Citation: Mingyang Men, Jinghua Wu, Gaozhan Liu, Jing Zhang, Nini Zhang, Xiayin Yao. Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 100004. doi: 10.3866/PKU.WHXB202309019 shu

Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries

  • Corresponding author: Xiayin Yao, yaoxy@nimte.ac.cn
  • Received Date: 12 September 2023
    Revised Date: 11 October 2023
    Accepted Date: 30 October 2023

    Fund Project: the National Natural Science Foundation of China 22309194the National Natural Science Foundation of China 52372244the Ningbo S&T Innovation 2025 Major Special Program 2021Z122the Ningbo S&T Innovation 2025 Major Special Program 2023Z106the Zhejiang Provincial Key R&D Program of China 2022C01072the Youth Innovation Promotion Association CAS Y2021080

  • Current commercialized lithium ion batteries generally suffer from safety issues due to using flammable organic liquid electrolytes. All-solid-state lithium batteries employing solid electrolytes instead of organic liquid electrolytes and separators possess the advantages of both good safety and high energy density, which is expected to be the most promising energy storage devices for the next generation electric vehicles and smart grid. Sulfide solid electrolytes are regarded as crucial components for all-solid-state rechargeable batteries for the merits of their high room temperature ionic conductivities that approaches or exceeds liquid organic electrolytes and excellent mechanical ductility. The preparation methods of sulfide solid electrolytes are mainly divided into three categories, i.e. solid-state sintering, ball milling and liquid-phase method. However, solid-state sintering and ball milling are time-consuming accompanied by high energy consumption. At the same time, the synthesized electrolyte particles are large in size, which seriously limits the practical application of sulfide electrolytes. In contrast, the liquid-phase method, using organic solvents as the medium, can synthesize sulfide solid electrolytes with controlled particle sizes, which is a simple and time-saving process and more suitable for large-scale production. In this review, we begin by introducing the crystal structures and ion transport mechanisms of major sulfide electrolytes including Li2S-P2S5 binary sulfide solid electrolytes, Li10GeP2S12 and Li6PS5X (X = Cl, Br, I) ternary systems, and summarize the progress of sulfide solid electrolytes prepared by liquid phase method in recent years. Based on the solubility state of the reagents in the solvent, the liquid-phase synthesis of sulfide electrolytes can be categorized into suspension type, solution type and mixed type, and their reaction mechanisms are discussed separately. Subsequently, we summarize the effect of solvents on the properties of liquid-phase synthesized sulfide electrolytes, such as purity, morphology, crystallinity and ionic conductivity. In addition, the application of liquid-phase synthesized sulfide solid electrolytes for all-solid-state lithium batteries is presented from six aspects: sulfide electrolytes coated on active materials, electrolyte-active material composites, electrolyte injection into porous electrodes, interfacial modification at solid-solid contact triple-interfaces within electrode layers, electrolyte elemental doping and electrolyte film preparation, which demonstrates the superior scalability of the liquid-phase method and the diverse application prospects. Finally, according to the current research status of the sulfide solid electrolytes synthesized by liquid phase method, the advantages and limitations of the liquid phase synthesis of sulfide solid electrolytes are also analyzed, providing the development direction for the liquid phase synthesized sulfide solid electrolyte for all-solid-state lithium batteries in future.
  • 加载中
    1. [1]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    2. [2]

      Miura, A.; Rosero-Navarro, N. C.; Sakuda, A.; Tadanaga, K.; Phuc, N. H. H.; Matsuda, A.; Machida, N.; Hayashi, A.; Tatsumisago, M. Nat. Rev. Chem. 2019, 3, 189. doi: 10.1038/s41570-019-0078-2  doi: 10.1038/s41570-019-0078-2

    3. [3]

      Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X. Energy Environ. Sci. 2021, 14, 2577. doi: 10.1039/d1ee00551k  doi: 10.1039/d1ee00551k

    4. [4]

      Wu, J.; Yang, J.; Liu, G.; Wang, Z.; Zhang, Z; Yu, H.; Yao, X.; Huang, X. Energy Storage Sci. Technol. 2022, 11, 2713.  doi: 10.19799/j.cnki.2095-4239.2022.0309

    5. [5]

      Peng, L.; Yu, C.; Wei, C.; Liao, C.; Chen, S.; Zhang, L.; Cheng, S.; Xie, J. Acta Phys.-Chim. Sin. 2023, 39, 2211034.  doi: 10.3866/PKU.WHXB202211034

    6. [6]

      Wu, J.; Yao, X. Energy Storage Sci. Technol. 2020, 9, 501.  doi: 10.19799/j.cnki.2095-4239.2020

    7. [7]

      Zhang, S.; Wang, S.; Ling, S.; Gao, J.; Wu, J.; Xiao, R.; Li, H.; Chen, L. Energy Storage Sci. Technol. 2014, 3, 376.  doi: 10.3969/j.issn.2095-4239.2014.04.012

    8. [8]

      Ke, X.; Wang, Y.; Ren, G.; Yuan, C. Energy Stor. Mater. 2020, 26, 313. doi: 10.1016/j.ensm.2019.08.029  doi: 10.1016/j.ensm.2019.08.029

    9. [9]

      Feng, W.-L.; Wang, F.; Zhou, X.; Ji, X.; Han, F.-D.; Wang, C.-S. Acta Phys. Sin. 2020, 69, 228206.  doi: 10.7498/aps.69.20201554

    10. [10]

      Liu, J.; Xu, J.; Lin, Y.; Li, J.; Lai, Y.; Yuan, C.; Zhang, J.; Zhu, K. Acta Chim. Sin. 2013, 71, 869.  doi: 10.6023/a13020170

    11. [11]

      Tan, S. J.; Zeng, X. X.; Ma, Q.; Wu, X. W.; Guo, Y. G. Electrochem. Energy Rev. 2018, 1, 113. doi: 10.1007/s41918-018-0011-2  doi: 10.1007/s41918-018-0011-2

    12. [12]

      Zhao, X.; Wang, C.; Liu, H.; Liang, Y.; Fan, L. Z. Batteries Supercaps 2023, 6, e202200502. doi: 10.1002/batt.202200502  doi: 10.1002/batt.202200502

    13. [13]

      Fei, H.; Liu, Y.; Wei, C.; Zhang, Y.; Feng, J.; Chen, C.; Yu, H. Acta Phys.-Chim. Sin. 2020, 36, 1905015.  doi: 10.3866/PKU.WHXB201905015

    14. [14]

      Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. J. Am. Chem. Soc. 2016, 138, 9385. doi: 10.1021/jacs.6b05341  doi: 10.1021/jacs.6b05341

    15. [15]

      Lv, J.-S.; Guo, S.-K.; He, Y.-B. Tungsten 2021, 3, 260. doi: 10.1007/s42864-021-00102-9  doi: 10.1007/s42864-021-00102-9

    16. [16]

      Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, H. W.; et al. Nano Lett. 2017, 17, 2967. doi: 10.1021/acs.nanolett.7b00221  doi: 10.1021/acs.nanolett.7b00221

    17. [17]

      Hang, Z.; Yang, J.; Chen, X.; Tao, Y.; Liu, D.; Gao, C.; Long, P.; Xu, X. Energy Storage Sci. Technol. 2015, 4, 1.  doi: 10.3969/j.issn.2095-4239.2015.01.001

    18. [18]

      Kudu, O. U.; Famprikis, T.; Fleutot, B.; Braida, M. D.; Le Mercier, T.; Islam, M. S.; Masquelier, C. J. Power Sources 2018, 407, 31. doi: 10.1016/j.jpowsour.2018.10.037  doi: 10.1016/j.jpowsour.2018.10.037

    19. [19]

      Liu, Y.; Yu, T.; Guo, S.; Zhou, H. Acta Phys.-Chim. Sin. 2023, 39, 2301027.  doi: 10.3866/PKU.WHXB202301027

    20. [20]

      Chen, S.; Yu, C.; Luo, Q.; Wei, C.; Li, L.; Li, G.; Cheng, S.; Xie, J. Acta Phys.-Chim. Sin. 2023, 39, 2210032.  doi: 10.3866/PKU.WHXB202210032

    21. [21]

      Tatsumisago, M.; Hayashi, A. Int. J. Appl. Glass Sci. 2014, 5, 226. doi: 10.1111/ijag.12084  doi: 10.1111/ijag.12084

    22. [22]

      Mercier, R.; Malugani, J.-P.; Fahys, B.; Robert, G. Solid State Ion. 1981, 5, 663. doi: 10.1016/0167-2738(81)90341-6  doi: 10.1016/0167-2738(81)90341-6

    23. [23]

      Kanno, R.; Murayama, M. J. Electrochem. Soc. 2001, 148, A742. doi: 10.1149/1.1379028  doi: 10.1149/1.1379028

    24. [24]

      Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. Energy Environ. Sci. 2014, 7, 627. doi: 10.1039/c3ee41655k  doi: 10.1039/c3ee41655k

    25. [25]

      Zhou, J.; Chen, P.; Wang, W.; Zhang, X. Chem. Eng. J. 2022, 446, 137041. doi: 10.1016/j.cej.2022.137041  doi: 10.1016/j.cej.2022.137041

    26. [26]

      Chu, I.-H.; Nguyen, H.; Hy, S.; Lin, Y.-C.; Wang, Z.; Xu, Z.; Deng, Z.; Meng, Y. S.; Ong, S. P. ACS Appl. Mater. Interfaces 2016, 8, 7843. doi: 10.1021/acsami.6b00833  doi: 10.1021/acsami.6b00833

    27. [27]

      Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2007, 178, 1163. doi: 10.1016/j.ssi.2007.05.020  doi: 10.1016/j.ssi.2007.05.020

    28. [28]

      Homma, K.; Yonemura, M.; Nagao, M.; Hirayama, M.; Kanno, R. J. Phys. Soc. Jpn. 2010, 79, 90. doi: 10.1143/jpsjs.79sa.90  doi: 10.1143/jpsjs.79sa.90

    29. [29]

      Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Solid State Ion. 2011, 182, 53. doi: 10.1016/j.ssi.2010.10.001  doi: 10.1016/j.ssi.2010.10.001

    30. [30]

      Iikubo, S.; Shimoyama, K.; Kawano, S.; Fujii, M.; Yamamoto, K.; Matsushita, M.; Shinmei, T.; Higo, Y.; Ohtani, H. AIP Adv. 2018, 8, 015008. doi: 10.1063/1.5011401  doi: 10.1063/1.5011401

    31. [31]

      Yamamoto, K.; Yang, S.; Takahashi, M.; Ohara, K.; Uchiyama, T.; Watanabe, T.; Sakuda, A.; Hayashi, A.; Tatsumisago, M.; Muto, H.; et al. ACS Appl. Energy Mater. 2021, 4, 2275. doi: 10.1021/acsaem.0c02771  doi: 10.1021/acsaem.0c02771

    32. [32]

      Murayama, M.; Kanno, R.; Kawamoto, Y.; Kamiyama, T. Solid State Ion. 2002, 154–155, 789. doi: 10.1016/s0167-2738(02)00492-7  doi: 10.1016/s0167-2738(02)00492-7

    33. [33]

      Murayama, M.; Kanno, R.; Irie, M.; Ito, S.; Hata, T.; Sonoyama, N.; Kawamoto, Y. J. Solid State Chem. 2002, 168, 140. doi: 10.1006/jssc.2002.9701  doi: 10.1006/jssc.2002.9701

    34. [34]

      Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B. J. Am. Chem. Soc. 2013, 135, 15694. doi: 10.1021/ja407393y  doi: 10.1021/ja407393y

    35. [35]

      Ooura, Y.; Machida, N.; Naito, M.; Shigematsu, T. Solid State Ion. 2012, 225, 350. doi: 10.1016/j.ssi.2012.03.003  doi: 10.1016/j.ssi.2012.03.003

    36. [36]

      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066  doi: 10.1038/nmat3066

    37. [37]

      Yu, C.; Zhao, F. P.; Luo, J.; Zhang, L.; Sun, X. L. Nano Energy 2021, 83, 105858. doi: 10.1016/j.nanoen.2021.105858  doi: 10.1016/j.nanoen.2021.105858

    38. [38]

      Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M. Angew. Chem. Int. Ed. 2008, 47, 755. doi: 10.1002/anie.200703900  doi: 10.1002/anie.200703900

    39. [39]

      Hanghofer, I.; Brinek, M.; Eisbacher, S. L.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H. M. R. Phys. Chem. Chem. Phys. 2019, 21, 8489. doi: 10.1039/c9cp00664h  doi: 10.1039/c9cp00664h

    40. [40]

      Ito, S.; Nakakita, M.; Aihara, Y.; Uehara, T.; Machida, N. J. Power Sources 2014, 271, 342. doi: 10.1016/j.jpowsour.2014.08.024  doi: 10.1016/j.jpowsour.2014.08.024

    41. [41]

      Calpa, M.; Nakajima, H.; Mori, S.; Goto, Y.; Mizuguchi, Y.; Moriyoshi, C.; Kuroiwa, Y.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. Inorg. Chem. 2021, 60, 6964. doi: 10.1021/acs.inorgchem.1c00294  doi: 10.1021/acs.inorgchem.1c00294

    42. [42]

      Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C. J. Am. Chem. Soc. 2013, 135, 975. doi: 10.1021/ja3110895  doi: 10.1021/ja3110895

    43. [43]

      Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. Electrochim. Acta 2019, 296, 473. doi: 10.1016/j.electacta.2018.11.035  doi: 10.1016/j.electacta.2018.11.035

    44. [44]

      Phuc, N. H. H.; Totani, M.; Morikawa, K.; Muto, H.; Matsuda, A. Solid State Ion. 2016, 288, 240. doi: 10.1016/j.ssi.2015.11.032  doi: 10.1016/j.ssi.2015.11.032

    45. [45]

      Zhou, J.; Chen, Y.; Yu, Z.; Bowden, M.; Miller, Q. R. S.; Chen, P.; Schaef, H. T.; Mueller, K. T.; Lu, D.; Xiao, J.; et al. Chem. Eng. J. 2022, 429, 132334. doi: 10.1016/j.cej.2021.132334  doi: 10.1016/j.cej.2021.132334

    46. [46]

      Phuc, N. H. H.; Morikawa, K.; Mitsuhiro, T.; Muto, H.; Matsuda, A. Ionics 2017, 23, 2061. doi: 10.1007/s11581-017-2035-8  doi: 10.1007/s11581-017-2035-8

    47. [47]

      Phuc, N. H. H.; Morikawa, K.; Totani, M.; Muto, H.; Matsuda, A. Solid State Ion. 2016, 285, 2. doi: 10.1016/j.ssi.2015.11.019  doi: 10.1016/j.ssi.2015.11.019

    48. [48]

      Kimura, T.; Ito, A.; Nakano, T.; Hotehama, C.; Kowada, H.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. J. Sol-Gel Sci. Technol. 2022, 104, 627. doi: 10.1007/s10971-022-05824-x  doi: 10.1007/s10971-022-05824-x

    49. [49]

      Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. Chem. Lett. 2013, 42, 1435. doi: 10.1246/cl.130726  doi: 10.1246/cl.130726

    50. [50]

      Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. J. Mater. Chem. A 2014, 2, 5095. doi: 10.1039/c3ta15090a  doi: 10.1039/c3ta15090a

    51. [51]

      Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2015, 293, 941. doi: 10.1016/j.jpowsour.2015.05.093  doi: 10.1016/j.jpowsour.2015.05.093

    52. [52]

      Zhang, Z.; Zhang, L.; Liu, Y.; Yan, X.; Xu, B.; Wang, L.-M. J. Alloys Compd. 2020, 812, 152103. doi: 10.1016/j.jallcom.2019.152103  doi: 10.1016/j.jallcom.2019.152103

    53. [53]

      Wang, H.; Hood, Z. D.; Xia, Y.; Liang, C. J. Mater. Chem. A 2016, 4, 8091. doi: 10.1039/c6ta02294d  doi: 10.1039/c6ta02294d

    54. [54]

      Ito, A.; Kimura, T.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. J. Sol-Gel Sci. Technol. 2022, 101, 2. doi: 10.1007/s10971-021-05524-y  doi: 10.1007/s10971-021-05524-y

    55. [55]

      Oh, D. Y.; Ha, A. R.; Lee, J. E.; Jung, S. H.; Jeong, G.; Cho, W.; Kim, K. S.; Jung, Y. S. ChemSusChem 2020, 13, 146. doi: 10.1002/cssc.201901850  doi: 10.1002/cssc.201901850

    56. [56]

      Ziolkowska, D. A.; Arnold, W.; Druffel, T.; Sunkara, M.; Wang, H. ACS Appl. Mater. Interfaces 2019, 11, 6015. doi: 10.1021/acsami.8b19181  doi: 10.1021/acsami.8b19181

    57. [57]

      Hikima, K.; Yamamoto, T.; Phuc, N. H. H.; Matsuda, R.; Muto, H.; Matsuda, A. Solid State Ion. 2020, 354, 115403. doi: 10.1016/j.ssi.2020.115403  doi: 10.1016/j.ssi.2020.115403

    58. [58]

      Sedlmaier, S. J.; Indris, S.; Dietrich, C.; Yavuz, M.; Dräger, C.; von Seggern, F.; Sommer, H.; Janek, J. Chem. Mater. 2017, 29, 1830. doi: 10.1021/acs.chemmater.7b00013  doi: 10.1021/acs.chemmater.7b00013

    59. [59]

      Woo, J.; Song, Y. B.; Kwak, H.; Jun, S.; Jang, B. Y.; Park, J.; Kim, K. T.; Park, C.; Lee, C.; Park, K. H.; et al. Adv. Energy Mater. 2022, 13, 2203292. doi: 10.1002/aenm.202203292  doi: 10.1002/aenm.202203292

    60. [60]

      Wang, Y.; Liu, Z.; Zhu, X.; Tang, Y.; Huang, F. J. Power Sources 2013, 224, 225. doi: 10.1016/j.jpowsour.2012.09.097  doi: 10.1016/j.jpowsour.2012.09.097

    61. [61]

      Hikima, K.; Ogawa, K.; Gamo, H.; Matsuda, A. Chem. Commun. 2023, 59, 6564. doi: 10.1039/d3cc01018j  doi: 10.1039/d3cc01018j

    62. [62]

      Lee, J. E.; Park, K. H.; Kim, J. C.; Wi, T. U.; Ha, A. R.; Song, Y. B.; Oh, D. Y.; Woo, J.; Kweon, S. H.; Yeom, S. J.; et al. Adv. Mater. 2022, 34, e2200083. doi: 10.1002/adma.202200083  doi: 10.1002/adma.202200083

    63. [63]

      Higashiyama, Y.; Nakagawa, T.; Machida, N. J. Jpn. Soc. Powder Powder Metall. 2022, 69, 117. doi: 10.2497/jjspm.69.117  doi: 10.2497/jjspm.69.117

    64. [64]

      Subramanian, Y.; Rajagopal, R.; Ryu, K.-S. Scr. Mater. 2021, 204, 114129. doi: 10.1016/j.scriptamat.2021.114129  doi: 10.1016/j.scriptamat.2021.114129

    65. [65]

      Choi, S.; Ann, J.; Do, J.; Lim, S.; Park, C.; Shin, D. J. Electrochem. Soc. 2018, 166, A5193. doi: 10.1149/2.0301903jes  doi: 10.1149/2.0301903jes

    66. [66]

      Hwang, S. H.; Seo, S. D.; Kim, D. W. Adv. Sci. 2023, 10, 2301707. doi: 10.1002/advs.202301707  doi: 10.1002/advs.202301707

    67. [67]

      Yubuchi, S.; Uematsu, M.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. J. Mater. Chem. A 2019, 7, 558. doi: 10.1039/c8ta09477b  doi: 10.1039/c8ta09477b

    68. [68]

      Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. ACS Appl. Energy Mater. 2018, 1, 3622. doi: 10.1021/acsaem.8b00280  doi: 10.1021/acsaem.8b00280

    69. [69]

      Hikima, K.; Phuc, N. H. H.; Matsuda, A. J. Sol-Gel Sci. Technol. 2021, 101, 16. doi: 10.1007/s10971-021-05625-8  doi: 10.1007/s10971-021-05625-8

    70. [70]

      Gries, A.; Langer, F.; Schwenzel, J.; Busse, M. ACS Omega 2023, 8, 14034. doi: 10.1021/acsomega.3c00603  doi: 10.1021/acsomega.3c00603

    71. [71]

      Wang, Y. X.; Lu, D. P.; Bowden, M.; El Khoury, P. Z.; Han, K. S.; Deng, Z. D.; Xiao, J.; Zhang, J. G.; Liu, J. Chem. Mater. 2018, 30, 990. doi: 10.1021/acs.chemmater.7b04842  doi: 10.1021/acs.chemmater.7b04842

    72. [72]

      Wang, Z.; Jiang, Y.; Wu, J.; Jiang, Y.; Huang, S.; Zhao, B.; Chen, Z.; Zhang, J. Chem. Eng. J. 2020, 393, 124706. doi: 10.1016/j.cej.2020.124706  doi: 10.1016/j.cej.2020.124706

    73. [73]

      Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Terai, K.; Utsuno, F.; Tadanaga, K. Chem. Mater. 2020, 32, 9627. doi: 10.1021/acs.chemmater.0c03198  doi: 10.1021/acs.chemmater.0c03198

    74. [74]

      Zhou, L.; Park, K.-H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L. F. ACS Energy Lett. 2018, 4, 265. doi: 10.1021/acsenergylett.8b01997  doi: 10.1021/acsenergylett.8b01997

    75. [75]

      Suto, K.; Bonnick, P.; Nagai, E.; Niitani, K.; Arthur, T. S.; Muldoon, J. J. Mater. Chem. A 2018, 6, 21261. doi: 10.1039/c8ta08070d  doi: 10.1039/c8ta08070d

    76. [76]

      Park, K. H.; Oh, D. Y.; Choi, Y. E.; Nam, Y. J.; Han, L.; Kim, J. Y.; Xin, H.; Lin, F.; Oh, S. M.; Jung, Y. S. Adv. Mater. 2016, 28, 1874. doi: 10.1002/adma.201505008  doi: 10.1002/adma.201505008

    77. [77]

      Heo, Y. J.; Seo, S. D.; Hwang, S. H.; Choi, S. H.; Kim, D. W. Int. J. Energy Res. 2022, 46, 17644. doi: 10.1002/er.8324  doi: 10.1002/er.8324

    78. [78]

      Lim, H.-D.; Yue, X.; Xing, X.; Petrova, V.; Gonzalez, M.; Liu, H.; Liu, P. J. Mater. Chem. A 2018, 6, 7370. doi: 10.1039/c8ta01800f  doi: 10.1039/c8ta01800f

    79. [79]

      Ghidiu, M.; Ruhl, J.; Culver, S. P.; Zeier, W. G. J. Mater. Chem. A 2019, 7, 17735. doi: 10.1039/c9ta04772g  doi: 10.1039/c9ta04772g

    80. [80]

      Gamo, H.; Nishida, J.; Nagai, A.; Hikima, K.; Matsuda, A. Adv. Energy Sustain. Res. 2022, 3, 2200019. doi: 10.1002/aesr.202200019  doi: 10.1002/aesr.202200019

    81. [81]

      Kim, M. J.; Choi, I. H.; Jo, S. C.; Kim, B. G.; Ha, Y. C.; Lee, S. M.; Kang, S.; Baeg, K. J.; Park, J. W. Small Methods 2021, 5, e2100793. doi: 10.1002/smtd.202100793  doi: 10.1002/smtd.202100793

    82. [82]

      Gamo, H.; Nagai, A.; Matsuda, A. Batteries 2023, 9, 355. doi: 10.3390/batteries9070355  doi: 10.3390/batteries9070355

    83. [83]

      Phuc, N. H. H.; Hirahara, E.; Morikawa, K.; Muto, H.; Matsuda, A. J. Power Sources 2017, 365, 7. doi: 10.1016/j.jpowsour.2017.08.065  doi: 10.1016/j.jpowsour.2017.08.065

    84. [84]

      Jiang, H.; Han, Y.; Wang, H.; Zhu, Y.; Guo, Q.; Jiang, H.; Zheng, C.; Xie, K. Energy Technol. 2020, 8, 2000023. doi: 10.1002/ente.202000023  doi: 10.1002/ente.202000023

    85. [85]

      Matsuda, A.; Muto, H.; Phuc, N. H. H. J. Jpn. Soc. Powder Powder Metall. 2016, 63, 976. doi: 10.2497/jjspm.63.976  doi: 10.2497/jjspm.63.976

    86. [86]

      Han, A.; Tian, R.; Fang, L.; Wan, F.; Hu, X.; Zhao, Z.; Tu, F.; Song, D.; Zhang, X.; Yang, Y. ACS Appl. Mater. Interfaces 2022, 14, 30824. doi: 10.1021/acsami.2c06075  doi: 10.1021/acsami.2c06075

    87. [87]

      Maniwa, R.; Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Mater. Chem. A 2021, 9, 400. doi: 10.1039/d0ta08658d  doi: 10.1039/d0ta08658d

    88. [88]

      Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. RSC Adv. 2017, 7, 46499. doi: 10.1039/c7ra09081a  doi: 10.1039/c7ra09081a

    89. [89]

      Chida, S.; Miura, A.; Rosero-Navarro, N. C.; Higuchi, M.; Phuc, N. H. H.; Muto, H.; Matsuda, A.; Tadanaga, K. Ceram. Int. 2018, 44, 742. doi: 10.1016/j.ceramint.2017.09.241  doi: 10.1016/j.ceramint.2017.09.241

    90. [90]

      Sakuda, A.; Hayashi, A.; Takigawa, Y.; Higashi, K.; Tatsumisago, M. J. Ceram. Soc. Jpn. 2013, 121, 946. doi: 10.2109/jcersj2.121.946  doi: 10.2109/jcersj2.121.946

    91. [91]

      Choi, S. H.; Kim, W.-J.; Lee, B.-h.; Kim, S.-C.; Kang, J. G.; Kim, D.-W. J. Mater. Chem. A 2023, 11, 14690. doi: 10.1039/d3ta01955a  doi: 10.1039/d3ta01955a

    92. [92]

      Indrawan, R. F.; Gamo, H.; Nagai, A.; Matsuda, A. Chem. Mater. 2023, 35, 2549. doi: 10.1021/acs.chemmater.2c03818  doi: 10.1021/acs.chemmater.2c03818

    93. [93]

      Hood, Z. D.; Wang, H.; Pandian, A. S.; Peng, R.; Gilroy, K. D.; Chi, M.; Liang, C.; Xia, Y. Adv. Energy Mater. 2018, 8, 1800014. doi: 10.1002/aenm.201800014  doi: 10.1002/aenm.201800014

    94. [94]

      Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Power Sources 2018, 396, 33. doi: 10.1016/j.jpowsour.2018.06.011  doi: 10.1016/j.jpowsour.2018.06.011

    95. [95]

      Xu, R. C.; Xia, X. H.; Yao, Z. J.; Wang, X. L.; Gu, C. D.; Tu, J. P. Electrochim. Acta 2016, 219, 235. doi: 10.1016/j.electacta.2016.09.155  doi: 10.1016/j.electacta.2016.09.155

    96. [96]

      Ohara, K.; Masuda, N.; Yamaguchi, H.; Yao, A.; Tominaka, S.; Yamada, H.; Hiroi, S.; Takahashi, M.; Yamamoto, K.; Wakihara, T.; et al. Phys. Status Solidi B 2020, 257, 2000106. doi: 10.1002/pssb.202000106  doi: 10.1002/pssb.202000106

    97. [97]

      Choi, I.-H.; Kim, E.; Jo, Y.-S.; Hong, J.-W.; Sung, J.; Seo, J.; Gon Kim, B.; Park, J.-h.; Lee, Y.-J.; Ha, Y.-C.; et al. J. Ind. Eng. Chem. 2023, 121, 107. doi: 10.1016/j.jiec.2023.01.012  doi: 10.1016/j.jiec.2023.01.012

    98. [98]

      Gamo, H.; Nagai, A.; Matsuda, A. Sci. Rep. 2021, 11, 21097. doi: 10.1038/s41598-021-00662-3  doi: 10.1038/s41598-021-00662-3

    99. [99]

      Yao, X.; Liu, D.; Wang, C.; Long, P.; Peng, G.; Hu, Y.-S.; Li, H.; Chen, L.; Xu, X. Nano Lett. 2016, 16, 7148. doi: 10.1021/acs.nanolett.6b03448  doi: 10.1021/acs.nanolett.6b03448

    100. [100]

      Arnold, W.; Buchberger, D. A.; Li, Y.; Sunkara, M.; Druffel, T.; Wang, H. J. Power Sources 2020, 464, 228158. doi: 10.1016/j.jpowsour.2020.228158  doi: 10.1016/j.jpowsour.2020.228158

    101. [101]

      Arnold, W.; Shreyas, V.; Li, Y.; Koralalage, M. K.; Jasinski, J. B.; Thapa, A.; Sumanasekera, G.; Ngo, A. T.; Narayanan, B.; Wang, H. ACS Appl. Mater. Interfaces 2022, 14, 11483. doi: 10.1021/acsami.1c24468  doi: 10.1021/acsami.1c24468

    102. [102]

      Xu, J.; Wang, Q.; Yan, W.; Chen, L.; Li, H.; Wu, F. Chin. Phys. B 2022, 31, 098203. doi: 10.1088/1674-1056/ac7459  doi: 10.1088/1674-1056/ac7459

    103. [103]

      Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J.-G.; Choi, N.-S.; Jung, Y. S. J. Mater. Chem. A 2017, 5, 20771. doi: 10.1039/c7ta06873e  doi: 10.1039/c7ta06873e

    104. [104]

      Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. J. Am. Chem. Soc. 2015, 137, 1384. doi: 10.1021/ja508723m  doi: 10.1021/ja508723m

    105. [105]

      Bintang, H. M.; Lee, S.; Kim, J. T.; Jung, H. G.; Chung, K. Y.; Whang, D.; Lim, H. D. Int. J. Energy Res. 2020, 44, 11542. doi: 10.1002/er.5775  doi: 10.1002/er.5775

    106. [106]

      Rajagopal, R.; Subramanian, Y.; Jung, Y. J.; Kang, S.; Ryu, K.-S. ACS Appl. Energy Mater. 2022, 5, 9266. doi: 10.1021/acsaem.2c01157  doi: 10.1021/acsaem.2c01157

    107. [107]

      Sakuda, A.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Electrochem. Solid-State Lett. 2010, 13, A73. doi: 10.1149/1.3376620  doi: 10.1149/1.3376620

    108. [108]

      Sakuda, A.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. J. Power Sources 2011, 196, 6735. doi: 10.1016/j.jpowsour.2010.10.103  doi: 10.1016/j.jpowsour.2010.10.103

    109. [109]

      Ito, Y.; Sakuda, A.; Ohtomo, T.; Hayashi, A.; Tatsumisago, M. J. Ceram. Soc. Jpn. 2014, 122, 341. doi: 10.2109/jcersj2.122.341  doi: 10.2109/jcersj2.122.341

    110. [110]

      Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Sol-Gel Sci. Technol. 2021, 101, 8. doi: 10.1007/s10971-021-05634-7  doi: 10.1007/s10971-021-05634-7

    111. [111]

      Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Sol-Gel Sci. Technol. 2018, 89, 303. doi: 10.1007/s10971-018-4775-y  doi: 10.1007/s10971-018-4775-y

    112. [112]

      Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K.; Matsuda, A. Solid State Ion. 2021, 372, 115789. doi: 10.1016/j.ssi.2021.115789  doi: 10.1016/j.ssi.2021.115789

    113. [113]

      Zhang, Q.; Wan, H.; Liu, G.; Ding, Z.; Mwizerwa, J. P.; Yao, X. Nano Energy 2019, 57, 771. doi: 10.1016/j.nanoen.2019.01.004  doi: 10.1016/j.nanoen.2019.01.004

    114. [114]

      Kim, D. H.; Oh, D. Y.; Park, K. H.; Choi, Y. E.; Nam, Y. J.; Lee, H. A.; Lee, S. M.; Jung, Y. S. Nano Lett. 2017, 17, 3013. doi: 10.1021/acs.nanolett.7b00330  doi: 10.1021/acs.nanolett.7b00330

    115. [115]

      Kim, D. H.; Lee, H. A.; Song, Y. B.; Park, J. W.; Lee, S.-M.; Jung, Y. S. J. Power Sources 2019, 426, 143. doi: 10.1016/j.jpowsour.2019.04.028  doi: 10.1016/j.jpowsour.2019.04.028

    116. [116]

      Suzuki, K.; Mashimo, N.; Ikeda, Y.; Yokoi, T.; Hirayama, M.; Kanno, R. ACS Appl. Energy Mater. 2018, 1, 2373. doi: 10.1021/acsaem.8b00227  doi: 10.1021/acsaem.8b00227

    117. [117]

      Han, F.; Yue, J.; Fan, X.; Gao, T.; Luo, C.; Ma, Z.; Suo, L.; Wang, C. Nano Lett. 2016, 16, 4521. doi: 10.1021/acs.nanolett.6b01754  doi: 10.1021/acs.nanolett.6b01754

    118. [118]

      Chen, B.; Deng, S.; Jiang, M.; Wu, M.; Wu, J.; Yao, X. Chem. Eng. J. 2022, 448, 137712. doi: 10.1016/j.cej.2022.137712  doi: 10.1016/j.cej.2022.137712

    119. [119]

      Phuc, N. H. H.; Gamo, H.; Hikima, K.; Muto, H.; Matsuda, A. Energy Fuels 2022, 36, 4577. doi: 10.1021/acs.energyfuels.2c00288  doi: 10.1021/acs.energyfuels.2c00288

    120. [120]

      Hikima, K.; Kusaba, I.; Gamo, H.; Phuc, N. H. H.; Muto, H.; Matsuda, A. ACS Omega 2022, 7, 16561. doi: 10.1021/acsomega.2c00546  doi: 10.1021/acsomega.2c00546

    121. [121]

      Arnold, W.; Shreyas, V.; Akter, S.; Li, Y.; Halacoglu, S.; Kalutara Koralalage, M. B.; Guo, X.; Vithanage, D.; Wei, W.; Sumanasekera, G.; et al. J. Phys. Chem. C 2023, 127, 11801. doi: 10.1021/acs.jpcc.3c00962  doi: 10.1021/acs.jpcc.3c00962

    122. [122]

      Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Nat. Energy 2018, 3, 279. doi: 10.1038/s41560-018-0108-1  doi: 10.1038/s41560-018-0108-1

    123. [123]

      Randau, S.; Weber, D. A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W. G.; et al. Nat. Energy 2020, 5, 259. doi: 10.1038/s41560-020-0565-1  doi: 10.1038/s41560-020-0565-1

    124. [124]

      Cao, D.; Li, Q.; Sun, X.; Wang, Y.; Zhao, X.; Cakmak, E.; Liang, W.; Anderson, A.; Ozcan, S.; Zhu, H. Adv. Mater. 2021, 33, 2105505. doi: 10.1002/adma.202105505  doi: 10.1002/adma.202105505

    125. [125]

      Lee, K.; Kim, S.; Park, J.; Park, S. H.; Coskun, A.; Jung, D. S.; Cho, W.; Choi, J. W. J. Electrochem. Soc. 2017, 164, A2075. doi: 10.1149/2.1341709jes  doi: 10.1149/2.1341709jes

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    8. [8]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    11. [11]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    12. [12]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    13. [13]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    14. [14]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    15. [15]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    18. [18]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    19. [19]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    20. [20]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

Metrics
  • PDF Downloads(0)
  • Abstract views(470)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return