Citation:
Shanghua Li, Malin Li, Xiwen Chi, Xin Yin, Zhaodi Luo, Jihong Yu. 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑[J]. Acta Physico-Chimica Sinica,
;2025, 41(1): 230900.
doi:
10.3866/PKU.WHXB202309003
-
水系锌离子电池以其安全可靠、成本低、容量大、环境友好等优点被认为是最有前途的储能体系之一。然而,锌金属负极在水系电解液中通常面临严重的副反应和枝晶生长问题。在锌负极表面构建具有高离子迁移动力学的保护层是构筑高稳定、长寿命锌负极的有效策略。本文中,我们在锌负极表面制备了ZnQ分子筛(BPH拓扑)取向保护层,实现了高离子迁移动力学的稳定锌负极(ZnQ@Zn)的构筑。具有三维有序孔道的ZnQ分子筛在锌箔表面定向排列,为锌离子提供了良好的传导通路,分子筛孔道中的水分子有助于调控锌离子的配位环境,从而提高锌离子的迁移动力学。因此,ZnQ@Zn对称电池在1 mA·cm-2的电流密度下展现出27 mV的超低过电势以及超过1100 h的循环寿命。此外,ZnQ@Zn//NaV3O8·1.5H2O全电池在8 A·g-1的电流密度下循环1800次后,容量保持率高达96%,展现出优异的循环性能。本研究为构筑高迁移动力学锌负极保护层提供了新思路,并拓展了分子筛材料在储能领域中的应用。
-
-
-
[1]
-
[2]
(2) Song, M.; Tan, H.; Chao, D.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564
-
[3]
(3) Xia, Y.; Wang, H.; Shao, G.; Wang, C.-A. J. Power Sources 2022, 540, 231659. doi: 10.1016/j.jpowsour.2022.231659
-
[4]
(4) Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S.-Z. Angew. Chem. Int. Ed. 2019, 58, 7823. doi: 10.1002/anie.201904174
-
[5]
(5) Verma, V.; Kumar, S.; Manalastas, W.; Srinivasan, M. ACS Energy Lett. 2021, 6, 1773. doi: 10.1021/acsenergylett.1c00393
-
[6]
(6) Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F. Nano Energy 2020, 70, 104523. doi: 10.1016/j.nanoen.2020.104523
-
[7]
(7) Wang, J.; Yang, Y.; Zhang, Y.; Li, Y.; Sun, R.; Wang, Z.; Wang, H. Energy Storage Mater. 2021, 35, 19. doi: 10.1016/j.ensm.2020.10.027
-
[8]
(8) Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Mater. Today Energy 2021, 20, 100692. doi: 10.1016/j.mtener.2021.100692
-
[9]
(9) Xie, C.; Li, Y.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Carbon Energy 2020, 2, 540. doi: 10.1002/cey2.67
-
[10]
(10) Yi, Z.; Chen, G.; Hou, F.; Wang, L.; Liang, J. Adv. Energy Mater. 2021, 11, 2003065. doi: 10.1002/aenm.202003065
-
[11]
(11) Xiong, P.; Zhang, Y.; Zhang, J.; Baek, S. H.; Zeng, L.; Yao, Y.; Park, H. S. EnergyChem 2022, 4, 100076. doi: 10.1016/j.enchem.2022.100076
-
[12]
(12) Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C. Adv. Energy Mater. 2018, 8, 1801090. doi: 10.1002/aenm.201801090
-
[13]
(13) Dai, L.; Wang, T.; Jin, B.; Liu, N.; Niu, Y.; Meng, W.; Gao, Z.; Wu, X.; Wang, L.; He, Z. Surf. Coat. Technol. 2021, 427, 127813. doi: 10.1016/j.surfcoat.2021.127813
-
[14]
(14) Zhao, K.; Wang, C.; Yu, Y.; Yan, M.; Wei, Q.; He, P.; Dong, Y.; Zhang, Z.; Wang, X.; Mai, L. Adv. Mater. Interfaces 2018, 5, 1800848. doi: 10.1002/admi.201800848
-
[15]
(15) Liang, P.; Yi, J.; Liu, X.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Adv. Funct. Mater. 2020, 30, 1908528. doi: 10.1002/adfm.201908528
-
[16]
(16) Liu, J.; Ye, C.; Wu, H.; Jaroniec, M.; Qiao, S.-Z. J. Am. Chem. Soc. 2023, 145, 5384. doi: 10.1021/jacs.2c13540
-
[17]
(17) Bissannagari, M.; Shaik, M. R.; Cho, K. Y.; Kim, J.; Yoon, S. ACS Appl. Mater. Interfaces 2022, 14, 35613. doi: 10.1021/acsami.2c07551
-
[18]
(18) Hieu, L. T.; So, S.; Kim, I. T.; Hur, J. Chem. Eng. J. 2021, 411, 128584. doi: 10.1016/j.cej.2021.128584
-
[19]
(19) Guo, W.; Bai, X.; Cong, Z.; Pan, C.; Wang, L.; Li, L.; Chang, C.; Hu, W.; Pu, X. ACS Appl. Mater. Interfaces 2022, 14, 41988. doi: 10.1021/acsami.2c09909
-
[20]
(20) Yuan, L.; Hao, J.; Kao, C.-C.; Wu, C.; Liu, H.-K.; Dou, S.-X.; Qiao, S.-Z. Energy Environ. Sci. 2021, 14, 5669. doi: 10.1039/d1ee02021h
-
[21]
(21) Li, M.; Chi, X.; Yu, J. PRX Energy 2022, 1, 031001. doi: 10.1103/PRXEnergy.1.031001
-
[22]
(22) Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. Nature 2021, 592, 551. doi: 10.1038/s41586-021-03410-9
-
[23]
(23) Andries, K. J.; Wit, B. D.; Grobet, P. J.; Bosmans, H. J. Zeolites 1991, 11, 116. doi: 10.1016/0144-2449(91)80404-N
-
[24]
(24) Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8
-
[25]
-
[26]
(26) Liu, H.; Wang, J.-G.; Hua, W.; Ren, L.; Sun, H.; Hou, Z.; Huyan, Y.; Cao, Y.; Wei, C.; Kang, F. Energy Environ. Sci. 2022, 15, 1872. doi: 10.1039/d2ee00209d
-
[27]
(27) Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324. doi: 10.1016/0032-3861(87)90394-6
-
[28]
(28) Breck, D. W.; Acara, N. A. Crystalline zeolite Q. U.S. Patent US2991151A, 1961-07-04
-
[29]
(29) Li, M.; Li, Z.; Wang, X.; Meng, J.; Liu, X.; Wu, B.; Han, C.; Mai, L. Energy Environ. Sci. 2021, 14, 3796. doi: 10.1039/d1ee00030f
-
[30]
(30) Jin, H.; Dai, S.; Zhu, Z.; Luo, Y.; Qi, B.; Liu, K.; Wu, T.; Zhuang, X.; Zhou, J.; Huang, L. ACS Appl. Energy Mater. 2022, 5, 10581. doi: 10.1021/acsaem.2c01340
-
[31]
(31) Andries, K. J.; Bosmans, H. J.; Grobet, P. J. Zeolites 1991, 11, 124. doi: 10.1016/0144-2449(91)80405-O
-
[32]
(32) Clatworthy, E. B.; Debost, M.; Barrier, N.; Gascoin, S.; Boullay, P.; Vicente, A.; Gilson, J.-P.; Dath, J.-P.; Nesterenko, N.; Mintova, S. ACS Appl. Nano Mater. 2021, 4, 24. doi: 10.1021/acsanm.0c02925
-
[33]
(33) Deng, C.; Xie, X.; Han, J.; Tang, Y.; Gao, J.; Liu, C.; Shi, X.; Zhou, J.; Liang, S. Adv. Funct. Mater. 2020, 30, 2000599. doi: 10.1002/adfm.202000599
-
[34]
(34) Chen, D.; Hu, X.; Shi, L.; Cui, Q.; Wang, H.; Yao, H. Appl. Clay Sci. 2012, 59–60, 148. doi: 10.1016/j.clay.2012.02.017
-
[35]
(35) Beta, I. A.; Hunger, B.; Böhlmann, W.; Jobic, H. Microporous Mesoporous Mater. 2005, 79, 69. doi: 10.1016/j.micromeso.2004.10.022
-
[36]
(36) Pham, T. C. T.; Kim, H. S.; Yoon, K. B. Science 2011, 334, 1533. doi: 10.1126/science.1212472
-
[37]
(37) Agrawal, K. V.; Topuz, B.; Pham, T. C. T.; Nguyen, T. H.; Sauer, N.; Rangnekar, N.; Zhang, H.; Narasimharao, K.; Basahel, S. N.; Francis, L. F.; et al. Adv. Mater. 2015, 27, 3243. doi: 10.1002/adma.201405893
-
[38]
(38) Xia, Y.; Hou, X.; Chen, X.; Mu, F.; Wang, Y.; Dai, L.; Liu, X.; Yu, Y.; Huang, K.; Xing, W.; et al. Chem. Eng. J. 2023, 465, 142912. doi: 10.1016/j.cej.2023.142912
-
[39]
(39) Yang, H.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X.; He, P.; Zhou, H. Angew. Chem. Int. Ed. 2020, 59, 9377. doi: 10.1002/anie.202001844
-
[40]
(40) Yang, H.; Qiao, Y.; Chang, Z.; Deng, H.; Zhu, X.; Zhu, R.; Xiong, Z.; He, P.; Zhou, H. Adv. Mater. 2021, 33, 2102415. doi: 10.1002/adma.202102415
-
[41]
(41) Yu, Y.; Xiong, G.; Li, C.; Xiao, F.-S. Microporous Mesoporous Mater. 2001, 46, 23. doi: 10.1016/S1387-1811(01)00271-2
-
[42]
(42) Gujar, A. C.; Moye, A. A.; Coghill, P. A.; Teeters, D. C.; Roberts, K. P.; Price, G. L. Microporous Mesoporous Mater. 2005, 78, 131. doi: 10.1016/j.micromeso.2004.08.011
-
[43]
(43) Cui, Y.; Zhao, Q.; Wu, X.; Chen, X.; Yang, J.; Wang, Y.; Qin, R.; Ding, S.; Song, Y.; Wu, J.; et al. Angew. Chem. Int. Ed. 2020, 59, 16594. doi: 10.1002/anie.202005472
-
[44]
(44) Liu, H.; Ye, Q.; Lei, D.; Hou, Z.; Hua, W.; Huyan, Y.; Li, N.; Wei, C.; Kang, F.; Wang, J.-G. Energy Environ. Sci. 2023, 16, 1610. doi: 10.1039/d2ee03952d
-
[45]
(45) Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N. P. ACS Cent. Sci. 2016, 2, 790. doi: 10.1021/acscentsci.6b00260
-
[46]
(46) Yu, X.; Li, Z.; Wu, X.; Zhang, H.; Zhao, Q.; Liang, H.; Wang, H.; Chao, D.; Wang, F.; Qiao, Y.; et al. Joule 2023, 7, 1145. doi: 10.1016/j.joule.2023.05.004
-
[47]
(47) Zhu, M.; Li, S.; Li, B.; Gong, Y.; Du, Z.; Yang, S. Sci. Adv. 2019, 5, eaau6264. doi: 10.1126/sciadv.aau6264
-
[48]
(48) Luo, F.; Xu, D.; Liao, Y.; Chen, M.; Li, S.; Wang, D.; Zheng, Z. J. Energy Chem. 2023, 77, 11. doi: 10.1016/j.jechem.2022.10.023
-
[49]
(49) Xu, Z.; Zhang, Z.; Li, X.; Dong, Q.; Qian, Y.; Hou, Z. ACS Appl. Mater. Interfaces 2023, 15, 15574. doi: 10.1021/acsami.3c00747
-
[50]
(50) Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Electrochim. Acta 2007, 52, 3686. doi: 10.1016/j.electacta.2006.10.042
-
[1]
-
-
-
[1]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[2]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[3]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[4]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[5]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[6]
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
-
[7]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[8]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[9]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[10]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[11]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[12]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[13]
Pingping LU , Shuguang ZHANG , Peipei ZHANG , Aiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411
-
[14]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[15]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[16]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[17]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[18]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[19]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[20]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(210)
- HTML views(43)