Citation: Lina Guo,  Ruizhe Li,  Chuang Sun,  Xiaoli Luo,  Yiqiu Shi,  Hong Yuan,  Shuxin Ouyang,  Tierui Zhang. 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 230900. doi: 10.3866/PKU.WHXB202309002 shu

层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响

  • Corresponding author: Hong Yuan,  Shuxin Ouyang,  Tierui Zhang, 
  • Received Date: 1 September 2023
    Revised Date: 6 October 2023
    Accepted Date: 19 October 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (21972052, 22272061) and Foundation Project of Hubei Key Laboratory of Radiation Chemistry and Functional Materials (2021KF01).

  • 太阳能驱动的二氧化碳(CO2)甲烷化反应不仅有助于减少多余的碳排放,而且是生产燃料的重要途径。层状金属双氢氧化物(layered double hydroxides,LDH)可以在高温还原气(H2/Ar)氛围中还原,转化为金属负载于氧化物(MO)的催化剂。这些催化剂在CO2加氢反应中作为优秀的光热催化剂被广泛应用。然而,有关LDH的层间阴离子类型如何影响CO2甲烷化活性的研究还相对有限。本文研究了包含不同层间阴离子的镍(Ni)铝(Al) LDH前驱体,通过在H2/Ar气氛中还原处理,制备了一系列Ni负载在氧化铝(Al2O3)上的MO催化剂,这些催化剂被命名为NiAl-x-MO (其中x代表CO3、NO3、Cl和SO4,分别代表碳酸根、硝酸根、氯离子和硫酸根等阴离子)。其中,NiAl-CO3-MO催化剂表现出50.1%的CO2转化率,99.9%的甲烷(CH4)选择性以及94.4 mmol·g-1·h-1的CH4产出速率。与之相比,NiAl-Cl-MO和NiAl-SO4-MO催化剂的CO2甲烷化活性极低。H2程序升温脱附(temperature programmed desorption with H2,H2-TPD)实验和密度泛函理论计算(density functional theory,DFT)结果表明,低CO2转化率是由于残留的氯(Cl)或硫(S)与金属Ni形成的强配位键阻碍了H2的吸附和活化。因此,在设计LDH衍生的催化剂,特别是用于氢化反应的Ni基催化剂时,应优先考虑层间阴离子在LDH中的重要作用。
  • 加载中
    1. [1]

      (1) Gruber, N.; Clement, D.; Carter, B. R.; Feely, R. A.; Heuven, S. V.; Hoppema, M.; Ishii, M.; Key, R. M.; Kozyr, A.; Lauvset, S. K.; et al. Science 2019, 363 (6432), 1193. doi: 10.1126/science.aau5153

    2. [2]

      (2) Rogelj, J.; Elzen, M. D.; Hohne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Nature 2016, 534, 631. doi: 10.1038/nature18307

    3. [3]

      (3) Fan, F. R.; Wang, R.; Zhang, H.; Wu, W. Z. Chem. Soc. Rev. 2021, 50, 10983. doi: 10.1039/c9cs00821g

    4. [4]

    5. [5]

    6. [6]

      (6) Cai, M. J.; Li, C. R.; He, L. Rare Metals 2020, 39, 881. doi: 10.1007/s12598-020-01431-3

    7. [7]

      (7) Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Nature 2017, 548, 74. doi: 10.1038/nature23016

    8. [8]

      (8) Pham, C. Q.; Bahari, M. B.; Kumar, P. S.; Ahmed, S. F.; Xiao, L. L.; Kumar, S.; Qazaq, A. S.; Siang, T. J.; Tran, H. T.; Islam, A.; et al. Environ. Chem. Lett. 2022, 20, 3613. doi: 10.1007/s10311-022-01483-0

    9. [9]

      (9) Fan, M. M.; Jimenez, J. D.; Shirodkar, S. N.; Wu, J. J.; Chen, S. M.; Song, L.; Royko, M. M.; Zhang, J. J.; Guo, H.; Cui, J. W.; et al. ACS Catal. 2019, 9, 10077. doi: 10.1021/acscatal.9b02197

    10. [10]

      (10) Lv, C. C.; Bai, X. H.; Ning, S. B.; Song, C. X.; Guan, Q. Q.; Liu, B.; Li, Y. G.; Ye, J. H. ACS Nano 2023, 17, 1725. doi: 10.1021/acsnano.2c09025

    11. [11]

      (11) Li, Y.; Li, R. Z.; Li, Z. H.; Xu, Y. Q.; Yuan, H.; Ouyang, S. X.; Zhang, T. R. Sol. RRL 2022, 6, 2200493. doi: 10.1002/solr.202200493

    12. [12]

      (12) Zhu, Z. J.; Tang, R.; Li, C. R.; An, X. D.; He, L. Adv. Sci. 2023, 10, 2302568. doi: 10.1002/advs.202302568

    13. [13]

      (13) Shen, J. H.; Tang, R.; Wu, Z. Y.; Wang, X.; Chu, M. Y.; Cai, M. J.; Zhang, C. C.; Zhang, L.; Yin, K.; He, L.; et al. Trans. Tianjin Univ. 2022, 28, 236. doi: 10.1007/s12209-022-00333-y

    14. [14]

      (14) Ren, J.; Ouyang, S. X.; Xu, H.; Meng, X. G.; Wang, T.; Wang, D. F.; Ye, J. H. Adv. Energy Mater. 2016, 7, 1601657. doi: 10.1002/aenm.201601657

    15. [15]

      (15) Arandiyan, H.; Kani, K.; Wang, Y.; Jiang, B.; Kim, J.; Yoshino, M.; Rezaei, M.; Rowan, A. E.; Dai, H. X.; Yamauchi, Y. ACS Appl. Mater. Interfaces 2019, 11, 46398. doi: 10.1021/acsami.9b18665

    16. [16]

      (16) Wang, X.; Shi, H.; Kwak, J. H.; Szanyi, J. ACS Catal. 2015, 5, 6337. doi: 10.1021/acscatal.5b01464

    17. [17]

      (17) Zhu, M. H.; Tian, P. F.; Cao, X. Y.; Chen, J. C.; Pu, T. C.; Shi, B. F.; Xu, J.; Moon, J.; Wu, Z. L.; Han, Y. F. Appl. Catal. B-Environ. 2021, 282, 119561. doi: 10.1016/j.apcatb.2020.119561

    18. [18]

      (18) Cai, M. J.; Wu, Z. Y.; Li, Z.; Wang, L.; Sun, W.; Tountas, A. A.; Li, C. R.; Wang, S. H.; Feng, K.; Xu, A. B.; et al. Nat. Energy 2021, 6, 807. doi: 10.1038/s41560-021-00867-w

    19. [19]

      (19) Ning, S. B.; Xu, H.; Qi, Y. H.; Song, L. Z.; Zhang, Q. Q.; Ouyang, S. X.; Ye, J. H. ACS Catal. 2020, 10, 4726. doi: 10.1021/acscatal.9b04963

    20. [20]

      (20) Hao, Z. W.; Shen, J. D.; Lin, S. X.; Han, X. Y.; Chang, X.; Liu, J.; Li, M. S.; Ma, X. B. Appl. Catal. B-Environ. 2021, 286, 119922. doi: 10.1016/j.apcatb.2021.119922

    21. [21]

      (21) Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. B.; Zhang, M. T.; Shang, L.; Sheng, G. Y.; et al. Adv. Mater. 2018, 30, 1704663. doi: 10.1002/adma.201704663

    22. [22]

      (22) Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Nano Res. 2021, 14, 4828. doi: 10.1007/s12274-021-3436-6

    23. [23]

      (23) Lai, T. Y.; Wang, J. K.; Sun, X. L.; Zhao, Y. F.; Song, Y. F. Chem.-Asian J. 2021, 16, 3993. doi: 10.1002/asia.202101084

    24. [24]

      (24) Guo, Y. D.; Gong, Z. H.; Li, C. X.; Gao, B.; Li, P.; Wang, X. G.; Zhang, B. C.; Li, X. M. Chem. Eng. J. 2020, 392, 123682. doi: 10.1016/j.cej.2019.123682

    25. [25]

      (25) Sun, Z. M.; Lin, L.; He, J. L.; Ding, D. J.; Wang, T. Y.; Li, J.; Li, M. X.; Liu, Y. C.; Li, Y. Y.; Yuan, M. W.; et al. J. Am. Chem. Soc. 2022, 144, 8204. doi: 10.1021/jacs.2c01153

    26. [26]

      (26) Chen, H. J.; Chen, Z.; Zhao, G. X.; Zhang, Z. B.; Xu, C.; Liu, Y. H.; Chen, J.; Zhuang, L.; Haya, T.; Wang, X. K. J. Hazard. Mater. 2018, 347, 67. doi: 10.1016/j.jhazmat.2017.12.062

    27. [27]

      (27) Karami, Z.; Jouyandeh, M.; Ali, J. A.; Ganjali, M. R.; Aghazadeh, M.; Paran, S. M. R.; Naderi, G.; Puglia, D.; Saeb, M. R. Prog. Org. Coat. 2019, 136, 105218. doi: 10.1016/j.porgcoat.2019.105218

    28. [28]

      (28) Motlagh, P. Y.; Khataee, A.; Rad, T. S.; Hassani, A.; Joo, S. W. J. Taiwan Inst. Chem. E 2019, 101, 186. doi: 10.1016/j.jtice.2019.04.051

    29. [29]

      (29) Wang, Y.; Yao, L.; Wang, Y. N.; Wang, S. H.; Zhao, Q.; Mao, D. H.; Hu, C. W. ACS Catal. 2018, 8, 6495. doi: 10.1021/acscatal.8b00584

    30. [30]

      (30) Konkena, B.; Masa, J.; Botz, A. J. R.; Sinev, I.; Xia, W.; Kossmann, J.; Drautz, R.; Muhler, M.; Schuhmann, W. ACS Catal. 2017, 7, 229. doi: 10.1021/acscatal.6b02203

    31. [31]

      (31) Marshall-Roth, T.; Libretto, N. J.; Wrobel, A. T.; Anderton, K. J.; Pegis, M. L.; Ricke, N. D.; Voorhis, T. V.; Miller, J. T.; Surendranath, Y. Nat. Commun. 2020, 11, 5283. doi: 10.1038/s41467-020-18969-6

    32. [32]

      (32) Markina, D. I.; Anoshkin, S. S.; Masharin, M. A.; Khubezhov, S. A.; Tzibizov, I.; Dolgintsev, D.; Terterov, I. N.; Makarov, S. V.; Pushkarev, A. P. ACS Nano 2023, 17, 1570. doi: 10.1021/acsnano.2c11013

    33. [33]

      (33) Giannazzo, F.; Fisichella, G.; Greco, G.; Franco, S. D.; Deretzis, I.; Magna, A. L.; Bongiorno, C.; Nicotra, G.; Spinella, C.; Scopelliti, M.; et al. ACS Appl. Mater. Interfaces 2017, 9, 23164. doi: 10.1021/acsami.7b04919

    34. [34]

      (34) Li, B.; Jiang, L.; Li, X.; Ran, P.; Zuo, P.; Wang, A. D.; Qu, L. T.; Zhao, Y.; Cheng, Z. H.; Lu, Y. F. Sci. Rep. 2017, 7, 11182. doi: 10.1038/s41598-017-10632-3

    35. [35]

      (35) Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Appl. Catal. B-Environ. 2021, 286, 119869. doi: 10.1016/j.apcatb.2020.119869

    36. [36]

      (36) Hao, P.; Zhao, Z. H.; Leng, Y. H.; Tian, J.; Sang, Y. H.; Boughton, R. I.; Wong, C. P.; Liu, H.; Yang, B. Nano Energy 2015, 15, 9. doi: 10.1016/j.nanoen.2015.02.035

    37. [37]

      (37) Liu, N.; Huang, W. Y.; Tang, M. Q.; Yin, C. C.; Gao, B.; Li, Z. M.; Tang, L.; Lei, J. Q.; Cui, L. F.; Zhang, X. D. Chem. Eng. J. 2019, 359, 254. doi: 10.1016/j.cej.2018.11.143

    38. [38]

      (38) Pu, Y.; Luo, Y. D.; Wei, X. Q.; Sun, J. F.; Li, L. L.; Zou, W. X.; Dong, L. Appl. Catal. B-Environ. 2019, 254, 580. doi: 10.1016/j.apcatb.2019.04.093

    39. [39]

      (39) Italiano, C.; Llorca, J.; Pino, L.; Ferraro, M.; Antonucci, V.; Vita, A. Appl. Catal. B-Environ. 2020, 264, 122620. doi: 10.1016/j.apcatb.2019.118494

    40. [40]

      (40) Paviotti, M. A.; Faroldi, B. M.; Cornaglia, L. M. J. Environ. Chem. Eng. 2021, 9, 105173. doi: 10.1016/j.jece.2021.105173

    41. [41]

      (41) Dias, Y. R.; Perez-Lopez, O. W. J. CO2 Util. 2023, 68, 102381. doi: 10.1016/j.jcou.2022.102381

    42. [42]

      (42) Mihet, M.; Dan, M.; Barbu-Tudoran, L.; Lazar, M. D. Catalysts 2021, 11, 443. doi: 10.3390/catal11040443

    43. [43]

      (43) Gonzalez-Castano, M.; Gonzalez-Arias, J.; Bobadilla, L. F.; Ruiz-Lopez, E.; Odriozola, J. A.; Arellano-Garcia, H. Fuel 2023, 338, 127241. doi: 10.1016/j.fuel.2022.127241

    44. [44]

      (44) Huynh, H. L.; Zhu, J.; Zhang, G. H.; Shen, Y. L.; Tucho, W. M.; Ding, Y.; Yu, Z. X. J. Catal. 2020, 392, 266. doi: 10.1016/j.jcat.2020.10.018

    45. [45]

      (45) Falbo, L.; Visconti, C. G.; Lietti, L.; Szanyi, J. Appl. Catal. B-Environ. 2019, 256, 117791. doi: 10.1016/j.apcatb.2019.117791

    46. [46]

      (46) Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019, 4, 690. doi: 10.1038/s41560-019-0431-1

    47. [47]

      (47) Hongmanorom, P.; Ashok, J.; Chirawatkul, P.; Kawi, S. Appl. Catal. B-Environ. 2021, 297, 120454. doi: 10.1016/j.apcatb.2021.120454

    48. [48]

      (48) Wang, M. R.; Zhang, G. H.; Zhu, J.; Li, W. H.; Wang, J. Y.; Bian, K.; Liu, Y.; Ding, F. S.; Song, C. S.; Guo, X. W. Chem. Eng. J. 2022, 446, 137217. doi: 10.1016/j.cej.2022.137217

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(0)
  • Abstract views(246)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return