Citation:
Runhua Chen, Qiong Wu, Jingchen Luo, Xiaolong Zu, Shan Zhu, Yongfu Sun. 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望[J]. Acta Physico-Chimica Sinica,
;2025, 41(3): 230805.
doi:
10.3866/PKU.WHXB202308052
-
太阳能、风能等可再生能源驱动的光/电催化还原二氧化碳(CO2)制碳基燃料是一种非常吸引人的资源再生和能源存储策略,这对中国实现碳达峰和碳中和战略具有重要意义。然而,CO2分子极高的热力学稳定性和极强的化学惰性导致CO2还原反应的转化效率和选择性仍然不理想,这严重限制了CO2转化技术的实际应用。得益于超薄的厚度、高比表面积和相对均一的暴露晶面等特性,二维超薄材料具有高活性、高密度以及高均一的催化位点,能够优化关键的热力学和动力学因素,进而有效改善CO2光/电还原性能。需要指出的是,缺陷态二维超薄材料中的富电子催化位点能够更高效地吸附和活化CO2分子,从而有效降低反应势垒,加速CO2还原并提高产物选择性。此外,二维超薄材料的缺陷结构也有助于催化过程中的质子传递和电子转移等行为,从而进一步提高催化剂的反应活性。本文综述了缺陷态二维超薄材料在CO2光/电催化还原方面的最新研究进展,详细介绍了几类常见的缺陷态二维超薄材料的可控制备方法和精细结构表征。结合典型实例,系统总结了表面缺陷结构对二维超薄材料的局域原子结构和电子结构的调制作用,以及对CO2还原性能的影响。最后,展望了缺陷态二维超薄材料在CO2还原领域所面临的挑战与机遇,为今后的研究提供了借鉴和启示。
-
-
-
[1]
(1) Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. doi:10.1021/cr4002758
-
[2]
(2) Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Nature 2016, 529, 68. doi:10.1038/nature16455
-
[3]
(3) Li, Y.; Li, F.; Laaksonen, A.; Wang, C.; Cobden, P.; Boden, P.; Liu, Y.; Zhang, X.; Ji, X. Ind. Chem. Mater. 2023, 1, 410. doi:10.1039/D2IM00055E
-
[4]
(4) Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 118, 15. doi:10.1016/j.jmst.2021.12.018
-
[5]
(5) Wu, Y.; Wu, M.; Zhu, J.; Zhang, X.; Li, J.; Zheng, K.; Hu, J.; Liu, C.; Pan, Y.; Zhu, J.; et al. Sci. China Chem. 2023, 66, 1997. doi:10.1007/s11426-022-1595-9
-
[6]
-
[7]
(7) Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Nano Energy 2018, 53, 296. doi:10.1016/j.nanoen.2018.08.058
-
[8]
(8) Sun, Y.; Gao, S.; Lei, F.; Xie, Y. Chem. Soc. Rev. 2015, 44, 623. doi:10.1039/C4CS00236A
-
[9]
(9) Wang, Y.; Liu, J.; Zheng, G. Adv. Mater. 2021, 33, 2005798. doi:10.1002/adma.202005798
-
[10]
(10) Zhou, W.; Fu, H. Inorg. Chem. Front. 2018, 5, 1240. doi:10.1039/C8QI00122G
-
[11]
(11) Jiang, J.; Li, F.; Bai, S.; Wang, Y.; Xiang, K.; Wang, H.; Zou, J.; Hsu, J.-P. Nano Res. 2023, 16, 4656. doi:10.1007/s12274-022-5112-x
-
[12]
(12) Jiang, J.; Ou-yang, L.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H. Carbon 2014, 80, 213. doi:10.1016/j.carbon.2014.08.059
-
[13]
(13) Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J.-P.; Shen Wee, A. T.; Jiang, J. Carbon 2018, 130, 652. doi:10.1016/j.carbon.2018.01.008
-
[14]
(14) Jiao, X.; Hu, Z.; Li, L.; Wu, Y.; Zheng, K.; Sun, Y.; Xie, Y. Sci. China Chem. 2022, 65, 428. doi:10.1007/s11426-021-1184-6
-
[15]
(15) Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi:10.1021/jacs.0c02973
-
[16]
(16) Corma, A.; Garcia, H. J. Catal. 2013, 308, 168. doi:10.1016/j.jcat.2013.06.008
-
[17]
(17) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi:10.1021/acs.chemrev.8b00705
-
[18]
(18) Chang, X.; Wang, T.; Gong, J. Energy Environ. Sci. 2016, 9, 2177. doi:10.1039/C6EE00383D
-
[19]
(19) Ménard, G.; Stephan, D. W. Angew. Chem. Int. Ed. 2011, 50, 8396. doi:10.1002/anie.201103600
-
[20]
-
[21]
(21) Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Chem 2017, 3, 560. doi:10.1016/j.chempr.2017.09.009
-
[22]
(22) Zhou, Y.; Wang, Z.; Huang, L.; Zaman, S.; Lei, K.; Yue, T.; Li, Z. A.; You, B.; Xia, B. Y. Adv. Energy Mater. 2021, 11, 2003159. doi:10.1002/aenm.202003159
-
[23]
(23) Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Smith, L. J.; O’Hare, D.; Zhang, T. Adv. Mater. 2015, 27, 7824. doi:10.1002/adma.201503730
-
[24]
(24) Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 10411. doi:10.1021/ja402956f
-
[25]
(25) Di, J.; Zhao, X.; Lian, C.; Ji, M.; Xia, J.; Xiong, J.; Zhou, W.; Cao, X.; She, Y.; Liu, H.; et al. Nano Energy 2019, 61, 54. doi:10.1016/j.nanoen.2019.04.029
-
[26]
(26) Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; et al. J. Am. Chem. Soc. 2017, 139, 7586. doi:10.1021/jacs.7b02290
-
[27]
(27) Xue, X.; Chen, R.; Chen, H.; Hu, Y.; Ding, Q.; Liu, Z.; Ma, L.; Zhu, G.; Zhang, W.; Yu, Q.; et al. Nano Lett. 2018, 18, 7372. doi:10.1021/acs.nanolett.8b03655
-
[28]
(28) Li, P.; Wang, F.; Wei, S.; Li, X.; Zhou, Y. Phys. Chem. Chem. Phys. 2017, 19, 4405. doi:10.1039/C6CP08409E
-
[29]
(29) Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; et al. Nat. Mater. 2016, 15, 48. doi:10.1038/nmat4465
-
[30]
(30) Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Angew. Chem. Int. Ed. 2016, 55, 5277. doi:10.1002/anie.201600687
-
[31]
(31) Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; et al. Angew. Chem. Int. Ed. 2018, 57, 8719. doi:10.1002/anie.201803514
-
[32]
(32) Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. doi:10.1126/science.1200448
-
[33]
(33) Zhao, Z.; Zhang, X.; Zhang, G.; Liu, Z.; Qu, D.; Miao, X.; Feng, P.; Sun, Z. Nano Res. 2015, 8, 4061. doi:10.1007/s12274-015-0917-5
-
[34]
(34) Zou, X.; Liu, J.; Su, J.; Zuo, F.; Chen, J.; Feng, P. Chem. - Eur. J. 2013, 19, 2866. doi:10.1002/chem.201202833
-
[35]
(35) Niu, P.; Yin, L.-C.; Yang, Y.-Q.; Liu, G.; Cheng, H.-M. Adv. Mater. 2014, 26, 8046. doi:10.1002/adma.201404057
-
[36]
(36) Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Nat. Energy 2019, 4, 690. doi:10.1038/s41560-019-0431-1
-
[37]
(37) Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2014, 136, 6826. doi:10.1021/ja501866r
-
[38]
(38) Sun, Y.; Gao, S.; Lei, F.; Liu, J.; Liang, L.; Xie, Y. Chem. Sci. 2014, 5, 3976. doi:10.1039/C4SC00565A
-
[39]
(39) Sun, Y.; Liu, Q.; Gao, S.; Cheng, H.; Lei, F.; Sun, Z.; Jiang, Y.; Su, H.; Wei, S.; Xie, Y. Nat. Commun. 2013, 4, 2899. doi:10.1038/ncomms3899
-
[40]
(40) Xiong, Y.; Zhao, W.; Gu, D.; Tie, Z.; Zhang, W.; Jin, Z. Nano Lett. 2023, 23, 4876. doi:10.1021/acs.nanolett.3c00524
-
[41]
(41) Jiang, M.; Zhu, M.; Wang, M.; He, Y.; Luo, X.; Wu, C.; Zhang, L.; Jin, Z. ACS Nano 2023, 17, 3209. doi:10.1021/acsnano.2c11046
-
[42]
(42) Čížek, J. J. Mater. Sci. Technol. 2018, 34, 577. doi:10.1016/j.jmst.2017.11.050
-
[43]
(43) Gao, S.; Gu, B.; Jiao, X.; Sun, Y.; Zu, X.; Yang, F.; Zhu, W.; Wang, C.; Feng, Z.; Ye, B.; et al. J. Am. Chem. Soc. 2017, 139, 3438. doi:10.1021/jacs.6b11263
-
[44]
(44) Sun, Y.; Cheng, H.; Gao, S.; Liu, Q.; Sun, Z.; Xiao, C.; Wu, C.; Wei, S.; Xie, Y. J. Am. Chem. Soc. 2012, 134, 20294. doi:10.1021/ja3102049
-
[45]
(45) Wang, Z.; Zu, X.; Li, X.; Li, L.; Wu, Y.; Wang, S.; Ling, P.; Zhao, Y.; Sun, Y.; Xie, Y. Nano Res. 2022, 15, 6999. doi:10.1007/s12274-022-4335-1
-
[46]
(46) Shi, X.; Dong, X. A.; He, Y.; Yan, P.; Zhang, S.; Dong, F. ACS Catal. 2022, 12, 3965. doi:10.1021/acscatal.2c00157
-
[47]
(47) Liu, Y.; Xiao, C.; Li, Z.; Xie, Y. Adv. Energy Mater. 2016, 6, 1600436. doi:10.1002/aenm.201600436
-
[48]
(48) Sun, X.; Zhang, X.; Xie, Y. Matter 2020, 2, 842. doi:10.1016/j.matt.2020.02.006
-
[49]
(49) Jiang, M.; Zhu, M.; Wang, H.; Song, X.; Liang, J.; Lin, D.; Li, C.; Cui, J.; Li, F.; Zhang, X. L.; et al. Nano Lett. 2023, 23, 291. doi:10.1021/acs.nanolett.2c04335
-
[50]
(50) Gao, S.; Sun, Z.; Liu, W.; Jiao, X.; Zu, X.; Hu, Q.; Sun, Y.; Yao, T.; Zhang, W.; Wei, S.; et al. Nat. Commun. 2017, 8, 14503. doi:10.1038/ncomms14503
-
[51]
(51) Liang, L.; Ling, P.; Li, Y.; Li, L.; Liu, J.; Luo, Q.; Zhang, H.; Xu, Q.; Pan, Y.; Zhu, J.; et al. Sci. China Chem. 2021, 64, 953. doi:10.1007/s11426-021-9967-9
-
[52]
(52) Wang, H.; Bi, X.; Yan, Y.; Zhao, Y.; Yang, Z.; Ning, H.; Wu, M. Adv. Funct. Mater. 2023, 33, 2214946. doi:10.1002/adfm.202214946
-
[53]
(53) Jia, S.; Wu, L.; Xu, L.; Sun, X.; Han, B. Ind. Chem. Mater. 2023, 1, 93. doi:10.1039/D2IM00056C
-
[54]
(54) Wang, X.; Ma, S.; Liu, B.; Wang, S.; Huang, W. Chem. Commun. 2023, 59, 10044. doi:10.1039/D3CC02843G
-
[55]
(55) Zu, X.; Zhao, Y.; Li, X.; Chen, R.; Shao, W.; Wang, Z.; Hu, J.; Zhu, J.; Pan, Y.; Sun, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 13840. doi:10.1002/anie.202101894
-
[56]
(56) Liu, K.; Li, X.; Liang, L.; Wu, J.; Jiao, X.; Xu, J.; Sun, Y.; Xie, Y. Nano Res. 2018, 11, 2897. doi:10.1007/s12274-017-1943-2
-
[57]
(57) Ling, P.; Zhu, J.; Wang, Z.; Hu, J.; Zhu, J.; Yan, W.; Sun, Y.; Xie, Y. Nanoscale 2022, 14, 14023. doi:10.1039/D2NR02364D
-
[58]
(58) Zhu, S.; Li, X.; Jiao, X.; Shao, W.; Li, L.; Zu, X.; Hu, J.; Zhu, J.; Yan, W.; Wang, C.; et al. Nano Lett. 2021, 21, 2324. doi:10.1021/acs.nanolett.1c00383
-
[59]
(59) Zhu, J.; Shao, W.; Li, X.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2021, 143, 18233. doi:10.1021/jacs.1c08033
-
[60]
(60) Jiao, X.; Zheng, K.; Liang, L.; Li, X.; Sun, Y.; Xie, Y. Chem. Soc. Rev. 2020, 49, 6592. doi:10.1039/D0CS00332H
-
[61]
(61) Chen, Z.; Concepcion, J. J.; Brennaman, M. K.; Kang, P.; Norris, M. R.; Hoertz, P. G.; Meyer, T. J. Proc. Natl. Acad. Sci. 2012, 109, 15606. doi:10.1073/pnas.1203122109
-
[62]
(62) Liang, L.; Li, X.; Sun, Y.; Tan, Y.; Jiao, X.; Ju, H.; Qi, Z.; Zhu, J.; Xie, Y. Joule 2018, 2, 1004. doi:10.1016/j.joule.2018.02.019
-
[63]
(63) Shi, J.; Cui, H. N.; Liang, Z.; Lu, X.; Tong, Y.; Su, C.; Liu, H. Energy Environ. Sci. 2011, 4, 466. doi:10.1039/C0EE00309C
-
[64]
(64) Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. J. Am. Chem. Soc. 2011, 133, 16414. doi:10.1021/ja207826q
-
[65]
(65) Bi, W.; Ye, C.; Xiao, C.; Tong, W.; Zhang, X.; Shao, W.; Xie, Y. Small 2014, 10, 2820. doi:10.1002/smll.201303548
-
[66]
(66) Hou, J.; Cao, S.; Wu, Y.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Nano Energy 2017, 32, 359. doi:10.1016/j.nanoen.2016.12.054
-
[67]
(67) Huygh, S.; Bogaerts, A.; Neyts, E. C. J. Phys. Chem. C 2016, 120, 21659. doi:10.1021/acs.jpcc.6b07459
-
[68]
(68) Shao, W.; Li, X.; Zhu, J.; Zu, X.; Liang, L.; Hu, J.; Pan, Y.; Zhu, J.; Yan, W.; Sun, Y.; et al. Nano Res. 2022, 15, 1882. doi:10.1007/s12274-021-3789-x
-
[69]
(69) Ye, F.; Zhang, S.; Cheng, Q.; Long, Y.; Liu, D.; Paul, R.; Fang, Y.; Su, Y.; Qu, L.; Dai, L.; et al. Nat. Commun. 2023, 14, 2040. doi:10.1038/s41467-023-37679-3
-
[70]
(70) Sun, Y.; Sun, Z.; Gao, S.; Cheng, H.; Liu, Q.; Piao, J.; Yao, T.; Wu, C.; Hu, S.; Wei, S.; et al. Nat. Commun. 2012, 3, 1057. doi:10.1038/ncomms2066
-
[71]
(71) Li, Z.; Cao, A.; Zheng, Q.; Fu, Y.; Wang, T.; Arul, K. T.; Chen, J.-L.; Yang, B.; Adli, N. M.; Lei, L.; et al. Adv. Mater. 2021, 33, 2005113. doi:10.1002/adma.202005113
-
[72]
(72) Zhang, B.; Zhang, J.; Hua, M.; Wan, Q.; Su, Z.; Tan, X.; Liu, L.; Zhang, F.; Chen, G.; Tan, D.; et al. J. Am. Chem. Soc. 2020, 142, 13606. doi:10.1021/jacs.0c06420
-
[73]
(73) Peng, C.; Luo, G.; Zhang, J.; Chen, M.; Wang, Z.; Sham, T.-K.; Zhang, L.; Li, Y.; Zheng, G. Nat. Commun. 2021, 12, 1580. doi:10.1038/s41467-021-21901-1
-
[74]
(74) Li, F.; Anjarsari, Y.; Wang, J.; Azzahiidah, R.; Jiang, J.; Zou, J.; Xiang, K.; Ma, H.; Arramel. Carbon Lett. 2023, 33, 1321. doi:10.1007/s42823-022-00380-4
-
[75]
(75) Wang, J.; Jiang, J.; Li, F.; Zou, J.; Xiang, K.; Wang, H.; Li, Y.; Li, X. Green Chem. 2023, 25, 32. doi:10.1039/D2GC03160D
-
[76]
(76) Wang, J.; Qin, Q.; Li, F.; Anjarsari, Y.; Sun, W.; Azzahiidah, R.; Zou, J.; Xiang, K.; Ma, H.; Jiang, J.; et al. Carbon Lett. 2023, 33, 1381. doi:10.1007/s42823-022-00401-2
-
[77]
(77) Lei, W.; Zhou, T.; Pang, X.; Xue, S.; Xu, Q. J. Mater. Sci. Technol. 2022, 114, 143. doi:10.1016/j.jmst.2021.10.029
-
[78]
(78) Wang, W.; Duan, J.; Liu, Y.; Zhai, T. Adv. Mater. 2022, 34, 2110699. doi:10.1002/adma.202110699
-
[79]
(79) Yang, S.; Jiang, M.; Zhang, W.; Hu, Y.; Liang, J.; Wang, Y.; Tie, Z.; Jin, Z. Adv. Funct. Mater. 2023, 33, 2301984. doi:10.1002/adfm.202301984
-
[80]
(80) Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang, Z.; Chen, H.; Ye, J. Adv. Mater. 2017, 29, 1701774. doi:10.1002/adma.201701774
-
[81]
(81) Luo, S.; Li, X.; Wang, M.; Zhang, X.; Gao, W.; Su, S.; Liu, G.; Luo, M. J. Mater. Chem. A 2020, 8, 5647. doi:10.1039/D0TA01154A
-
[1]
-
-
-
[1]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[4]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[5]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[6]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[7]
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
-
[8]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[9]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[10]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[11]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
-
[12]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[13]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[14]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[15]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[16]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[17]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[18]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[19]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[20]
.
南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积
. CCS Chemistry, 2025, 7(0): -.
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(51)
- HTML views(0)