao, C.; Xi, S.; Xiao, B.; et al. Nat. Commun. 2021, 12, 3701. doi: 10.1038/s41467-021-24048-1

    2. [2]

      (2) Zhou, L.; Lei, J.; Wang, F.; Wang, L.; Hoffmann, M. R.; Liu, Y.; In, S.-I.; Zhang, J. Appl. Catal. B-Environ.2021, 288, 119993. doi: 10.1016/j.apcatb.2021.119993

    3. [3]

      (3) Zhang, X.; Yu, J.; Macyk, M.; Wageh, S.; Al-Ghamdi, A.; Wang, L.; Adv. Sustain. Syst. 2023, 7, 2200113. doi: 10.1002/adsu.202200113

    4. [4]

      (4) Zhang, Y.; Pan, C.; Bian, G.; Xu, J.; Dong, Y.; Zhang, Y.; Lou, Y.; Liu, W.; Zhu, Y. Nat. Energy 2023,8, 361. doi: 10.1038/s41560-023-01218-7

    5. [5]

      (5) Kondo, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Chem 2022, 8, 2924. doi: 10.1016/j.chempr.2022.10.007

    6. [6]

      (6) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225

    7. [7]

      (7) Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B-Environ. 2023, 333, 122780. doi: 10.1016/j.apcatb.2023.122780

    8. [8]

      (8) Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang L.; Yu, J. Appl. Catal. B-Environ. 2022, 317, 121788. doi: 10.1016/j.apcatb.2022.121788

    9. [9]

      (9) He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002

    10. [10]

      (10) Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Ahmed A.; Al-Ghamdi, Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029

    11. [11]

      (11) Zhang, Z.; Tsuchimochi, T.; Ina, T.; Kumabe, Y.; Muto, S.; Ohara, K.; Yamada, H.; Ten-no, H. L.; Tachikawa, T. Nat. Commun. 2022, 13, 1499. doi: 10.1038/s41467-022-28944-y

    12. [12]

      (12) Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. J. Phys. Chem. Lett. 2023,14, 4803. doi: 10.1002/smll.202104561

    13. [13]

    14. [14]

      (14) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/S1872-2067(22)64106-8

    15. [15]

      (15) Hu, Y.; Yu, X.; Liu, Q.; Wang, L.; Tang, H. Carbon 2022, 188, 70. doi: 10.1016/j.carbon.2021.11.050

    16. [16]

      (16) Lu, Y.; Jia, X.; Ma, Z.; Li, Y.; Yue, S.; Liu, X.; Zhang, J. Adv. Funct. Mater. 2022,32, 2203638. doi: 10.1002/adfm.202203638

    17. [17]

      (17) Wang, J.; Lin, S.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Adv. Funct. Mater. 2021,31, 2008008. doi: 10.1002/adfm.202008008

    18. [18]

      (18) Wu, L.; Su, F.; Liu, T.; Liu, G.-Q.; Li, Y.; Ma, T.; Wang, Y.; Zhang, C.; Yang, Y.; Yu, S.-H. J. Am. Chem. Soc. 2022, 144, 20620. doi: 10.1021/jacs.2c07313

    19. [19]

      (19) Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022, 43, 226. doi: 10.1016/s1872-2067(21)63832-9

    20. [20]

      (20) Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023,51, 101. doi: 10.1016/S1872-2067(23)64479-1

    21. [21]

      (21) Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023,164, 59. doi: 10.1016/j.jmst.2023.05.009

    22. [22]

      (22) Chai, Y.; Chen, Y.; Shen, J.; Ni, M.; Wang, B.; Li, D.; Zhang, Z.; Wang, X. ACS Catal.2021, 11, 11029. doi: 10.1021/acscatal.1c02937

    23. [23]

      (23) Li, F.; Cheng, L.; Fan, J.; Xiang, Q. J. Mater. Chem. A 2021, 9, 23765. doi: 10.1039/D1TA06899G

    24. [24]

    25. [25]

      (25) Li, H.; Sun, B.; Gao, T.; Li, H.; Ren Y.; Zhou, G. Chin. J. Catal. 2022, 42, 461. doi: 10.1016/s1872-2067(21)63915-3

    26. [26]

    27. [27]

      (27) Feng, R.; Wan, K.; Sui, X.; Zhao, N.; Li, H.; Lei, W.; Yu, J.; Liu, X.; Shi, X.; Zhai, M.; et al. Nano Today 2021, 37, 101080. doi: 10.1016/j.nantod.2021.101080

    28. [28]

      (28) Guan, C.; Yue, X.; Fan, J.; Xiang, Q. Chin. J. Catal. 2022, 43, 2484. doi: 10.1016/s1872-2067(22)64102-0

    29. [29]

      (29) Zhao, Y.; Zhang, J.; Guo, X.; Cao, X.; Wang, S.; Liu, H.; Wang, G. Chem. Soc. Rev.2023, 52, 3215. doi: 10.1039/D2CS00698G

    30. [30]

      (30) Lim, K. R. G.; Shekhirev, M.; Wyatt, B. C.; Anasori, B.; Gogotsi, Y.; Seh, Z. W. Nat. Synth.2022, 1, 601. doi: 10.1038/s44160-022-00104-6

    31. [31]

      (31) Li, X.; Huang, Z.; Shuck, C. E.; Liang, G.; Gogotsi, Y.; Zhi, C. Nat. Rev. Chem.2022, 6, 389. doi: 10.1038/s41570-022-00384-8

    32. [32]

      (32) Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater. 2018, 28, 1800136. doi: 10.1002/adfm.201800136

    33. [33]

      (33) Lei, W.; Zhou, T.; Pang, X.; Xue, S.; Xu, Q. J. Mater. Sci. Technol. 2022,114, 143. doi: 10.1016/j.jmst.2021.10.029

    34. [34]

      (34) Kuang, P.; Ni, Z.; Yu, J.; Low, J. Mater. Rep.: Energy 2022, 1, 100081. doi: 10.1016/j.matre.2022.100081

    35. [35]

      (35) Pang, X.; Xue, S.; Zhou, T.; Qiao, M.; Li, H.; Liu, X.; Xu, Q.; Liu, G.; Lei, W. Adv. Sustain. Syst. 2023, 7, 2100507. doi: 10.1002/adsu.202100507

    36. [36]

      (36) Pang, X.; Xue, S.; Zhou, T.; Xu, Q.; Lei, W. Ceram. Int. 2022, 48, 3659. doi: 10.1016/j.ceramint.2021.10.147

    37. [37]

      (37) Lei, Y.; Wang, G.; Zhou, L.; Hu, W.; Song, S.; Fan, W.; Zhang, H. Dalton Trans. 2010,39, 7021. doi: 10.1039/c0dt00060d

    38. [38]

      (38) Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11, 8510. doi: 10.1021/acscatal.1c02018

    39. [39]

      (39) Shen, S.; Li, L.; Wu, Z.; Sun, M.; Tang, Z.; Yang, J. RSC Adv. 2017, 7, 4555. doi: 10.1039/C6RA27262B

    40. [40]

      (40) Zhong, Q.; Li, Y.; Zhang, G. Chem. Eng. J. 2021, 409, 128099. doi: 10.1016/j.cej.2020.128099

    41. [41]

      (41) Zhang, S.; Hong, J.; Zeng, X.; Hao, J.; Zheng, Y.; Fan, Q.; Pang, W. K.; Zhang, C.; Zhou, T.; Guo, Z. Adv. Funct. Mater. 2021, 31, 2101676. doi: 10.1002/adfm.202101676

    42. [42]

      (42) Chen, X.; Zhang, W.; Zhang, L.; Feng, L.; Zhang, C.; Jiang, J.; Wang, H. ACS Appl. Mater. Interfaces 2021, 13, 25868. doi: 10.1021/acsami.1c02953

    43. [43]

      (43) Li, Y.; Zhao, Y.; Nie, H.; Wei, K.; Cao, J.; Huang, H.; Shao, M.; Liu, Y.; Kang, Z. J. Mater. Chem. A 2021, 9, 515. doi: 10.1039/D0TA10231H

    44. [44]

      (44) Zhou, X.; Shen, B.; Zhai, J.; Conesa, J. C. Small Methods 2021, 5, 2100269. doi: 10.1002/smtd.202100269

    45. [45]

      (45) Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530

    46. [46]

      (46) Liu, C.; Wang, W.; Zhang, M.; Zhang, C.; Ma, C.; Cao, L.; Kong, D.; Feng, H.; Li, W.; Chen, S. Chem. Eng. J. 2022, 430, 132663. doi: 10.1016/j.cej.2021.132663

    47. [47]

      (47) You, Z.; Liao, Y.; Li, X.; Fan, J.; Xiang, Q. Nanoscale 2021, 13, 9463. doi: 10.1039/D1NR02224E

    48. [48]

      (48) Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022,120, 89. doi: 10.1016/j.jmst.2021.12.028

    49. [49]

      (49) He, B.; Luo, C.; Wang, Z.; Zhang, L.; Yu, J. Appl. Catal. B-Environ. 2023, 323, 122200. doi: 10.1016/j.apcatb.2022.122200

    50. [50]

      (50) Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065

    51. [51]

      (51) Hong, L.; Guo, R.; Yuan, Y.; Ji, X.; Li, Z.; Lin, Z.; Pan, W. Mater. Today Energy 2020,18, 100521. doi: 10.1016/j.mtener.2020.100521

    52. [52]

      (52) Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi: 10.1007/s42765-022-00253-5

    53. [53]

      (53) Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2023, 16, 4506. doi: 10.1007/s12274-021-3733-0

    54. [54]

      (54) Xie, H.; Zheng, Y.; Guo, X.; Liu, Y.; Zhang, Z.; Zhao, J.; Zhang, W.; Wang, Y.; Huang, Y. ACS Sustain. Chem. Eng. 2021, 9, 6788. doi: 10.1021/acssuschemeng.1c01012

    55. [55]

      (55) Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054

    56. [56]

      (56) Ma, S.; Yang, Y.; Li, J.; Mei, Y.; Zhu, Y.; Wu, J.; Liu, L.; Yao, T.; Yang, Q. J. Colloid Interface Sci. 2022, 606, 1800. doi: 10.1016/j.jcis.2021.08.134

    57. [57]

      (57) Shao, B.; Liu, Z.; Zeng, G.; Wang, H.; Liang, Q.; He, Q.; Cheng, M.; Zhou, C.; Jiang, L.; Song, B. J. Mater. Chem. A 2020, 8, 7508. doi: 10.1039/D0TA01552K

    58. [58]

      (58) Gao, M.; Shen, Z.; Yue, G.; Dong, C.; Wu, J.; Gao, Y.; Tan, F. J. Alloy. Compd. 2023, 932, 167643. doi: 10.1016/j.jallcom.2022.167643

    59. [59]

      (59) Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18, 2104561. doi: 10.1021/jacs.2c07313

    60. [60]

      (60) Zhang, K.; Zhou, M.; Yang, K.; Yu, C.; Mu, P.; Yu, Z.; Lu, K.; Huang, W.; Dai, W. J. Hazard. Mater. 2022, 423, 127172. doi: 10.1016/j.jhazmat.2021.127172

  • 加载中
    1. [1]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    11. [11]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

Metrics
  • PDF Downloads(4)
  • Abstract views(478)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return