Citation: Runhua Chen, Qiong Wu, Jingchen Luo, Xiaolong Zu, Shan Zhu, Yongfu Sun. Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 230805. doi: 10.3866/PKU.WHXB202308052 shu

Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives

  • Corresponding author: Xiaolong Zu, xiaolongzu@xmu.edu.cn Yongfu Sun, yfsun@ustc.edu.cn
  • Received Date: 31 August 2023
    Revised Date: 4 October 2023
    Accepted Date: 17 October 2023

    Fund Project: the National Key Research and Development Program of China 2019YFA0210004the National Key Research and Development Program of China 2022YFA1502904the National Key Research and Development Program of China 2021YFA1501502the National Natural Science Foundation of China 22125503the National Natural Science Foundation of China 21975242the National Natural Science Foundation of China U2032212the Youth Innovation Promotion Association of CAS CX2340007003the Anhui Provincial Natural Science Foundation 2208085QB31

  • Photo-/electrocatalytic reduction of carbon dioxide (CO2) to carbon-based fuel molecules driven by renewable energy is an attractive strategy for resource regeneration and energy storage, especially for achieving carbon peak and carbon-neutral goals. However, the high thermodynamic stability and chemical inertness of CO2 molecules make the conversion efficiency and selectivity of reduction products very low, which further hinders its application. In addition, different CO2 reduction products have similar reduction potential and usually face severe hydrogen evolution competition under aqueous system conditions, which makes the selectivity of specific reduction products unable to be effectively controlled. To overcome these bottlenecks, researchers have been working for many years to develop efficient photo/electrocatalysts to enhance the activity and product selectivity of CO2 reduction. Thanks to the ultrathin thickness and large specific surface area, ultrathin two-dimensional materials possess highly active sites with high density and high uniformity, which can effectively regulate the key thermodynamic and kinetic factors of CO2 photo-/electroreduction reactions. As a typical two-dimensional material, the defective ultrathin two-dimensional materials can provide a large number of electron-rich catalytic sites to efficiently adsorb and highly activate CO2 molecules, which can effectively reduce the reaction barrier, thus accelerating CO2 reduction and enhancing product selectivity. Moreover, the local atomic and electronic structure of the defects can effectively stabilize the intermediate of CO2 reduction reactions, thus further optimizing the kinetics of CO2 reduction reactions. Furthermore, the surface defects are beneficial to the mass and electron transfer in the catalytic process, thus further improving the catalytic activity of the catalysts. In this review, we overview the latest research progress in CO2 photo-/electrocatalytic reduction using defective ultrathin two-dimensional materials, including the controllable synthesis and fine structure characterization of defective ultrathin two-dimensional materials; the modulation effect of defect structure on the local atomic and electronic structure; the advantages of defective ultrathin two-dimensional materials for CO2 reduction. We also discuss the challenges and opportunities of defective ultrathin two-dimensional materials for future development of CO2 photo-/electrocatalytic reduction. It is expected that this review will provide a guide for designing highly efficient CO2 reduction systems.
  • 加载中
    1. [1]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    2. [2]

      Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Nature 2016, 529, 68. doi: 10.1038/nature16455  doi: 10.1038/nature16455

    3. [3]

      Li, Y.; Li, F.; Laaksonen, A.; Wang, C.; Cobden, P.; Boden, P.; Liu, Y.; Zhang, X.; Ji, X. Ind. Chem. Mater. 2023, 1, 410. doi: 10.1039/D2IM00055E  doi: 10.1039/D2IM00055E

    4. [4]

      Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 118, 15. doi: 10.1016/j.jmst.2021.12.018  doi: 10.1016/j.jmst.2021.12.018

    5. [5]

      Wu, Y.; Wu, M.; Zhu, J.; Zhang, X.; Li, J.; Zheng, K.; Hu, J.; Liu, C.; Pan, Y.; Zhu, J.; et al. Sci. China Chem. 2023, 66, 1997. doi: 10.1007/s11426-022-1595-9  doi: 10.1007/s11426-022-1595-9

    6. [6]

      Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2108017.  doi: 10.3866/PKU.WHXB202108017

    7. [7]

      Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Nano Energy 2018, 53, 296. doi: 10.1016/j.nanoen.2018.08.058  doi: 10.1016/j.nanoen.2018.08.058

    8. [8]

      Sun, Y.; Gao, S.; Lei, F.; Xie, Y. Chem. Soc. Rev. 2015, 44, 623. doi: 10.1039/C4CS00236A  doi: 10.1039/C4CS00236A

    9. [9]

      Wang, Y.; Liu, J.; Zheng, G. Adv. Mater. 2021, 33, 2005798. doi: 10.1002/adma.202005798  doi: 10.1002/adma.202005798

    10. [10]

      Zhou, W.; Fu, H. Inorg. Chem. Front. 2018, 5, 1240. doi: 10.1039/C8QI00122G  doi: 10.1039/C8QI00122G

    11. [11]

      Jiang, J.; Li, F.; Bai, S.; Wang, Y.; Xiang, K.; Wang, H.; Zou, J.; Hsu, J. -P. Nano Res. 2023, 16, 4656. doi: 10.1007/s12274-022-5112-x  doi: 10.1007/s12274-022-5112-x

    12. [12]

      Jiang, J.; Ou-yang, L.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H. Carbon 2014, 80, 213. doi: 10.1016/j.carbon.2014.08.059  doi: 10.1016/j.carbon.2014.08.059

    13. [13]

      Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J. -P.; Shen Wee, A. T.; Jiang, J. Carbon 2018, 130, 652. doi: 10.1016/j.carbon.2018.01.008  doi: 10.1016/j.carbon.2018.01.008

    14. [14]

      Jiao, X.; Hu, Z.; Li, L.; Wu, Y.; Zheng, K.; Sun, Y.; Xie, Y. Sci. China Chem. 2022, 65, 428. doi: 10.1007/s11426-021-1184-6  doi: 10.1007/s11426-021-1184-6

    15. [15]

      Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi: 10.1021/jacs.0c02973  doi: 10.1021/jacs.0c02973

    16. [16]

      Corma, A.; Garcia, H. J. Catal. 2013, 308, 168. doi: 10.1016/j.jcat.2013.06.008  doi: 10.1016/j.jcat.2013.06.008

    17. [17]

      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705  doi: 10.1021/acs.chemrev.8b00705

    18. [18]

      Chang, X.; Wang, T.; Gong, J. Energy Environ. Sci. 2016, 9, 2177. doi: 10.1039/C6EE00383D  doi: 10.1039/C6EE00383D

    19. [19]

      Ménard, G.; Stephan, D. W. Angew. Chem. Int. Ed. 2011, 50, 8396. doi: 10.1002/anie.201103600  doi: 10.1002/anie.201103600

    20. [20]

      Chen, Y.; Chen, C.; Cao, X. S.; Wang, Z. Y.; Zhang, N.; Liu, T. X. Acta Phys. -Chim. Sin. 2023, 39, 2212053.  doi: 10.3866/PKU.WHXB202212053

    21. [21]

      Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Chem 2017, 3, 560. doi: 10.1016/j.chempr.2017.09.009  doi: 10.1016/j.chempr.2017.09.009

    22. [22]

      Zhou, Y.; Wang, Z.; Huang, L.; Zaman, S.; Lei, K.; Yue, T.; Li, Z. A.; You, B.; Xia, B. Y. Adv. Energy Mater. 2021, 11, 2003159. doi: 10.1002/aenm.202003159  doi: 10.1002/aenm.202003159

    23. [23]

      Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; Smith, L. J.; O'Hare, D.; Zhang, T. Adv. Mater. 2015, 27, 7824. doi: 10.1002/adma.201503730  doi: 10.1002/adma.201503730

    24. [24]

      Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 10411. doi: 10.1021/ja402956f  doi: 10.1021/ja402956f

    25. [25]

      Di, J.; Zhao, X.; Lian, C.; Ji, M.; Xia, J.; Xiong, J.; Zhou, W.; Cao, X.; She, Y.; Liu, H.; et al. Nano Energy 2019, 61, 54. doi: 10.1016/j.nanoen.2019.04.029  doi: 10.1016/j.nanoen.2019.04.029

    26. [26]

      Jiao, X.; Chen, Z.; Li, X.; Sun, Y.; Gao, S.; Yan, W.; Wang, C.; Zhang, Q.; Lin, Y.; Luo, Y.; et al. J. Am. Chem. Soc. 2017, 139, 7586. doi: 10.1021/jacs.7b02290  doi: 10.1021/jacs.7b02290

    27. [27]

      Xue, X.; Chen, R.; Chen, H.; Hu, Y.; Ding, Q.; Liu, Z.; Ma, L.; Zhu, G.; Zhang, W.; Yu, Q.; et al. Nano Lett. 2018, 18, 7372. doi: 10.1021/acs.nanolett.8b03655  doi: 10.1021/acs.nanolett.8b03655

    28. [28]

      Li, P.; Wang, F.; Wei, S.; Li, X.; Zhou, Y. Phys. Chem. Chem. Phys. 2017, 19, 4405. doi: 10.1039/C6CP08409E  doi: 10.1039/C6CP08409E

    29. [29]

      Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; et al. Nat. Mater. 2016, 15, 48. doi: 10.1038/nmat4465  doi: 10.1038/nmat4465

    30. [30]

      Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Angew. Chem. Int. Ed. 2016, 55, 5277. doi: 10.1002/anie.201600687  doi: 10.1002/anie.201600687

    31. [31]

      Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; et al. Angew. Chem. Int. Ed. 2018, 57, 8719. doi: 10.1002/anie.201803514  doi: 10.1002/anie.201803514

    32. [32]

      Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331, 746. doi: 10.1126/science.1200448  doi: 10.1126/science.1200448

    33. [33]

      Zhao, Z.; Zhang, X.; Zhang, G.; Liu, Z.; Qu, D.; Miao, X.; Feng, P.; Sun, Z. Nano Res. 2015, 8, 4061. doi: 10.1007/s12274-015-0917-5  doi: 10.1007/s12274-015-0917-5

    34. [34]

      Zou, X.; Liu, J.; Su, J.; Zuo, F.; Chen, J.; Feng, P. Chem. - Eur. J. 2013, 19, 2866. doi: 10.1002/chem.201202833  doi: 10.1002/chem.201202833

    35. [35]

      Niu, P.; Yin, L. -C.; Yang, Y. -Q.; Liu, G.; Cheng, H. -M. Adv. Mater. 2014, 26, 8046. doi: 10.1002/adma.201404057  doi: 10.1002/adma.201404057

    36. [36]

      Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Nat. Energy 2019, 4, 690. doi: 10.1038/s41560-019-0431-1  doi: 10.1038/s41560-019-0431-1

    37. [37]

      Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2014, 136, 6826. doi: 10.1021/ja501866r  doi: 10.1021/ja501866r

    38. [38]

      Sun, Y.; Gao, S.; Lei, F.; Liu, J.; Liang, L.; Xie, Y. Chem. Sci. 2014, 5, 3976. doi: 10.1039/C4SC00565A  doi: 10.1039/C4SC00565A

    39. [39]

      Sun, Y.; Liu, Q.; Gao, S.; Cheng, H.; Lei, F.; Sun, Z.; Jiang, Y.; Su, H.; Wei, S.; Xie, Y. Nat. Commun. 2013, 4, 2899. doi: 10.1038/ncomms3899  doi: 10.1038/ncomms3899

    40. [40]

      Xiong, Y.; Zhao, W.; Gu, D.; Tie, Z.; Zhang, W.; Jin, Z. Nano Lett. 2023, 23, 4876. doi: 10.1021/acs.nanolett.3c00524  doi: 10.1021/acs.nanolett.3c00524

    41. [41]

      Jiang, M.; Zhu, M.; Wang, M.; He, Y.; Luo, X.; Wu, C.; Zhang, L.; Jin, Z. ACS Nano 2023, 17, 3209. doi: 10.1021/acsnano.2c11046  doi: 10.1021/acsnano.2c11046

    42. [42]

      Čížek, J. J. Mater. Sci. Technol. 2018, 34, 577. doi: 10.1016/j.jmst.2017.11.050  doi: 10.1016/j.jmst.2017.11.050

    43. [43]

      Gao, S.; Gu, B.; Jiao, X.; Sun, Y.; Zu, X.; Yang, F.; Zhu, W.; Wang, C.; Feng, Z.; Ye, B.; et al. J. Am. Chem. Soc. 2017, 139, 3438. doi: 10.1021/jacs.6b11263  doi: 10.1021/jacs.6b11263

    44. [44]

      Sun, Y.; Cheng, H.; Gao, S.; Liu, Q.; Sun, Z.; Xiao, C.; Wu, C.; Wei, S.; Xie, Y. J. Am. Chem. Soc. 2012, 134, 20294. doi: 10.1021/ja3102049  doi: 10.1021/ja3102049

    45. [45]

      Wang, Z.; Zu, X.; Li, X.; Li, L.; Wu, Y.; Wang, S.; Ling, P.; Zhao, Y.; Sun, Y.; Xie, Y. Nano Res. 2022, 15, 6999. doi: 10.1007/s12274-022-4335-1  doi: 10.1007/s12274-022-4335-1

    46. [46]

      Shi, X.; Dong, X. A.; He, Y.; Yan, P.; Zhang, S.; Dong, F. ACS Catal. 2022, 12, 3965. doi: 10.1021/acscatal.2c00157  doi: 10.1021/acscatal.2c00157

    47. [47]

      Liu, Y.; Xiao, C.; Li, Z.; Xie, Y. Adv. Energy Mater. 2016, 6, 1600436. doi: 10.1002/aenm.201600436  doi: 10.1002/aenm.201600436

    48. [48]

      Sun, X.; Zhang, X.; Xie, Y. Matter 2020, 2, 842. doi: 10.1016/j.matt.2020.02.006  doi: 10.1016/j.matt.2020.02.006

    49. [49]

      Jiang, M.; Zhu, M.; Wang, H.; Song, X.; Liang, J.; Lin, D.; Li, C.; Cui, J.; Li, F.; Zhang, X. L.; et al. Nano Lett. 2023, 23, 291. doi: 10.1021/acs.nanolett.2c04335  doi: 10.1021/acs.nanolett.2c04335

    50. [50]

      Gao, S.; Sun, Z.; Liu, W.; Jiao, X.; Zu, X.; Hu, Q.; Sun, Y.; Yao, T.; Zhang, W.; Wei, S.; et al. Nat. Commun. 2017, 8, 14503. doi: 10.1038/ncomms14503  doi: 10.1038/ncomms14503

    51. [51]

      Liang, L.; Ling, P.; Li, Y.; Li, L.; Liu, J.; Luo, Q.; Zhang, H.; Xu, Q.; Pan, Y.; Zhu, J.; et al. Sci. China Chem. 2021, 64, 953. doi: 10.1007/s11426-021-9967-9  doi: 10.1007/s11426-021-9967-9

    52. [52]

      Wang, H.; Bi, X.; Yan, Y.; Zhao, Y.; Yang, Z.; Ning, H.; Wu, M. Adv. Funct. Mater. 2023, 33, 2214946. doi: 10.1002/adfm.202214946  doi: 10.1002/adfm.202214946

    53. [53]

      Jia, S.; Wu, L.; Xu, L.; Sun, X.; Han, B. Ind. Chem. Mater. 2023, 1, 93. doi: 10.1039/D2IM00056C  doi: 10.1039/D2IM00056C

    54. [54]

      Wang, X.; Ma, S.; Liu, B.; Wang, S.; Huang, W. Chem. Commun. 2023, 59, 10044. doi: 10.1039/D3CC02843G  doi: 10.1039/D3CC02843G

    55. [55]

      Zu, X.; Zhao, Y.; Li, X.; Chen, R.; Shao, W.; Wang, Z.; Hu, J.; Zhu, J.; Pan, Y.; Sun, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 13840. doi: 10.1002/anie.202101894  doi: 10.1002/anie.202101894

    56. [56]

      Liu, K.; Li, X.; Liang, L.; Wu, J.; Jiao, X.; Xu, J.; Sun, Y.; Xie, Y. Nano Res. 2018, 11, 2897. doi: 10.1007/s12274-017-1943-2  doi: 10.1007/s12274-017-1943-2

    57. [57]

      Ling, P.; Zhu, J.; Wang, Z.; Hu, J.; Zhu, J.; Yan, W.; Sun, Y.; Xie, Y. Nanoscale 2022, 14, 14023. doi: 10.1039/D2NR02364D  doi: 10.1039/D2NR02364D

    58. [58]

      Zhu, S.; Li, X.; Jiao, X.; Shao, W.; Li, L.; Zu, X.; Hu, J.; Zhu, J.; Yan, W.; Wang, C.; et al. Nano Lett. 2021, 21, 2324. doi: 10.1021/acs.nanolett.1c00383  doi: 10.1021/acs.nanolett.1c00383

    59. [59]

      Zhu, J.; Shao, W.; Li, X.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2021, 143, 18233. doi: 10.1021/jacs.1c08033  doi: 10.1021/jacs.1c08033

    60. [60]

      Jiao, X.; Zheng, K.; Liang, L.; Li, X.; Sun, Y.; Xie, Y. Chem. Soc. Rev. 2020, 49, 6592. doi: 10.1039/D0CS00332H  doi: 10.1039/D0CS00332H

    61. [61]

      Chen, Z.; Concepcion, J. J.; Brennaman, M. K.; Kang, P.; Norris, M. R.; Hoertz, P. G.; Meyer, T. J. Proc. Natl. Acad. Sci. 2012, 109, 15606. doi: 10.1073/pnas.1203122109  doi: 10.1073/pnas.1203122109

    62. [62]

      Liang, L.; Li, X.; Sun, Y.; Tan, Y.; Jiao, X.; Ju, H.; Qi, Z.; Zhu, J.; Xie, Y. Joule 2018, 2, 1004. doi: 10.1016/j.joule.2018.02.019  doi: 10.1016/j.joule.2018.02.019

    63. [63]

      Shi, J.; Cui, H. N.; Liang, Z.; Lu, X.; Tong, Y.; Su, C.; Liu, H. Energy Environ. Sci. 2011, 4, 466. doi: 10.1039/C0EE00309C  doi: 10.1039/C0EE00309C

    64. [64]

      Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. J. Am. Chem. Soc. 2011, 133, 16414. doi: 10.1021/ja207826q  doi: 10.1021/ja207826q

    65. [65]

      Bi, W.; Ye, C.; Xiao, C.; Tong, W.; Zhang, X.; Shao, W.; Xie, Y. Small 2014, 10, 2820. doi: 10.1002/smll.201303548  doi: 10.1002/smll.201303548

    66. [66]

      Hou, J.; Cao, S.; Wu, Y.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Nano Energy 2017, 32, 359. doi: 10.1016/j.nanoen.2016.12.054  doi: 10.1016/j.nanoen.2016.12.054

    67. [67]

      Huygh, S.; Bogaerts, A.; Neyts, E. C. J. Phys. Chem. C 2016, 120, 21659. doi: 10.1021/acs.jpcc.6b07459  doi: 10.1021/acs.jpcc.6b07459

    68. [68]

      Shao, W.; Li, X.; Zhu, J.; Zu, X.; Liang, L.; Hu, J.; Pan, Y.; Zhu, J.; Yan, W.; Sun, Y.; et al. Nano Res. 2022, 15, 1882. doi: 10.1007/s12274-021-3789-x  doi: 10.1007/s12274-021-3789-x

    69. [69]

      Ye, F.; Zhang, S.; Cheng, Q.; Long, Y.; Liu, D.; Paul, R.; Fang, Y.; Su, Y.; Qu, L.; Dai, L.; et al. Nat. Commun. 2023, 14, 2040. doi: 10.1038/s41467-023-37679-3  doi: 10.1038/s41467-023-37679-3

    70. [70]

      Sun, Y.; Sun, Z.; Gao, S.; Cheng, H.; Liu, Q.; Piao, J.; Yao, T.; Wu, C.; Hu, S.; Wei, S.; et al. Nat. Commun. 2012, 3, 1057. doi: 10.1038/ncomms2066  doi: 10.1038/ncomms2066

    71. [71]

      Li, Z.; Cao, A.; Zheng, Q.; Fu, Y.; Wang, T.; Arul, K. T.; Chen, J. -L.; Yang, B.; Adli, N. M.; Lei, L.; et al. Adv. Mater. 2021, 33, 2005113. doi: 10.1002/adma.202005113  doi: 10.1002/adma.202005113

    72. [72]

      Zhang, B.; Zhang, J.; Hua, M.; Wan, Q.; Su, Z.; Tan, X.; Liu, L.; Zhang, F.; Chen, G.; Tan, D.; et al. J. Am. Chem. Soc. 2020, 142, 13606. doi: 10.1021/jacs.0c06420  doi: 10.1021/jacs.0c06420

    73. [73]

      Peng, C.; Luo, G.; Zhang, J.; Chen, M.; Wang, Z.; Sham, T. -K.; Zhang, L.; Li, Y.; Zheng, G. Nat. Commun. 2021, 12, 1580. doi: 10.1038/s41467-021-21901-1  doi: 10.1038/s41467-021-21901-1

    74. [74]

      Li, F.; Anjarsari, Y.; Wang, J.; Azzahiidah, R.; Jiang, J.; Zou, J.; Xiang, K.; Ma, H.; Arramel. Carbon Lett. 2023, 33, 1321. doi: 10.1007/s42823-022-00380-4  doi: 10.1007/s42823-022-00380-4

    75. [75]

      Wang, J.; Jiang, J.; Li, F.; Zou, J.; Xiang, K.; Wang, H.; Li, Y.; Li, X. Green Chem. 2023, 25, 32. doi: 10.1039/D2GC03160D  doi: 10.1039/D2GC03160D

    76. [76]

      Wang, J.; Qin, Q.; Li, F.; Anjarsari, Y.; Sun, W.; Azzahiidah, R.; Zou, J.; Xiang, K.; Ma, H.; Jiang, J.; et al. Carbon Lett. 2023, 33, 1381. doi: 10.1007/s42823-022-00401-2  doi: 10.1007/s42823-022-00401-2

    77. [77]

      Lei, W.; Zhou, T.; Pang, X.; Xue, S.; Xu, Q. J. Mater. Sci. Technol. 2022, 114, 143. doi: 10.1016/j.jmst.2021.10.029  doi: 10.1016/j.jmst.2021.10.029

    78. [78]

      Wang, W.; Duan, J.; Liu, Y.; Zhai, T. Adv. Mater. 2022, 34, 2110699. doi: 10.1002/adma.202110699  doi: 10.1002/adma.202110699

    79. [79]

      Yang, S.; Jiang, M.; Zhang, W.; Hu, Y.; Liang, J.; Wang, Y.; Tie, Z.; Jin, Z. Adv. Funct. Mater. 2023, 33, 2301984. doi: 10.1002/adfm.202301984  doi: 10.1002/adfm.202301984

    80. [80]

      Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang, Z.; Chen, H.; Ye, J. Adv. Mater. 2017, 29, 1701774. doi: 10.1002/adma.201701774  doi: 10.1002/adma.201701774

    81. [81]

      Luo, S.; Li, X.; Wang, M.; Zhang, X.; Gao, W.; Su, S.; Liu, G.; Luo, M. J. Mater. Chem. A 2020, 8, 5647. doi:10.1039/D0TA01154A  doi: 10.1039/D0TA01154A

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    3. [3]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    4. [4]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    10. [10]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    15. [15]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    16. [16]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    17. [17]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    19. [19]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(1)
  • Abstract views(89)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return