Citation: Shanghua Li, Malin Li, Xiwen Chi, Xin Yin, Zhaodi Luo, Jihong Yu. High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 100003. doi: 10.3866/PKU.WHXB202309003 shu

High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics

  • Corresponding author: Malin Li, malinl@jlu.edu.cn Jihong Yu, jihong@jlu.edu.cn
  • Received Date: 1 September 2023
    Revised Date: 25 September 2023
    Accepted Date: 9 October 2023

    Fund Project: the National Natural Science Foundation of China 22288101the National Natural Science Foundation of China 21920102005the National Natural Science Foundation of China 21835002the National Natural Science Foundation of China 22109050the 111 Project B17020

  • Aqueous zinc ion batteries (ZIBs) are regarded as one of the most promising energy storage systems due to their reliable safety, low cost, high volumetric capacity, and environmental friendliness. However, the utilization of Zn metal anode in aqueous electrolyte commonly encounters complex water-induced side reactions and uncontrollable dendrite growth issues. Constructing a protective layer on the surface of Zn anode is an effective strategy to alleviate side reactions and dendrite growth, achieving the stable operation of ZIBs with prolonged cycling life. However, the utilization of protective layers will increase interfacial resistance and result in high polarization in most cases. Thus, developing a desirable artificial protective layer with high ion migration kinetics is a significant task, enabling a fast Zn2+ ion flux for homogeneous deposition with low polarization. Considering that porous aluminosilicate zeolite with a low Si/Al ratio can accommodate abundant framework-associated cations as charge carriers for conduction, herein, we prepared an oriented protective layer on the Zn anode using Zn-ion-exchanged Q zeolite with BPH topology (ZnQ@Zn), achieving a stable Zn anode with high ion migration kinetics. The ZnQ zeolite plates parallelly lay on the surface of Zn foil with the c axis normal to the substrate plane. The three-dimensional ordered channels and the oriented arrangement of ZnQ zeolite plates provide facile ion migration pathways for Zn2+ ions, and the coordination of framework-associated Zn2+ ions with water in zeolite channels also enables fast ion conduction kinetics and high corrosion resistance. Therefore, ZnQ@Zn exhibits enhanced ion conduction kinetics with reduced energy barriers for desolvation, charge transfer, and diffusion processes, resulting in a uniform ion flux to suppress dendrite growth. Consequently, the ZnQ@Zn symmetric cell displays an ultra-low voltage hysteresis of 27 mV with a long lifespan of over 1100 h at 1 mA∙cm−2 and 1 mAh∙cm−2. Moreover, the ZnQ@Zn//NaV3O8·1.5H2O full cell delivers a superior long-term cycling performance with a high capacity retention of 96% after 1800 cycles at 8 A∙g−1. This work provides a new sight for constructing protective layers with fast ion migration kinetics to achieve high-stable Zn anodes, and extends the application of zeolite-based ion-conductive materials in energy storage devices.
  • 加载中
    1. [1]

      Huang, J.; Zhu, Y.; Feng, Y.; Han, Y.; Gu, Z.; Liu, R.; Yang, D.; Chen, K.; Zhang, X.; Sun, W.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2208008.  doi: 10.3866/PKU.WHXB202208008

    2. [2]

      Song, M.; Tan, H.; Chao, D.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564  doi: 10.1002/adfm.201802564

    3. [3]

      Xia, Y.; Wang, H.; Shao, G.; Wang, C.-A. J. Power Sources 2022, 540, 231659. doi: 10.1016/j.jpowsour.2022.231659  doi: 10.1016/j.jpowsour.2022.231659

    4. [4]

      Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S.-Z. Angew. Chem. Int. Ed. 2019, 58, 7823. doi: 10.1002/anie.201904174  doi: 10.1002/anie.201904174

    5. [5]

      Verma, V.; Kumar, S.; Manalastas, W.; Srinivasan, M. ACS Energy Lett. 2021, 6, 1773. doi: 10.1021/acsenergylett.1c00393  doi: 10.1021/acsenergylett.1c00393

    6. [6]

      Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F. Nano Energy 2020, 70, 104523. doi: 10.1016/j.nanoen.2020.104523  doi: 10.1016/j.nanoen.2020.104523

    7. [7]

      Wang, J.; Yang, Y.; Zhang, Y.; Li, Y.; Sun, R.; Wang, Z.; Wang, H. Energy Storage Mater. 2021, 35, 19. doi: 10.1016/j.ensm.2020.10.027  doi: 10.1016/j.ensm.2020.10.027

    8. [8]

      Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Mater. Today Energy 2021, 20, 100692. doi: 10.1016/j.mtener.2021.100692  doi: 10.1016/j.mtener.2021.100692

    9. [9]

      Xie, C.; Li, Y.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Carbon Energy 2020, 2, 540. doi: 10.1002/cey2.67  doi: 10.1002/cey2.67

    10. [10]

      Yi, Z.; Chen, G.; Hou, F.; Wang, L.; Liang, J. Adv. Energy Mater. 2021, 11, 2003065. doi: 10.1002/aenm.202003065  doi: 10.1002/aenm.202003065

    11. [11]

      Xiong, P.; Zhang, Y.; Zhang, J.; Baek, S. H.; Zeng, L.; Yao, Y.; Park, H. S. EnergyChem 2022, 4, 100076. doi: 10.1016/j.enchem.2022.100076  doi: 10.1016/j.enchem.2022.100076

    12. [12]

      Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C. Adv. Energy Mater. 2018, 8, 1801090. doi: 10.1002/aenm.201801090  doi: 10.1002/aenm.201801090

    13. [13]

      Dai, L.; Wang, T.; Jin, B.; Liu, N.; Niu, Y.; Meng, W.; Gao, Z.; Wu, X.; Wang, L.; He, Z. Surf. Coat. Technol. 2021, 427, 127813. doi: 10.1016/j.surfcoat.2021.127813  doi: 10.1016/j.surfcoat.2021.127813

    14. [14]

      Zhao, K.; Wang, C.; Yu, Y.; Yan, M.; Wei, Q.; He, P.; Dong, Y.; Zhang, Z.; Wang, X.; Mai, L. Adv. Mater. Interfaces 2018, 5, 1800848. doi: 10.1002/admi.201800848  doi: 10.1002/admi.201800848

    15. [15]

      Liang, P.; Yi, J.; Liu, X.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Adv. Funct. Mater. 2020, 30, 1908528. doi: 10.1002/adfm.201908528  doi: 10.1002/adfm.201908528

    16. [16]

      Liu, J.; Ye, C.; Wu, H.; Jaroniec, M.; Qiao, S.-Z. J. Am. Chem. Soc. 2023, 145, 5384. doi: 10.1021/jacs.2c13540  doi: 10.1021/jacs.2c13540

    17. [17]

      Bissannagari, M.; Shaik, M. R.; Cho, K. Y.; Kim, J.; Yoon, S. ACS Appl. Mater. Interfaces 2022, 14, 35613. doi: 10.1021/acsami.2c07551  doi: 10.1021/acsami.2c07551

    18. [18]

      Hieu, L. T.; So, S.; Kim, I. T.; Hur, J. Chem. Eng. J. 2021, 411, 128584. doi: 10.1016/j.cej.2021.128584  doi: 10.1016/j.cej.2021.128584

    19. [19]

      Guo, W.; Bai, X.; Cong, Z.; Pan, C.; Wang, L.; Li, L.; Chang, C.; Hu, W.; Pu, X. ACS Appl. Mater. Interfaces 2022, 14, 41988. doi: 10.1021/acsami.2c09909  doi: 10.1021/acsami.2c09909

    20. [20]

      Yuan, L.; Hao, J.; Kao, C.-C.; Wu, C.; Liu, H.-K.; Dou, S.-X.; Qiao, S.-Z. Energy Environ. Sci. 2021, 14, 5669. doi: 10.1039/d1ee02021h  doi: 10.1039/d1ee02021h

    21. [21]

      Li, M.; Chi, X.; Yu, J. PRX Energy 2022, 1, 031001. doi: 10.1103/PRXEnergy.1.031001  doi: 10.1103/PRXEnergy.1.031001

    22. [22]

      Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. Nature 2021, 592, 551. doi: 10.1038/s41586-021-03410-9  doi: 10.1038/s41586-021-03410-9

    23. [23]

      Andries, K. J.; Wit, B. D.; Grobet, P. J.; Bosmans, H. J. Zeolites 1991, 11, 116. doi: 10.1016/0144-2449(91)80404-N  doi: 10.1016/0144-2449(91)80404-N

    24. [24]

      Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8  doi: 10.1038/s41467-018-04060-8

    25. [25]

      Qi, Y.; Xia, Y. Acta Phys. -Chim. Sin. 2023, 39, 2205045.  doi: 10.3866/PKU.WHXB202205045

    26. [26]

      Liu, H.; Wang, J.-G.; Hua, W.; Ren, L.; Sun, H.; Hou, Z.; Huyan, Y.; Cao, Y.; Wei, C.; Kang, F. Energy Environ. Sci. 2022, 15, 1872. doi: 10.1039/d2ee00209d  doi: 10.1039/d2ee00209d

    27. [27]

      Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324. doi: 10.1016/0032-3861(87)90394-6  doi: 10.1016/0032-3861(87)90394-6

    28. [28]

      Breck, D. W.; Acara, N. A. Crystalline zeolite Q. U.S. Patent US2991151A, 1961-07-04

    29. [29]

      Li, M.; Li, Z.; Wang, X.; Meng, J.; Liu, X.; Wu, B.; Han, C.; Mai, L. Energy Environ. Sci. 2021, 14, 3796. doi: 10.1039/d1ee00030f  doi: 10.1039/d1ee00030f

    30. [30]

      Jin, H.; Dai, S.; Zhu, Z.; Luo, Y.; Qi, B.; Liu, K.; Wu, T.; Zhuang, X.; Zhou, J.; Huang, L. ACS Appl. Energy Mater. 2022, 5, 10581. doi: 10.1021/acsaem.2c01340  doi: 10.1021/acsaem.2c01340

    31. [31]

      Andries, K. J.; Bosmans, H. J.; Grobet, P. J. Zeolites 1991, 11, 124. doi: 10.1016/0144-2449(91)80405-O  doi: 10.1016/0144-2449(91)80405-O

    32. [32]

      Clatworthy, E. B.; Debost, M.; Barrier, N.; Gascoin, S.; Boullay, P.; Vicente, A.; Gilson, J.-P.; Dath, J.-P.; Nesterenko, N.; Mintova, S. ACS Appl. Nano Mater. 2021, 4, 24. doi: 10.1021/acsanm.0c02925  doi: 10.1021/acsanm.0c02925

    33. [33]

      Deng, C.; Xie, X.; Han, J.; Tang, Y.; Gao, J.; Liu, C.; Shi, X.; Zhou, J.; Liang, S. Adv. Funct. Mater. 2020, 30, 2000599. doi: 10.1002/adfm.202000599  doi: 10.1002/adfm.202000599

    34. [34]

      Chen, D.; Hu, X.; Shi, L.; Cui, Q.; Wang, H.; Yao, H. Appl. Clay Sci. 2012, 59–60, 148. doi: 10.1016/j.clay.2012.02.017  doi: 10.1016/j.clay.2012.02.017

    35. [35]

      Beta, I. A.; Hunger, B.; Böhlmann, W.; Jobic, H. Microporous Mesoporous Mater. 2005, 79, 69. doi: 10.1016/j.micromeso.2004.10.022  doi: 10.1016/j.micromeso.2004.10.022

    36. [36]

      Pham, T. C. T.; Kim, H. S.; Yoon, K. B. Science 2011, 334, 1533. doi: 10.1126/science.1212472  doi: 10.1126/science.1212472

    37. [37]

      Agrawal, K. V.; Topuz, B.; Pham, T. C. T.; Nguyen, T. H.; Sauer, N.; Rangnekar, N.; Zhang, H.; Narasimharao, K.; Basahel, S. N.; Francis, L. F.; et al. Adv. Mater. 2015, 27, 3243. doi: 10.1002/adma.201405893  doi: 10.1002/adma.201405893

    38. [38]

      Xia, Y.; Hou, X.; Chen, X.; Mu, F.; Wang, Y.; Dai, L.; Liu, X.; Yu, Y.; Huang, K.; Xing, W.; et al. Chem. Eng. J. 2023, 465, 142912. doi: 10.1016/j.cej.2023.142912  doi: 10.1016/j.cej.2023.142912

    39. [39]

      Yang, H.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X.; He, P.; Zhou, H. Angew. Chem. Int. Ed. 2020, 59, 9377. doi: 10.1002/anie.202001844  doi: 10.1002/anie.202001844

    40. [40]

      Yang, H.; Qiao, Y.; Chang, Z.; Deng, H.; Zhu, X.; Zhu, R.; Xiong, Z.; He, P.; Zhou, H. Adv. Mater. 2021, 33, 2102415. doi: 10.1002/adma.202102415  doi: 10.1002/adma.202102415

    41. [41]

      Yu, Y.; Xiong, G.; Li, C.; Xiao, F.-S. Microporous Mesoporous Mater. 2001, 46, 23. doi: 10.1016/S1387-1811(01)00271-2  doi: 10.1016/S1387-1811(01)00271-2

    42. [42]

      Gujar, A. C.; Moye, A. A.; Coghill, P. A.; Teeters, D. C.; Roberts, K. P.; Price, G. L. Microporous Mesoporous Mater. 2005, 78, 131. doi: 10.1016/j.micromeso.2004.08.011  doi: 10.1016/j.micromeso.2004.08.011

    43. [43]

      Cui, Y.; Zhao, Q.; Wu, X.; Chen, X.; Yang, J.; Wang, Y.; Qin, R.; Ding, S.; Song, Y.; Wu, J.; et al. Angew. Chem. Int. Ed. 2020, 59, 16594. doi: 10.1002/anie.202005472  doi: 10.1002/anie.202005472

    44. [44]

      Liu, H.; Ye, Q.; Lei, D.; Hou, Z.; Hua, W.; Huyan, Y.; Li, N.; Wei, C.; Kang, F.; Wang, J.-G. Energy Environ. Sci. 2023, 16, 1610. doi: 10.1039/d2ee03952d  doi: 10.1039/d2ee03952d

    45. [45]

      Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N. P. ACS Cent. Sci. 2016, 2, 790. doi: 10.1021/acscentsci.6b00260  doi: 10.1021/acscentsci.6b00260

    46. [46]

      Yu, X.; Li, Z.; Wu, X.; Zhang, H.; Zhao, Q.; Liang, H.; Wang, H.; Chao, D.; Wang, F.; Qiao, Y.; et al. Joule 2023, 7, 1145. doi: 10.1016/j.joule.2023.05.004  doi: 10.1016/j.joule.2023.05.004

    47. [47]

      Zhu, M.; Li, S.; Li, B.; Gong, Y.; Du, Z.; Yang, S. Sci. Adv. 2019, 5, eaau6264. doi: 10.1126/sciadv.aau6264  doi: 10.1126/sciadv.aau6264

    48. [48]

      Luo, F.; Xu, D.; Liao, Y.; Chen, M.; Li, S.; Wang, D.; Zheng, Z. J. Energy Chem. 2023, 77, 11. doi: 10.1016/j.jechem.2022.10.023  doi: 10.1016/j.jechem.2022.10.023

    49. [49]

      Xu, Z.; Zhang, Z.; Li, X.; Dong, Q.; Qian, Y.; Hou, Z. ACS Appl. Mater. Interfaces 2023, 15, 15574. doi: 10.1021/acsami.3c00747  doi: 10.1021/acsami.3c00747

    50. [50]

      Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Electrochim. Acta 2007, 52, 3686. doi: 10.1016/j.electacta.2006.10.042  doi: 10.1016/j.electacta.2006.10.042

  • 加载中
    1. [1]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    10. [10]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    11. [11]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    12. [12]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    14. [14]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    15. [15]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    16. [16]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

Metrics
  • PDF Downloads(0)
  • Abstract views(289)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return