液相法制备硫化物固体电解质及其在全固态锂电池中的应用
- Corresponding author: Xiayin Yao, yaoxy@nimte.ac.cn
Citation:
Mingyang Men, Jinghua Wu, Gaozhan Liu, Jing Zhang, Nini Zhang, Xiayin Yao. 液相法制备硫化物固体电解质及其在全固态锂电池中的应用[J]. Acta Physico-Chimica Sinica,
;2025, 41(1): 230901.
doi:
10.3866/PKU.WHXB202309019
(1) Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13
(2) Miura, A.; Rosero-Navarro, N. C.; Sakuda, A.; Tadanaga, K.; Phuc, N. H. H.; Matsuda, A.; Machida, N.; Hayashi, A.; Tatsumisago, M. Nat. Rev. Chem. 2019, 3, 189. doi: 10.1038/s41570-019-0078-2
(3) Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X. Energy Environ. Sci. 2021, 14, 2577. doi: 10.1039/d1ee00551k
(8) Ke, X.; Wang, Y.; Ren, G.; Yuan, C. Energy Stor. Mater. 2020, 26, 313. doi: 10.1016/j.ensm.2019.08.029
(11) Tan, S. J.; Zeng, X. X.; Ma, Q.; Wu, X. W.; Guo, Y. G. Electrochem. Energy Rev. 2018, 1, 113. doi: 10.1007/s41918-018-0011-2
(12) Zhao, X.; Wang, C.; Liu, H.; Liang, Y.; Fan, L. Z. Batteries Supercaps 2023, 6, e202200502. doi: 10.1002/batt.202200502
(14) Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B. J. Am. Chem. Soc. 2016, 138, 9385. doi: 10.1021/jacs.6b05341
(15) Lv, J.-S.; Guo, S.-K.; He, Y.-B. Tungsten 2021, 3, 260. doi: 10.1007/s42864-021-00102-9
(16) Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, H. W.; et al. Nano Lett. 2017, 17, 2967. doi: 10.1021/acs.nanolett.7b00221
(18) Kudu, O. U.; Famprikis, T.; Fleutot, B.; Braida, M. D.; Le Mercier, T.; Islam, M. S.; Masquelier, C. J. Power Sources 2018, 407, 31. doi: 10.1016/j.jpowsour.2018.10.037
(21) Tatsumisago, M.; Hayashi, A. Int. J. Appl. Glass Sci. 2014, 5, 226. doi: 10.1111/ijag.12084
(22) Mercier, R.; Malugani, J.-P.; Fahys, B.; Robert, G. Solid State Ion. 1981, 5, 663. doi: 10.1016/0167-2738(81)90341-6
(23) Kanno, R.; Murayama, M. J. Electrochem. Soc. 2001, 148, A742. doi: 10.1149/1.1379028
(24) Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. Energy Environ. Sci. 2014, 7, 627. doi: 10.1039/c3ee41655k
(25) Zhou, J.; Chen, P.; Wang, W.; Zhang, X. Chem. Eng. J. 2022, 446, 137041. doi: 10.1016/j.cej.2022.137041
(26) Chu, I.-H.; Nguyen, H.; Hy, S.; Lin, Y.-C.; Wang, Z.; Xu, Z.; Deng, Z.; Meng, Y. S.; Ong, S. P. ACS Appl. Mater. Interfaces 2016, 8, 7843. doi: 10.1021/acsami.6b00833
(27) Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2007, 178, 1163. doi: 10.1016/j.ssi.2007.05.020
(28) Homma, K.; Yonemura, M.; Nagao, M.; Hirayama, M.; Kanno, R. J. Phys. Soc. Jpn. 2010, 79, 90. doi: 10.1143/jpsjs.79sa.90
(29) Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Solid State Ion. 2011, 182, 53. doi: 10.1016/j.ssi.2010.10.001
(30) Iikubo, S.; Shimoyama, K.; Kawano, S.; Fujii, M.; Yamamoto, K.; Matsushita, M.; Shinmei, T.; Higo, Y.; Ohtani, H. AIP Adv. 2018, 8, 015008. doi: 10.1063/1.5011401
(31) Yamamoto, K.; Yang, S.; Takahashi, M.; Ohara, K.; Uchiyama, T.; Watanabe, T.; Sakuda, A.; Hayashi, A.; Tatsumisago, M.; Muto, H.; et al. ACS Appl. Energy Mater. 2021, 4, 2275. doi: 10.1021/acsaem.0c02771
(32) Murayama, M.; Kanno, R.; Kawamoto, Y.; Kamiyama, T. Solid State Ion. 2002, 154–155, 789. doi: 10.1016/s0167-2738(02)00492-7
(33) Murayama, M.; Kanno, R.; Irie, M.; Ito, S.; Hata, T.; Sonoyama, N.; Kawamoto, Y. J. Solid State Chem. 2002, 168, 140. doi: 10.1006/jssc.2002.9701
(34) Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B. J. Am. Chem. Soc. 2013, 135, 15694. doi: 10.1021/ja407393y
(35) Ooura, Y.; Machida, N.; Naito, M.; Shigematsu, T. Solid State Ion. 2012, 225, 350. doi: 10.1016/j.ssi.2012.03.003
(36) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066
(37) Yu, C.; Zhao, F. P.; Luo, J.; Zhang, L.; Sun, X. L. Nano Energy 2021, 83, 105858. doi: 10.1016/j.nanoen.2021.105858
(38) Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M. Angew. Chem. Int. Ed. 2008, 47, 755. doi: 10.1002/anie.200703900
(39) Hanghofer, I.; Brinek, M.; Eisbacher, S. L.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H. M. R. Phys. Chem. Chem. Phys. 2019, 21, 8489. doi: 10.1039/c9cp00664h
(40) Ito, S.; Nakakita, M.; Aihara, Y.; Uehara, T.; Machida, N. J. Power Sources 2014, 271, 342. doi: 10.1016/j.jpowsour.2014.08.024
(41) Calpa, M.; Nakajima, H.; Mori, S.; Goto, Y.; Mizuguchi, Y.; Moriyoshi, C.; Kuroiwa, Y.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. Inorg. Chem. 2021, 60, 6964. doi: 10.1021/acs.inorgchem.1c00294
(42) Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C. J. Am. Chem. Soc. 2013, 135, 975. doi: 10.1021/ja3110895
(43) Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. Electrochim. Acta 2019, 296, 473. doi: 10.1016/j.electacta.2018.11.035
(44) Phuc, N. H. H.; Totani, M.; Morikawa, K.; Muto, H.; Matsuda, A. Solid State Ion. 2016, 288, 240. doi: 10.1016/j.ssi.2015.11.032
(45) Zhou, J.; Chen, Y.; Yu, Z.; Bowden, M.; Miller, Q. R. S.; Chen, P.; Schaef, H. T.; Mueller, K. T.; Lu, D.; Xiao, J.; et al. Chem. Eng. J. 2022, 429, 132334. doi: 10.1016/j.cej.2021.132334
(46) Phuc, N. H. H.; Morikawa, K.; Mitsuhiro, T.; Muto, H.; Matsuda, A. Ionics 2017, 23, 2061. doi: 10.1007/s11581-017-2035-8
(47) Phuc, N. H. H.; Morikawa, K.; Totani, M.; Muto, H.; Matsuda, A. Solid State Ion. 2016, 285, 2. doi: 10.1016/j.ssi.2015.11.019
(48) Kimura, T.; Ito, A.; Nakano, T.; Hotehama, C.; Kowada, H.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. J. Sol-Gel Sci. Technol. 2022, 104, 627. doi: 10.1007/s10971-022-05824-x
(49) Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. Chem. Lett. 2013, 42, 1435. doi: 10.1246/cl.130726
(50) Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. J. Mater. Chem. A 2014, 2, 5095. doi: 10.1039/c3ta15090a
(51) Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2015, 293, 941. doi: 10.1016/j.jpowsour.2015.05.093
(52) Zhang, Z.; Zhang, L.; Liu, Y.; Yan, X.; Xu, B.; Wang, L.-M. J. Alloys Compd. 2020, 812, 152103. doi: 10.1016/j.jallcom.2019.152103
(53) Wang, H.; Hood, Z. D.; Xia, Y.; Liang, C. J. Mater. Chem. A 2016, 4, 8091. doi: 10.1039/c6ta02294d
(54) Ito, A.; Kimura, T.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. J. Sol-Gel Sci. Technol. 2022, 101, 2. doi: 10.1007/s10971-021-05524-y
(55) Oh, D. Y.; Ha, A. R.; Lee, J. E.; Jung, S. H.; Jeong, G.; Cho, W.; Kim, K. S.; Jung, Y. S. ChemSusChem 2020, 13, 146. doi: 10.1002/cssc.201901850
(56) Ziolkowska, D. A.; Arnold, W.; Druffel, T.; Sunkara, M.; Wang, H. ACS Appl. Mater. Interfaces 2019, 11, 6015. doi: 10.1021/acsami.8b19181
(57) Hikima, K.; Yamamoto, T.; Phuc, N. H. H.; Matsuda, R.; Muto, H.; Matsuda, A. Solid State Ion. 2020, 354, 115403. doi: 10.1016/j.ssi.2020.115403
(58) Sedlmaier, S. J.; Indris, S.; Dietrich, C.; Yavuz, M.; Dräger, C.; von Seggern, F.; Sommer, H.; Janek, J. Chem. Mater. 2017, 29, 1830. doi: 10.1021/acs.chemmater.7b00013
(59) Woo, J.; Song, Y. B.; Kwak, H.; Jun, S.; Jang, B. Y.; Park, J.; Kim, K. T.; Park, C.; Lee, C.; Park, K. H.; et al. Adv. Energy Mater. 2022, 13, 2203292. doi: 10.1002/aenm.202203292
(60) Wang, Y.; Liu, Z.; Zhu, X.; Tang, Y.; Huang, F. J. Power Sources 2013, 224, 225. doi: 10.1016/j.jpowsour.2012.09.097
(61) Hikima, K.; Ogawa, K.; Gamo, H.; Matsuda, A. Chem. Commun. 2023, 59, 6564. doi: 10.1039/d3cc01018j
(62) Lee, J. E.; Park, K. H.; Kim, J. C.; Wi, T. U.; Ha, A. R.; Song, Y. B.; Oh, D. Y.; Woo, J.; Kweon, S. H.; Yeom, S. J.; et al. Adv. Mater. 2022, 34, e2200083. doi: 10.1002/adma.202200083
(63) Higashiyama, Y.; Nakagawa, T.; Machida, N. J. Jpn. Soc. Powder Powder Metall. 2022, 69, 117. doi: 10.2497/jjspm.69.117
(64) Subramanian, Y.; Rajagopal, R.; Ryu, K.-S. Scr. Mater. 2021, 204, 114129. doi: 10.1016/j.scriptamat.2021.114129
(65) Choi, S.; Ann, J.; Do, J.; Lim, S.; Park, C.; Shin, D. J. Electrochem. Soc. 2018, 166, A5193. doi: 10.1149/2.0301903jes
(66) Hwang, S. H.; Seo, S. D.; Kim, D. W. Adv. Sci. 2023, 10, 2301707. doi: 10.1002/advs.202301707
(67) Yubuchi, S.; Uematsu, M.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. J. Mater. Chem. A 2019, 7, 558. doi: 10.1039/c8ta09477b
(68) Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. ACS Appl. Energy Mater. 2018, 1, 3622. doi: 10.1021/acsaem.8b00280
(69) Hikima, K.; Phuc, N. H. H.; Matsuda, A. J. Sol-Gel Sci. Technol. 2021, 101, 16. doi: 10.1007/s10971-021-05625-8
(70) Gries, A.; Langer, F.; Schwenzel, J.; Busse, M. ACS Omega 2023, 8, 14034. doi: 10.1021/acsomega.3c00603
(71) Wang, Y. X.; Lu, D. P.; Bowden, M.; El Khoury, P. Z.; Han, K. S.; Deng, Z. D.; Xiao, J.; Zhang, J. G.; Liu, J. Chem. Mater. 2018, 30, 990. doi: 10.1021/acs.chemmater.7b04842
(72) Wang, Z.; Jiang, Y.; Wu, J.; Jiang, Y.; Huang, S.; Zhao, B.; Chen, Z.; Zhang, J. Chem. Eng. J. 2020, 393, 124706. doi: 10.1016/j.cej.2020.124706
(73) Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Terai, K.; Utsuno, F.; Tadanaga, K. Chem. Mater. 2020, 32, 9627. doi: 10.1021/acs.chemmater.0c03198
(74) Zhou, L.; Park, K.-H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L. F. ACS Energy Lett. 2018, 4, 265. doi: 10.1021/acsenergylett.8b01997
(75) Suto, K.; Bonnick, P.; Nagai, E.; Niitani, K.; Arthur, T. S.; Muldoon, J. J. Mater. Chem. A 2018, 6, 21261. doi: 10.1039/c8ta08070d
(76) Park, K. H.; Oh, D. Y.; Choi, Y. E.; Nam, Y. J.; Han, L.; Kim, J. Y.; Xin, H.; Lin, F.; Oh, S. M.; Jung, Y. S. Adv. Mater. 2016, 28, 1874. doi: 10.1002/adma.201505008
(77) Heo, Y. J.; Seo, S. D.; Hwang, S. H.; Choi, S. H.; Kim, D. W. Int. J. Energy Res. 2022, 46, 17644. doi: 10.1002/er.8324
(78) Lim, H.-D.; Yue, X.; Xing, X.; Petrova, V.; Gonzalez, M.; Liu, H.; Liu, P. J. Mater. Chem. A 2018, 6, 7370. doi: 10.1039/c8ta01800f
(79) Ghidiu, M.; Ruhl, J.; Culver, S. P.; Zeier, W. G. J. Mater. Chem. A 2019, 7, 17735. doi: 10.1039/c9ta04772g
(80) Gamo, H.; Nishida, J.; Nagai, A.; Hikima, K.; Matsuda, A. Adv. Energy Sustain. Res. 2022, 3, 2200019. doi: 10.1002/aesr.202200019
(81) Kim, M. J.; Choi, I. H.; Jo, S. C.; Kim, B. G.; Ha, Y. C.; Lee, S. M.; Kang, S.; Baeg, K. J.; Park, J. W. Small Methods 2021, 5, e2100793. doi: 10.1002/smtd.202100793
(82) Gamo, H.; Nagai, A.; Matsuda, A. Batteries 2023, 9, 355. doi: 10.3390/batteries9070355
(83) Phuc, N. H. H.; Hirahara, E.; Morikawa, K.; Muto, H.; Matsuda, A. J. Power Sources 2017, 365, 7. doi: 10.1016/j.jpowsour.2017.08.065
(84) Jiang, H.; Han, Y.; Wang, H.; Zhu, Y.; Guo, Q.; Jiang, H.; Zheng, C.; Xie, K. Energy Technol. 2020, 8, 2000023. doi: 10.1002/ente.202000023
(85) Matsuda, A.; Muto, H.; Phuc, N. H. H. J. Jpn. Soc. Powder Powder Metall. 2016, 63, 976. doi: 10.2497/jjspm.63.976
(86) Han, A.; Tian, R.; Fang, L.; Wan, F.; Hu, X.; Zhao, Z.; Tu, F.; Song, D.; Zhang, X.; Yang, Y. ACS Appl. Mater. Interfaces 2022, 14, 30824. doi: 10.1021/acsami.2c06075
(87) Maniwa, R.; Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Mater. Chem. A 2021, 9, 400. doi: 10.1039/d0ta08658d
(88) Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. RSC Adv. 2017, 7, 46499. doi: 10.1039/c7ra09081a
(89) Chida, S.; Miura, A.; Rosero-Navarro, N. C.; Higuchi, M.; Phuc, N. H. H.; Muto, H.; Matsuda, A.; Tadanaga, K. Ceram. Int. 2018, 44, 742. doi: 10.1016/j.ceramint.2017.09.241
(90) Sakuda, A.; Hayashi, A.; Takigawa, Y.; Higashi, K.; Tatsumisago, M. J. Ceram. Soc. Jpn. 2013, 121, 946. doi: 10.2109/jcersj2.121.946
(91) Choi, S. H.; Kim, W.-J.; Lee, B.-h.; Kim, S.-C.; Kang, J. G.; Kim, D.-W. J. Mater. Chem. A 2023, 11, 14690. doi: 10.1039/d3ta01955a
(92) Indrawan, R. F.; Gamo, H.; Nagai, A.; Matsuda, A. Chem. Mater. 2023, 35, 2549. doi: 10.1021/acs.chemmater.2c03818
(93) Hood, Z. D.; Wang, H.; Pandian, A. S.; Peng, R.; Gilroy, K. D.; Chi, M.; Liang, C.; Xia, Y. Adv. Energy Mater. 2018, 8, 1800014. doi: 10.1002/aenm.201800014
(94) Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Power Sources 2018, 396, 33. doi: 10.1016/j.jpowsour.2018.06.011
(95) Xu, R. C.; Xia, X. H.; Yao, Z. J.; Wang, X. L.; Gu, C. D.; Tu, J. P. Electrochim. Acta 2016, 219, 235. doi: 10.1016/j.electacta.2016.09.155
(96) Ohara, K.; Masuda, N.; Yamaguchi, H.; Yao, A.; Tominaka, S.; Yamada, H.; Hiroi, S.; Takahashi, M.; Yamamoto, K.; Wakihara, T.; et al. Phys. Status Solidi B 2020, 257, 2000106. doi: 10.1002/pssb.202000106
(97) Choi, I.-H.; Kim, E.; Jo, Y.-S.; Hong, J.-W.; Sung, J.; Seo, J.; Gon Kim, B.; Park, J.-h.; Lee, Y.-J.; Ha, Y.-C.; et al. J. Ind. Eng. Chem. 2023, 121, 107. doi: 10.1016/j.jiec.2023.01.012
(98) Gamo, H.; Nagai, A.; Matsuda, A. Sci. Rep. 2021, 11, 21097. doi: 10.1038/s41598-021-00662-3
(99) Yao, X.; Liu, D.; Wang, C.; Long, P.; Peng, G.; Hu, Y.-S.; Li, H.; Chen, L.; Xu, X. Nano Lett. 2016, 16, 7148. doi: 10.1021/acs.nanolett.6b03448
(100) Arnold, W.; Buchberger, D. A.; Li, Y.; Sunkara, M.; Druffel, T.; Wang, H. J. Power Sources 2020, 464, 228158. doi: 10.1016/j.jpowsour.2020.228158
(101) Arnold, W.; Shreyas, V.; Li, Y.; Koralalage, M. K.; Jasinski, J. B.; Thapa, A.; Sumanasekera, G.; Ngo, A. T.; Narayanan, B.; Wang, H. ACS Appl. Mater. Interfaces 2022, 14, 11483. doi: 10.1021/acsami.1c24468
(102) Xu, J.; Wang, Q.; Yan, W.; Chen, L.; Li, H.; Wu, F. Chin. Phys. B 2022, 31, 098203. doi: 10.1088/1674-1056/ac7459
(103) Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J.-G.; Choi, N.-S.; Jung, Y. S. J. Mater. Chem. A 2017, 5, 20771. doi: 10.1039/c7ta06873e
(104) Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C. J. Am. Chem. Soc. 2015, 137, 1384. doi: 10.1021/ja508723m
(105) Bintang, H. M.; Lee, S.; Kim, J. T.; Jung, H. G.; Chung, K. Y.; Whang, D.; Lim, H. D. Int. J. Energy Res. 2020, 44, 11542. doi: 10.1002/er.5775
(106) Rajagopal, R.; Subramanian, Y.; Jung, Y. J.; Kang, S.; Ryu, K.-S. ACS Appl. Energy Mater. 2022, 5, 9266. doi: 10.1021/acsaem.2c01157
(107) Sakuda, A.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Electrochem. Solid-State Lett. 2010, 13, A73. doi: 10.1149/1.3376620
(108) Sakuda, A.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. J. Power Sources 2011, 196, 6735. doi: 10.1016/j.jpowsour.2010.10.103
(109) Ito, Y.; Sakuda, A.; Ohtomo, T.; Hayashi, A.; Tatsumisago, M. J. Ceram. Soc. Jpn. 2014, 122, 341. doi: 10.2109/jcersj2.122.341
(110) Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Sol-Gel Sci. Technol. 2021, 101, 8. doi: 10.1007/s10971-021-05634-7
(111) Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K. J. Sol-Gel Sci. Technol. 2018, 89, 303. doi: 10.1007/s10971-018-4775-y
(112) Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K.; Matsuda, A. Solid State Ion. 2021, 372, 115789. doi: 10.1016/j.ssi.2021.115789
(113) Zhang, Q.; Wan, H.; Liu, G.; Ding, Z.; Mwizerwa, J. P.; Yao, X. Nano Energy 2019, 57, 771. doi: 10.1016/j.nanoen.2019.01.004
(114) Kim, D. H.; Oh, D. Y.; Park, K. H.; Choi, Y. E.; Nam, Y. J.; Lee, H. A.; Lee, S. M.; Jung, Y. S. Nano Lett. 2017, 17, 3013. doi: 10.1021/acs.nanolett.7b00330
(115) Kim, D. H.; Lee, H. A.; Song, Y. B.; Park, J. W.; Lee, S.-M.; Jung, Y. S. J. Power Sources 2019, 426, 143. doi: 10.1016/j.jpowsour.2019.04.028
(116) Suzuki, K.; Mashimo, N.; Ikeda, Y.; Yokoi, T.; Hirayama, M.; Kanno, R. ACS Appl. Energy Mater. 2018, 1, 2373. doi: 10.1021/acsaem.8b00227
(117) Han, F.; Yue, J.; Fan, X.; Gao, T.; Luo, C.; Ma, Z.; Suo, L.; Wang, C. Nano Lett. 2016, 16, 4521. doi: 10.1021/acs.nanolett.6b01754
(118) Chen, B.; Deng, S.; Jiang, M.; Wu, M.; Wu, J.; Yao, X. Chem. Eng. J. 2022, 448, 137712. doi: 10.1016/j.cej.2022.137712
(119) Phuc, N. H. H.; Gamo, H.; Hikima, K.; Muto, H.; Matsuda, A. Energy Fuels 2022, 36, 4577. doi: 10.1021/acs.energyfuels.2c00288
(120) Hikima, K.; Kusaba, I.; Gamo, H.; Phuc, N. H. H.; Muto, H.; Matsuda, A. ACS Omega 2022, 7, 16561. doi: 10.1021/acsomega.2c00546
(121) Arnold, W.; Shreyas, V.; Akter, S.; Li, Y.; Halacoglu, S.; Kalutara Koralalage, M. B.; Guo, X.; Vithanage, D.; Wei, W.; Sumanasekera, G.; et al. J. Phys. Chem. C 2023, 127, 11801. doi: 10.1021/acs.jpcc.3c00962
(122) Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Nat. Energy 2018, 3, 279. doi: 10.1038/s41560-018-0108-1
(123) Randau, S.; Weber, D. A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W. G.; et al. Nat. Energy 2020, 5, 259. doi: 10.1038/s41560-020-0565-1
(124) Cao, D.; Li, Q.; Sun, X.; Wang, Y.; Zhao, X.; Cakmak, E.; Liang, W.; Anderson, A.; Ozcan, S.; Zhu, H. Adv. Mater. 2021, 33, 2105505. doi: 10.1002/adma.202105505
(125) Lee, K.; Kim, S.; Park, J.; Park, S. H.; Coskun, A.; Jung, D. S.; Cho, W.; Choi, J. W. J. Electrochem. Soc. 2017, 164, A2075. doi: 10.1149/2.1341709jes
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078