Citation: Tong Zhou, Xue Liu, Liang Zhao, Mingtao Qiao, Wanying Lei. Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 230902. doi: 10.3866/PKU.WHXB202309020 shu

Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction

  • Corresponding author: Wanying Lei, leiwy@xauat.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 12 September 2023
    Revised Date: 18 October 2023
    Accepted Date: 19 October 2023
    Available Online: 20 December 2023

    Fund Project: the National Natural Science Foundation of China 51902243the National Natural Science Foundation of China 2302112Key Research Project of Shaanxi Education Department 22JY039Key Research Project of Shaanxi Education Department 22JY037the Fundamental Research Funds for Central Non-Profit Scientific Institution 1610232023008the Agricultural Science and Technology Innovation Program ASTIP-TRIC07

  • Artificial photosynthesis is an appealing approach for generating hydrogen peroxide (H2O2) from H2O and O2 with solar energy as the sole energy input. However, the current catalyst systems commonly face challenges such as the limited optical absorption, poor electron-hole pair separation efficiency, and restricted surface reactivity, which hinders the overall photoactivity. Here, we immobilize cubic-phase ultrathin In4SnS8 nanosheets (Eg = 2.16 eV) with thickness of 5–10 nm on the surface of few-layer Ti3C2 to develop a sandwich-like hierarchical structure of Ti3C2/In4SnS8 nanohybrid via in situ hydrothermal strategy. The enlarged interfacial area and close contact between Ti3C2 and In4SnS8 benefit for carrier transportation among nanohybrids. Characterization through X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) corroborates the successful construction of Ti3C2/In4SnS8 nanostructures. Band structures investigation including valence band maximum and Mott-Schottky plots reveals the formation of Schottky junction in this 2D/2D heterostructure, that favors for ultrafast charge carrier separation and transportation from In4SnS8 to Ti3C2 and preventing the electrons backflow from Ti3C2 to In4SnS8. Photoluminescene analysis and photo/electrochemical measurements prove that the combination of Ti3C2 and In4SnS8 accelerates the transportation of photoexcited electron-hole pairs and efficiently suppresses charge carrier recombination. Unsurprisingly, 7 wt% Ti3C2/In4SnS8 catalysts exhibit the highest visible-light-driven photoreactivity with H2O2 production rates of 1.998 µmol∙L−1∙min‒1 that is 2.2 times larger than that of single In4SnS8. Additionally, Ti3C2/In4SnS8 demonstrates a multifunctional capability in Cr(Ⅵ) reduction with the greatest reaction rates of 19.8 × 10−3 min‒1 that is almost 4-fold larger than that of individual semiconductor. Moreover, the nanohybrids exhibit excellent photostability after 5 cycles testing in both reaction systems. The morphology, crystal structure and composition for Ti3C2/In4SnS8 remain unaltered after photoreaction. A comprehensive analysis including trapping agents and atmosphere experiments as well as electron paramagnetic resonance demonstrates that the H2O2 evolution pathway consists of two channels: a two-step successive 1e oxygen reduction reaction and a one-step 2e water oxidation reaction. This work may provide a viable protocol for designing efficient and multifunctional photocatalytic systems for solar-to-chemical energy conversion.
  • 加载中
    1. [1]

      Zhao, Y.; Zhang, P.; Yang, Z.; Li, L.; Gao, J.; Chen, S.; Xie, T.; Diao, C.; Xi, S.; Xiao, B.; et al. Nat. Commun. 2021, 12, 3701. doi: 10.1038/s41467-021-24048-1  doi: 10.1038/s41467-021-24048-1

    2. [2]

      Zhou, L.; Lei, J.; Wang, F.; Wang, L.; Hoffmann, M. R.; Liu, Y.; In, S.-I.; Zhang, J. Appl. Catal. B-Environ. 2021, 288, 119993. doi: 10.1016/j.apcatb.2021.119993  doi: 10.1016/j.apcatb.2021.119993

    3. [3]

      Zhang, X.; Yu, J.; Macyk, M.; Wageh, S.; Al-Ghamdi, A.; Wang, L.; Adv. Sustain. Syst. 2023, 7, 2200113. doi: 10.1002/adsu.202200113  doi: 10.1002/adsu.202200113

    4. [4]

      Zhang, Y.; Pan, C.; Bian, G.; Xu, J.; Dong, Y.; Zhang, Y.; Lou, Y.; Liu, W.; Zhu, Y. Nat. Energy 2023, 8, 361. doi: 10.1038/s41560-023-01218-7  doi: 10.1038/s41560-023-01218-7

    5. [5]

      Kondo, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Chem 2022, 8, 2924. doi: 10.1016/j.chempr.2022.10.007  doi: 10.1016/j.chempr.2022.10.007

    6. [6]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    7. [7]

      Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B- Environ. 2023, 333, 122780. doi: 10.1016/j.apcatb.2023.122780  doi: 10.1016/j.apcatb.2023.122780

    8. [8]

      Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang L.; Yu, J. Appl. Catal. B-Environ. 2022, 317, 121788. doi: 10.1016/j.apcatb.2022.121788  doi: 10.1016/j.apcatb.2022.121788

    9. [9]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002  doi: 10.1016/j.jmst.2022.09.002

    10. [10]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Ahmed A.; Al-Ghamdi, Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029  doi: 10.1016/j.jmst.2022.01.029

    11. [11]

      Zhang, Z.; Tsuchimochi, T.; Ina, T.; Kumabe, Y.; Muto, S.; Ohara, K.; Yamada, H.; Ten-no, H. L.; Tachikawa, T. Nat. Commun. 2022, 13, 1499. doi: 10.1038/s41467-022-28944-y  doi: 10.1038/s41467-022-28944-y

    12. [12]

      Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. J. Phys. Chem. Lett. 2023, 14, 4803. doi: 10.1002/smll.202104561  doi: 10.1002/smll.202104561

    13. [13]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2112037.  doi: 10.1002/adsu.202200113

    14. [14]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/S1872-2067(22)64106-8  doi: 10.1016/S1872-2067(22)64106-8

    15. [15]

      Hu, Y.; Yu, X.; Liu, Q.; Wang, L.; Tang, H. Carbon 2022, 188, 70. doi: 10.1016/j.carbon.2021.11.050  doi: 10.1016/j.carbon.2021.11.050

    16. [16]

      Lu, Y.; Jia, X.; Ma, Z.; Li, Y.; Yue, S.; Liu, X.; Zhang, J. Adv. Funct. Mater. 2022, 32, 2203638. doi: 10.1002/adfm.202203638  doi: 10.1002/adfm.202203638

    17. [17]

      Wang, J.; Lin, S.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Adv. Funct. Mater. 2021, 31, 2008008. doi: 10.1002/adfm.202008008  doi: 10.1002/adfm.202008008

    18. [18]

      Wu, L.; Su, F.; Liu, T.; Liu, G.-Q.; Li, Y.; Ma, T.; Wang, Y.; Zhang, C.; Yang, Y.; Yu, S.-H. J. Am. Chem. Soc. 2022, 144, 20620. doi: 10.1021/jacs.2c07313  doi: 10.1021/jacs.2c07313

    19. [19]

      Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022, 43, 226. doi: 10.1016/s1872-2067(21)63832-9  doi: 10.1016/s1872-2067(21)63832-9

    20. [20]

      Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067(23)64479-1  doi: 10.1016/S1872-2067(23)64479-1

    21. [21]

      Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009  doi: 10.1016/j.jmst.2023.05.009

    22. [22]

      Chai, Y.; Chen, Y.; Shen, J.; Ni, M.; Wang, B.; Li, D.; Zhang, Z.; Wang, X. ACS Catal. 2021, 11, 11029. doi: 10.1021/acscatal.1c02937  doi: 10.1021/acscatal.1c02937

    23. [23]

      Li, F.; Cheng, L.; Fan, J.; Xiang, Q. J. Mater. Chem. A 2021, 9, 23765. doi: 10.1039/D1TA06899G  doi: 10.1039/D1TA06899G

    24. [24]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39, 2212010.  doi: 10.3866/PKU.WHXB202212010

    25. [25]

      Li, H.; Sun, B.; Gao, T.; Li, H.; Ren Y.; Zhou, G. Chin. J. Catal. 2022, 42, 461. doi: 10.1016/s1872-2067(21)63915-3  doi: 10.1016/s1872-2067(21)63915-3

    26. [26]

      Feng, R.; Wan, K.; Sui, X.; Zhao, N.; Li, H.; Lei, W.; Yu, J.; Liu, X.; Shi, X.; Zhai, M.; et al. Nano Today 2021, 37, 101080. doi: 10.1016/j.nantod.2021.101080  doi: 10.1016/j.nantod.2021.101080

    27. [27]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016.

    28. [28]

      Guan, C.; Yue, X.; Fan, J.; Xiang, Q. Chin. J. Catal. 2022, 43, 2484. doi: 10.1016/s1872-2067(22)64102-0  doi: 10.1016/s1872-2067(22)64102-0

    29. [29]

      Zhao, Y.; Zhang, J.; Guo, X.; Cao, X.; Wang, S.; Liu, H.; Wang, G. Chem. Soc. Rev. 2023, 52, 3215. doi: 10.1039/D2CS00698G  doi: 10.1039/D2CS00698G

    30. [30]

      Lim, K. R. G.; Shekhirev, M.; Wyatt, B. C.; Anasori, B.; Gogotsi, Y.; Seh, Z. W. Nat. Synth. 2022, 1, 601. doi: 10.1038/s44160-022-00104-6  doi: 10.1038/s44160-022-00104-6

    31. [31]

      Li, X.; Huang, Z.; Shuck, C. E.; Liang, G.; Gogotsi, Y.; Zhi, C. Nat. Rev. Chem. 2022, 6, 389. doi: 10.1038/s41570-022-00384-8  doi: 10.1038/s41570-022-00384-8

    32. [32]

      Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. Adv. Funct. Mater. 2018, 28, 1800136. doi: 10.1002/adfm.201800136  doi: 10.1002/adfm.201800136

    33. [33]

      Lei, W.; Zhou, T.; Pang, X.; Xue, S.; Xu, Q. J. Mater. Sci. Technol. 2022, 114, 143. doi: 10.1016/j.jmst.2021.10.029  doi: 10.1016/j.jmst.2021.10.029

    34. [34]

      Kuang, P.; Ni, Z.; Yu, J.; Low, J. Mater. Rep. : Energy 2022, 1, 100081. doi: 10.1016/j.matre.2022.100081  doi: 10.1016/j.matre.2022.100081

    35. [35]

      Pang, X.; Xue, S.; Zhou, T.; Qiao, M.; Li, H.; Liu, X.; Xu, Q.; Liu, G.; Lei, W. Adv. Sustain. Syst. 2023, 7, 2100507. doi: 10.1002/adsu.202100507  doi: 10.1002/adsu.202100507

    36. [36]

      Pang, X.; Xue, S.; Zhou, T.; Xu, Q.; Lei, W. Ceram. Int. 2022, 48, 3659. doi: 10.1016/j.ceramint.2021.10.147  doi: 10.1016/j.ceramint.2021.10.147

    37. [37]

      Lei, Y.; Wang, G.; Zhou, L.; Hu, W.; Song, S.; Fan, W.; Zhang, H. Dalton Trans. 2010, 39, 7021. doi: 10.1039/c0dt00060d  doi: 10.1039/c0dt00060d

    38. [38]

      Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11, 8510. doi: 10.1021/acscatal.1c02018  doi: 10.1021/acscatal.1c02018

    39. [39]

      Shen, S.; Li, L.; Wu, Z.; Sun, M.; Tang, Z.; Yang, J. RSC Adv. 2017, 7, 4555. doi: 10.1039/C6RA27262B  doi: 10.1039/C6RA27262B

    40. [40]

      Zhong, Q.; Li, Y.; Zhang, G. Chem. Eng. J. 2021, 409, 128099. doi: 10.1016/j.cej.2020.128099  doi: 10.1016/j.cej.2020.128099

    41. [41]

      Zhang, S.; Hong, J.; Zeng, X.; Hao, J.; Zheng, Y.; Fan, Q.; Pang, W. K.; Zhang, C.; Zhou, T.; Guo, Z. Adv. Funct. Mater. 2021, 31, 2101676. doi: 10.1002/adfm.202101676  doi: 10.1002/adfm.202101676

    42. [42]

      Chen, X.; Zhang, W.; Zhang, L.; Feng, L.; Zhang, C.; Jiang, J.; Wang, H. ACS Appl. Mater. Interfaces 2021, 13, 25868. doi: 10.1021/acsami.1c02953  doi: 10.1021/acsami.1c02953

    43. [43]

      Li, Y.; Zhao, Y.; Nie, H.; Wei, K.; Cao, J.; Huang, H.; Shao, M.; Liu, Y.; Kang, Z. J. Mater. Chem. A 2021, 9, 515. doi: 10.1039/D0TA10231H  doi: 10.1039/D0TA10231H

    44. [44]

      Zhou, X.; Shen, B.; Zhai, J.; Conesa, J. C. Small Methods 2021, 5, 2100269. doi: 10.1002/smtd.202100269  doi: 10.1002/smtd.202100269

    45. [45]

      Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530  doi: 10.1016/j.cej.2021.129530

    46. [46]

      Liu, C.; Wang, W.; Zhang, M.; Zhang, C.; Ma, C.; Cao, L.; Kong, D.; Feng, H.; Li, W.; Chen, S. Chem. Eng. J. 2022, 430, 132663. doi: 10.1016/j.cej.2021.132663  doi: 10.1016/j.cej.2021.132663

    47. [47]

      You, Z.; Liao, Y.; Li, X.; Fan, J.; Xiang, Q. Nanoscale 2021, 13, 9463. doi: 10.1039/D1NR02224E  doi: 10.1039/D1NR02224E

    48. [48]

      Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028  doi: 10.1016/j.jmst.2021.12.028

    49. [49]

      He, B.; Luo, C.; Wang, Z.; Zhang, L.; Yu, J. Appl. Catal. B-Environ. 2023, 323, 122200. doi: 10.1016/j.apcatb.2022.122200  doi: 10.1016/j.apcatb.2022.122200

    50. [50]

      Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065  doi: 10.1016/j.jmst.2021.12.065

    51. [51]

      Hong, L.; Guo, R.; Yuan, Y.; Ji, X.; Li, Z.; Lin, Z.; Pan, W. Mater. Today Energy 2020, 18, 100521. doi: 10.1016/j.mtener.2020.100521  doi: 10.1016/j.mtener.2020.100521

    52. [52]

      Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi: 10.1007/s42765-022-00253-5  doi: 10.1007/s42765-022-00253-5

    53. [53]

      Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2023, 16, 4506. doi: 10.1007/s12274-021-3733-0  doi: 10.1007/s12274-021-3733-0

    54. [54]

      Xie, H.; Zheng, Y.; Guo, X.; Liu, Y.; Zhang, Z.; Zhao, J.; Zhang, W.; Wang, Y.; Huang, Y. ACS Sustain. Chem. Eng. 2021, 9, 6788. doi: 10.1021/acssuschemeng.1c01012  doi: 10.1021/acssuschemeng.1c01012

    55. [55]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    56. [56]

      Ma, S.; Yang, Y.; Li, J.; Mei, Y.; Zhu, Y.; Wu, J.; Liu, L.; Yao, T.; Yang, Q. J. Colloid Interface Sci. 2022, 606, 1800. doi: 10.1016/j.jcis.2021.08.134  doi: 10.1016/j.jcis.2021.08.134

    57. [57]

      Shao, B.; Liu, Z.; Zeng, G.; Wang, H.; Liang, Q.; He, Q.; Cheng, M.; Zhou, C.; Jiang, L.; Song, B. J. Mater. Chem. A 2020, 8, 7508. doi: 10.1039/D0TA01552K  doi: 10.1039/D0TA01552K

    58. [58]

      Gao, M.; Shen, Z.; Yue, G.; Dong, C.; Wu, J.; Gao, Y.; Tan, F. J. Alloy. Compd. 2023, 932, 167643. doi: 10.1016/j.jallcom.2022.167643  doi: 10.1016/j.jallcom.2022.167643

    59. [59]

      Wang, L.; Zhang, J.; Zhang, Y.; Yu, H.; Qu, Y.; Yu, J. Small 2022, 18, 2104561. doi: 10.1021/jacs.2c07313  doi: 10.1021/jacs.2c07313

    60. [60]

      Zhang, K.; Zhou, M.; Yang, K.; Yu, C.; Mu, P.; Yu, Z.; Lu, K.; Huang, W.; Dai, W. J. Hazard. Mater. 2022, 423, 127172. doi: 10.1016/j.jhazmat.2021.127172  doi: 10.1016/j.jhazmat.2021.127172

  • 加载中
    1. [1]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    9. [9]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    12. [12]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    19. [19]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(5)
  • Abstract views(575)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return