Citation: Feixue Gao, Lu Zhao, Xiangjian Shen, Junlin Yang, Yongjun Chen. Optimizing the Funding Allocation in Physical Chemistry, Improving the Grant Effectiveness of Science Foundation[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230900. doi: 10.3866/PKU.WHXB202309009 shu

Optimizing the Funding Allocation in Physical Chemistry, Improving the Grant Effectiveness of Science Foundation

  • Corresponding author: Feixue Gao, gaofx@nsfc.gov.cn
  • Received Date: 7 September 2023
    Revised Date: 7 September 2023
    Accepted Date: 7 September 2023
    Available Online: 14 September 2023

  • This paper provides a comprehensive overview of the establishment and subsequent adjustment to the discipline codes of Physical Chemistry in China. In light of the research developments in Physical Chemistry over the past decade, the optimized reclassification into Catalysis & Surface Interface Chemistry and Chemical Theory & Mechanism, effective from 2018, plays an important role in advancing cutting-edge foundational researches and enhancing the grant effectiveness of science foundation. Constructive insights and recommendations are provided for further optimizing discipline allocation, serving as a valuable guide for shaping future development strategies within the field of Physical Chemistry.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Laidler, K. J. The World of Physical Chemistry; Oxford University Press: Oxford, UK, 1995.

    4. [4]

    5. [5]

      Gao, F.; Wu, K.; Yi, X. Sci. Sin. Chim. 2022, 52 (4), 593.  doi: 10.1360/SSC-2021-0121

    6. [6]

      Pan, X.; Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Nat. Mater. 2007, 6 (7), 507. doi: 10.1038/nmat1916  doi: 10.1038/nmat1916

    7. [7]

      Fu, Q.; Li, W.-X.; Yao, Y.; Liu, H.; Su, H.-Y.; Ma, D.; Gu, X.-K.; Chen, L.; Wang, Z.; Zhang, H.; et al. Science 2010, 328 (5982), 1141. doi: 10.1126/science.1188267  doi: 10.1126/science.1188267

    8. [8]

      Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; et al. Science 2016, 351 (6277), 1065. doi: 10.1126/science.aaf1835  doi: 10.1126/science.aaf1835

    9. [9]

      Jiao, F.; Bai, B.; Li, G.; Pan, X.; Ye, Y.; Qu, S.; Xu, C.; Xiao, J.; Jia, Z.; Liu, W.; et al. Science 2023, 380 (6646), 727. doi: 10.1126/science.adg2491  doi: 10.1126/science.adg2491

    10. [10]

      Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.; Liu, Y.; Zhao, Y.; Pang, S.; An, H.; et al. Nature 2022, 610 (7931), 296. doi: 10.1038/s41586-022-05183-1  doi: 10.1038/s41586-022-05183-1

    11. [11]

      Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. Nature 2021, 589 (7842), 396. doi: 10.1038/s41586-020-03130-6  doi: 10.1038/s41586-020-03130-6

    12. [12]

      Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.-W.; et al. Nature 2017, 544 (7648), 80. doi: 10.1038/nature21672  doi: 10.1038/nature21672

    13. [13]

      Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; et al. Science 2017, 357 (6349), 389. doi: 10.1126/science.aah4321  doi: 10.1126/science.aah4321

    14. [14]

      Lin, L.; Yao, S.; Gao, R.; Liang, X.; Yu, Q.; Deng, Y.; Liu, J.; Peng, M.; Jiang, Z.; Li, S.; et al. Nat. Nanotechnol. 2019, 14 (4), 354. doi: 10.1038/s41565-019-0366-5  doi: 10.1038/s41565-019-0366-5

    15. [15]

      Qin, X. T.; Xu, M.; Guan, J. X.; Feng, L.; Xu, Y.; Zheng, L.; R.; Wang, M.; Zhao, J.-W.; Chen, J.-L.; Zhang, J.; et al. Nat. Energy 2023, in Press.

    16. [16]

      Dong, C.; Gao, Z.; Li, Y.; Peng, M.; Wang, M.; Xu, Y.; Li, C.; Xu, M.; Deng, Y.; Qin, X.; et al. Nat. Catal. 2022, 5 (6), 485. doi: 10.1038/s41929-022-00769-4  doi: 10.1038/s41929-022-00769-4

    17. [17]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3 (8), 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    18. [18]

      Hu, S.; Li, W.-X. Science 2021, 374 (6573), 1360. doi: 10.1126/science.abi9828  doi: 10.1126/science.abi9828

    19. [19]

      Li, J.; Gao, Z. R.; Lin, Q.-F.; Liu, C.; Gao, F.; Lin, C.; Zhang, S.; Deng, H.; Mayoral, A.; Fan, W.; et al. Science 2023, 379, 283. doi: 10.1126/science.ade1771  doi: 10.1126/science.ade1771

    20. [20]

      Guo, W.; Yin, J.; Xu, Z.; Li, W.; Peng, Z.; Weststrate, C. J.; Yu, X.; He, Y.; Cao, Z.; Wen, X.; et al. Science 2022, 375 (6585), 1188. doi: 10.1126/science.abi4407  doi: 10.1126/science.abi4407

    21. [21]

      Tian, Y.; Hong, J.; Cao, D.; You, S.; Song, Y.; Cheng, B.; Wang, Z.; Guan, D.; Liu, X.; Zhao, Z.; et al. Science 2022, 377 (6603), 315. doi: 10.1126/science.abo0823.  doi: 10.1126/science.abo0823

    22. [22]

      Zheng, W.; Bian, K.; Chen, X.; Shen, Y.; Zhang, S.; Stöhr, R.; Denisenko, A.; Wrachtrup, J.; Yang, S.; Jiang, Y. Nat. Phys. 2022, 18, 1317. doi: 10.1038/s41567-022-01719-4  doi: 10.1038/s41567-022-01719-4

    23. [23]

      Peng, J.; Guo, J.; Ma, R.; Jiang, Y. Surf. Sci. Rep. 2022, 77 (1), 100549. doi: 10.1016/j.surfrep.2021.100549  doi: 10.1016/j.surfrep.2021.100549

    24. [24]

      Ma, R.; Cao, D.; Zhu, C.; Tian, Y.; Peng, J.; Guo, J.; Chen, J.; Li, X.-Z.; Francisco, J. S.; Zeng, X. C.; et al. Nature 2020, 577 (7788), 60. doi: 10.1038/s41586-019-1853-4  doi: 10.1038/s41586-019-1853-4

    25. [25]

      Zhou, X.; Yao, D.; Hua, W.; Huang, N.; Chen, X.; Li, L.; He, M.; Zhang, Y.; Guo, Y.; Xiao, S.; et al. Proc. Natl. Acad. Sci. USA 2020, 117 (11), 5617. doi: 10.1073/pnas.1917941117  doi: 10.1073/pnas.1917941117

    26. [26]

      Zhao, M.; Chen, Y.; Wang, K.; Zhang, Z.; Streit, J. K.; Fagan, J. A.; Tang, J.; Zheng, M.; Yang, C.; Zhu, Z.; et al. Science 2020, 368 (6493), 878. doi: 10.1126/science.aaz7435  doi: 10.1126/science.aaz7435

    27. [27]

      Qu, H.; Tong, T.; Lei, Z. C.; Shi, P.; Yang, L.; Cao, Y.; Gao, Y. Q.; Hou, Z.; Xu, X.; Tian, Z. Q. Sci. Sin. Chim. 2022, 53 (2), 145.  doi: 10.1360/SSC-2022-0186

    28. [28]

      Zhang, F.; Yang, M.; Xu, X.; Liu, X.; Liu, H.; Jiang, L.; Wang, S. Nat. Mater. 2022, 21 (12), 1357. doi: 10.1038/s41563-022-01391-2  doi: 10.1038/s41563-022-01391-2

    29. [29]

      Wang, Y.-H.; Zheng, S.; Yang, W.-M.; Zhou, R.-Y.; He, Q.-F.; Radjenovic, P.; Dong, J.-C.; Li, S.; Zheng, J.; Yang, Z.-L.; et al. Nature 2021, 600 (7887), 81. doi: 10.1038/s41586-021-04068-z  doi: 10.1038/s41586-021-04068-z

    30. [30]

      Dong, J.-C.; Zhang, X.-G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z.-L.; Wu, D.-Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2018, 4 (1), 60. doi: 10.1038/s41560-018-0292-z  doi: 10.1038/s41560-018-0292-z

    31. [31]

      Li, C.-Y.; Le, J.-B.; Wang, Y.-H.; Chen, S.; Yang, Z.-L.; Li, J.-F.; Cheng, J.; Tian, Z.-Q. Nat. Mater. 2019, 18 (7), 697. doi: 10.1038/s41563-019-0356-x  doi: 10.1038/s41563-019-0356-x

    32. [32]

      Li, W.; Yin, Z.; Gao, Z.; Wang, G.; Li, Z.; Wei, F.; Wei, X.; Peng, H.; Hu, X.; Xiao, L.; et al. Nat. Energy 2022, 7 (9), 835. doi: 10.1038/s41560-022-01092-9  doi: 10.1038/s41560-022-01092-9

    33. [33]

      Yuan, D.; Yu, S.; Chen, W.; Sang, J.; Luo, C.; Wang, T.; Xu, X.; Casavecchia, P.; Wang, X.; Sun, Z.; et al. Nat. Chem. 2018, 10 (6), 653. doi: 10.1038/s41557-018-0032-9  doi: 10.1038/s41557-018-0032-9

    34. [34]

      Yuan, D.; Guan, Y.; Chen, W.; Zhao, H.; Yu, S.; Luo, C.; Tan, Y.; Xie, T.; Wang, X.; Sun, Z.; et al. Science 2018, 362 (6420), 1289. doi: 10.1126/science.aav1356  doi: 10.1126/science.aav1356

    35. [35]

      Yang, T.; Huang, L.; Xiao, C.; Chen, J.; Wang, T.; Dai, D.; Lique, F.; Alexander, M. H.; Sun, Z.; Zhang, D. H.; et al. Nat. Chem. 2019, 11 (8), 744. doi: 10.1038/s41557-019-0280-3  doi: 10.1038/s41557-019-0280-3

    36. [36]

      Xie, Y.; Zhao, H.; Wang, Y.; Huang, Y.; Wang, T.; Xu, X.; Xiao, C.; Sun, Z.; Zhang, D. H.; Yang, X. Science 2020, 368 (6492), 767. doi: 10.1126/science.abb1564  doi: 10.1126/science.abb1564

    37. [37]

      Chen, W.; Wang, R.; Yuan, D.; Zhao, H.; Luo, C.; Tan, Y.; Li, S.; Zhang, D. H.; Wang, X.; Sun, Z.; et al. Science 2021, 371 (6532), 936. doi: 10.1126/science.abf4205  doi: 10.1126/science.abf4205

    38. [38]

      Wang, X.; Yang, X. A. Science 2021, 374 (6570), 938. doi: 10.1126/science.abm5536  doi: 10.1126/science.abm5536

    39. [39]

      Wang, Y.; Huang, J.; Wang, W.; Du, T.; Xie, Y.; Ma, Y.; Xiao, C.; Zhang, Z.; Zhang, D. H.; Yang, X. Science 2023, 379 (6628), 191. doi: 10.1126/science.ade7471  doi: 10.1126/science.ade7471

    40. [40]

      Zhang, Z.; Liu, X.; Chen, Z.; Zheng, H.; Yan, K.; Liu, J. A. J. Chem. Phys. 2017, 147 (3), 034109. doi: 10.1063/1.4991621  doi: 10.1063/1.4991621

    41. [41]

      Liu, J.; He, X.; Wu, B. Acc. Chem. Res. 2021, 54 (23), 4215. doi: 10.1021/acs.accounts.1c00511  doi: 10.1021/acs.accounts.1c00511

    42. [42]

      He, X.; Wu, B.; Shang, Y.; Li, B.; Cheng, X.; Liu, J. WIREs Comput. Mol. Sci. 2022, 12 (6), e1619. doi: 10.1002/wcms.1619  doi: 10.1002/wcms.1619

    43. [43]

      Wang, X.; Jiang, S.; Hu, W.; Ye, S.; Wang, T.; Wu, F.; Yang, L.; Li, X.; Zhang, G.; Chen, X. J. Am. Chem. Soc. 2022, 144 (35), 16069. doi: 10.1021/jacs.2c06288  doi: 10.1021/jacs.2c06288

    44. [44]

      Zhang, B.; Zhang, X.; Du, W.; Song, Z.; Zhang, G.; Zhang, G.; Wang, Y.; Chen, X.; Jiang, J.; Luo, Y. Proc. Natl. Acad. Sci. USA 2022, 119 (41), e2212711119. doi: 10.1073/pnas.2212711119  doi: 10.1073/pnas.2212711119

    45. [45]

      Zhu, Q.; Zhang, F.; Huang, Y.; Xiao, H.; Zhao, L.; Zhang, X.; Song, T.; Tang, X.; Li, X.; He, G.; et al. Natl. Sci. Rev. 2022, 9 (10), nwac190. doi: 10.1093/nsr/nwac190  doi: 10.1093/nsr/nwac190

    46. [46]

      Zhu, Q.; Huang, Y.; Zhou, D. L.; Zhao, L. Y; Guo, L. L.; Yang, R. Y.; Sun, Z. X.; Luo, M.; Zhang, F.; Xiao, H. Y.; et al. Nat. Synth. 2023, in Press.

    47. [47]

      Zhang, Y.; Xu, X.; Goddard, W. A. Proc. Natl. Acad. Sci. USA 2009, 106 (13), 4963. doi: 10.1073/pnas.0901093106  doi: 10.1073/pnas.0901093106

    48. [48]

      Liu, Z.; Chen, Z.; Xi, J.; Xu, X. Natl. Sci. Rev. 2020, 7 (6), 1036. doi: 10.1093/nsr/nwaa051  doi: 10.1093/nsr/nwaa051

    49. [49]

      Liu, Z.; Chen, Z.; Xu, X. CCS Chem. 2021, 3 (3), 904. doi: 10.31635/ccschem.020.202000285  doi: 10.31635/ccschem.020.202000285

    50. [50]

      Yang, J.; Tu, B.; Zhang, G.; Liu, P.; Hu, K.; Wang, J.; Yan, Z.; Huang, Z.; Fang, M.; Hou, J.; et al. Nat. Nanotechnol. 2022, 17 (6), 622. doi: 10.1038/s41565-022-01110-7  doi: 10.1038/s41565-022-01110-7

    51. [51]

      Cao, G.; Liang, J.; Guo, Z.; Yang, K.; Wang, G.; Wang, H.; Wan, X.; Li, Z.; Bai, Y.; Zhang, Y.; et al. Nature 2023, 619 (7968), 73. doi: 10.1038/s41586-023-06082-9  doi: 10.1038/s41586-023-06082-9

    52. [52]

      Gao, F.; Yi, X. Sci. Sin. Chim. 2021, 51 (7), 932.  doi: 10.1360/SSC-2021-0121

  • 加载中
    1. [1]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    2. [2]

      Changhao Wang Jieting Qin Ying Zhang Hongtao Bian Jiani Ma Xin Bo Yashao Chen . SPOC平台支撑的物理化学教学实践研究. University Chemistry, 2025, 40(8): 38-44. doi: 10.12461/PKU.DXHX202410001

    3. [3]

      CCS Chemistry | 国家自然科学基金委员会高飞雪&杨俊林:国家自然科学基金化学基础研究的资助策略、趋势与前沿. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405124): -.

    4. [4]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    5. [5]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    6. [6]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    7. [7]

      Rong Zhang Yufang Pan Sanlai Luo Dan Wang . Exploration and Practice of Teaching Reform in Physical Chemistry for Pharmacy Majors. University Chemistry, 2025, 40(4): 166-173. doi: 10.12461/PKU.DXHX202406101

    8. [8]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    9. [9]

      Liping Guo Hongmei Wang Li Song Mengli Li Haiyang Guo . Reform and Practice of Exercise Lecture in Physical Chemistry Based on the Project-Driven Learning. University Chemistry, 2025, 40(7): 62-70. doi: 10.12461/PKU.DXHX202409102

    10. [10]

      Mei Yan Qun Wang Chongshen Guo . Exploring Nobel Prizes: A Journey of Discovery in Physical Chemistry. University Chemistry, 2025, 40(7): 380-386. doi: 10.12461/PKU.DXHX202409063

    11. [11]

      Jing Yang Sijing Chen . 基于师范类专业认证理念的物理化学课程建设与实践探索. University Chemistry, 2025, 40(8): 72-77. doi: 10.12461/PKU.DXHX202410066

    12. [12]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    13. [13]

      Hongmei Zhao Ziqiang Lu Song Li Xingyu Li Chengting Zi Xingli Fan Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006

    14. [14]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    15. [15]

      Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054

    16. [16]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    17. [17]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    18. [18]

      Chang Guo Haipeng Yang Hui Fang Yingguo Zhao Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049

    19. [19]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    20. [20]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

Metrics
  • PDF Downloads(9)
  • Abstract views(766)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return