Citation:
Jiandong Liu, Zhijia Zhang, Kamenskii Mikhail, Volkov Filipp, Eliseeva Svetlana, Jianmin Ma. Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries[J]. Acta Physico-Chimica Sinica,
;2025, 41(2): 230804.
doi:
10.3866/PKU.WHXB202308048
-
Achieving high energy density batteries is currently a key focus in the field of energy storage. Lithium batteries, due to their high energy density, have garnered significant attention in research. Increasing the upper limit of the battery's cut-off voltage can boost the energy density of lithium batteries. However, high-voltage conditions can lead to irreversible phase transitions and side reactions in cathode materials, which can degrade battery performance and even result in safety risks, including explosions. The electrolyte can also decompose, causing capacity loss and releasing flammable gases when subjected to high voltage, which can lead to battery swelling and potential combustion and explosions. Designing an ideal cathode electrolyte interphase (CEI) on the cathode's surface to regulate the electrode-electrolyte interface reaction can effectively enhance the cycling stability of the battery, reduce irreversible phase transitions in the cathode, and improve the oxidation stability of the electrolyte. The ideal CEI should possess high ion conductivity, high thermal stability, and should minimize interface side reactions to ensure optimal battery performance. Understanding the formation and development of CEI is crucial for enhancing battery performance under high voltage. Apart from creating artificial CEI, modifying electrolytes has gained significant attention. By altering the electrolyte recipe, an ideal CEI can be achieved. Electrolyte engineering is considered an effective strategy for attaining an ideal CEI and enhancing the stability of high nickel positive electrodes. This approach is simple, cost-effective, and holds great promise for achieving higher energy density in lithium batteries. To provide a better understanding of CEI in lithium ion batteries (LIBs), this article reviews the latest advancements in CEI, including the formation mechanism of CEI, the key factors influencing CEI, methods for modifying CEI, and techniques for characterizing CEI. Additionally, it summarizes the current status of artificial CEI development and in situ CEI generation through electrolyte design. The aim is to offer fundamental guidance for future research and the design of high-voltage battery CEI. Finally, the article outlines the opportunities and challenges in electrolyte engineering for modified CEI, pointing towards the future direction of constructing an ideal CEI.
-
-
-
[1]
Goodenough J. B., Park K. -S. J. Am. Chem. Soc, 2013, 135, 1167 doi: 10.1021/ja3091438 doi: 10.1021/ja3091438
-
[2]
Jia H., Xu W. Trends Chem, 2022, 4, 627 doi: 10.1016/j.trechm.2022.04.010 doi: 10.1016/j.trechm.2022.04.010
-
[3]
Wu Y., Liu X., Wang L., Feng X., Ren D., Li Y., Rui X., Wang Y., Han X. Xu G. -L., et al. Energy Storage Mater, 2021, 37, 77 doi: 10.1016/j.ensm.2021.02.001 doi: 10.1016/j.ensm.2021.02.001
-
[4]
Pham H. Q., Chung G. J., Han J., Hwang E. -H., Kwon Y. -G., Song S. -W. J. Chem. Phys, 2020, 152, 094709 doi: 10.1063/1.5144280 doi: 10.1063/1.5144280
-
[5]
Zhang J. Wang P. -F., Bai P., Wan H., Liu S., Hou S., Pu X., Xia J., Zhang W., Wang Z., et al. Adv. Mater, 2022, 34, 2108353 doi: 10.1002/adma.202108353 doi: 10.1002/adma.202108353
-
[6]
Li W., Song B., Manthiram A. Chem. Soc. Rev, 2017, 46, 3006 doi: 10.1039/C6CS00875E doi: 10.1039/C6CS00875E
-
[7]
Kong D., Hu J., Chen Z., Song K., Li C., Weng M., Li M., Wang R., Liu T., Liu J., et al. Adv. Energy Mater, 2019, 9, 1901756 doi: 10.1002/aenm.201901756 doi: 10.1002/aenm.201901756
-
[8]
Ren X., Chen S., Lee H., Mei D., Engelhard M. H., Burton S. D., Zhao W., Zheng J., Li Q. Ding M. S., et al. Chem, 2018, 4, 1877 doi: 10.1016/j.chempr.2018.05.002 doi: 10.1016/j.chempr.2018.05.002
-
[9]
Song S. H., Cho M., Park I., Yoo J. -G., Ko K. -T., Hong J., Kim J. Jung S. -K., Avdeev M., Ji S., et al. Adv. Energy Mater, 2020, 10, 2000521 doi: 10.1002/aenm.202000521 doi: 10.1002/aenm.202000521
-
[10]
Piao Z., Gao R., Liu Y., Zhou G., Cheng H. -M. Adv. Mater., 2023, 35, 2206009 doi: 10.1002/adma.202206009 doi: 10.1002/adma.202206009
-
[11]
Qin Y., Cheng H., Zhou J., Liu M., Ding X., Li Y., Huang Y., Chen Z., Shen C., Wang D., et al. Energy Storage Mater, 2023, 57, 411 doi: 10.1016/j.ensm.2023.02.022 doi: 10.1016/j.ensm.2023.02.022
-
[12]
Sun H. H., Kim U. -H., Park J. -H., Park S. -W., Seo D. -H., Heller A., Mullins C. B., Yoon C. S., Sun Y. -K. Nat. Commun, 2021, 12, 6552 doi: 10.1038/s41467-021-26815-6 doi: 10.1038/s41467-021-26815-6
-
[13]
Zhou K., Xie Q., Li B., Manthiram A. Energy Storage Mater, 2021, 34, 229 doi: 10.1016/j.ensm.2020.09.015 doi: 10.1016/j.ensm.2020.09.015
-
[14]
Li J., Li W., Wang S., Jarvis K., Yang J., Manthiram A. Chem. Mater, 2018, 30, 3101 doi: 10.1021/acs.chemmater.8b01077 doi: 10.1021/acs.chemmater.8b01077
-
[15]
Xie Q., Li W., Dolocan A., Manthiram A. Chem. Mater, 2019, 31, 8886 doi: 10.1021/acs.chemmater.9b02916 doi: 10.1021/acs.chemmater.9b02916
-
[16]
Nisar U., Muralidharan N., Essehli R., Amin R., Belharouak I. Energy Storage Mater, 2021, 38, 309 doi: 10.1016/j.ensm.2021.03.015 doi: 10.1016/j.ensm.2021.03.015
-
[17]
Woo S. U., Yoon C. S., Amine K., Belharouak I., Sun Y. K. J. Electrochem. Soc, 2007, 154, A1005 doi: 10.1149/1.2776160 doi: 10.1149/1.2776160
-
[18]
Ahmed B., Xia C., Alshareef H. N. Nano Today, 2016, 11, 250 doi: 10.1016/j.nantod.2016.04.004 doi: 10.1016/j.nantod.2016.04.004
-
[19]
Li W., Liu X., Celio H., Smith P., Dolocan A., Chi M., Manthiram A. Adv. Energy Mater, 2018, 8, 1703154 doi: 10.1002/aenm.201703154 doi: 10.1002/aenm.201703154
-
[20]
You Y., Celio H., Li J., Dolocan A., Manthiram A. Angew. Chem. Int. Ed, 2018, 57, 6480 doi: 10.1002/anie.201801533 doi: 10.1002/anie.201801533
-
[21]
Gao S., Zhan X., Cheng Y. -T. J. Power Sources, 2019, 410-411, 45. doi: 10.1016/j.jpowsour.2018.10.094 doi: 10.1016/j.jpowsour.2018.10.094
-
[22]
Shu Y., Xie Y., Yan W., Meng S., Sun D., Jin Y., Xiang L. Ceramics Int, 2020, 46, 14840 doi: 10.1016/j.ceramint.2020.03.009 doi: 10.1016/j.ceramint
-
[23]
Mou J., Deng Y., He L., Zheng Q., Jiang N., Lin D. Electrochim. Acta, 2018, 260, 101 doi: 10.1016/j.electacta.2017.11.059 doi: 10.1016/j.electacta
-
[24]
Cao G., Jin Z., Zhu J., Li Y., Xu B., Xiong Y., Yang J. J. Alloys Compd, 2020, 832, 153788 doi: 10.1016/j.jallcom.2020.153788 doi: 10.1016/j.jallcom
-
[25]
Zhang Z., Yang J., Huang W., Wang H., Zhou W., Li Y., Li Y., Xu J., Huang W., Chiu W., et al. Matter, 2021, 4, 302 doi: 10.1016/j.matt.2020.10.021 doi: 10.1016/j.matt.2020.10.021
-
[26]
Chen D., Mahmoud M. A., Wang J. -H., Waller G. H., Zhao B., Qu C., El-Sayed M. A., Liu M. Nano Lett, 2019, 19, 2037 doi: 10.1021/acs.nanolett.9b00179 doi: 10.1021/acs.nanolett.9b00179
-
[27]
Wang S., Dai A., Cao Y., Yang H., Khalil A., Lu J., Li H., Ai X. J. Mater. Chem. A, 2021, 9, 11623 doi: 10.1039/D1TA02563E doi: 10.1039/D1TA02563E
-
[28]
Thomas M. G. S. R., Bruce P. G., Goodenough J. B. J. Electrochem. Soc, 1985, 132, 1521 doi: 10.1149/1.2114158 doi: 10.1149/1.2114158
-
[29]
Kanamura K., Toriyama S., Shiraishi S., Ohashi M., Takehara Z. -I. J. Electroanal. Chem, 1996, 419, 77 doi: 10.1016/S0022-0728(96)04862-0 doi: 10.1016/S0022-0728(96)04862-0
-
[30]
Zhou Q., Ma J., Dong S., Li X., Cui G. Adv. Mater, 2019, 31, 1902029 doi: 10.1002/adma.201902029 doi: 10.1002/adma.201902029
-
[31]
Aikens D. A. J. Chem. Edu, 1983, 60, A25 doi: 10.1021/ed060pA25.1 doi: 10.1021/ed060pA25.1
-
[32]
Fang S., Jackson D., Dreibelbis M. L., Kuech T. F., Hamers R. J. J. Power Sources, 2018, 373, 184 doi: 10.1016/j.jpowsour.2017.09.050 doi: 10.1016/j.jpowsour.2017.09.050
-
[33]
Zhang J. -N., Li Q., Wang Y., Zheng J., Yu X., Li H. Energy Storage Mater, 2018, 14, 1 doi: 10.1016/j.ensm.2018.02.016 doi: 10.1016/j.ensm.2018.02.016
-
[34]
Zhang Z., Qin C., Wang K., Han X., Li J., Sui M., Yan P. J. Energy Chem, 2023, 81, 192 doi: 10.1016/j.jechem.2023.01.046 doi: 10.1016/j.jechem.2023.01.046
-
[35]
Zhou Y. -N., Ma J., Hu E., Yu X., Gu L., Nam K. -W., Chen L., Wang Z., Yang X. -Q. Nat. Commun, 2014, 5, 5381 doi: 10.1038/ncomms6381 doi: 10.1038/ncomms6381
-
[36]
Chen M., Wang W., Shi Z., Liu Z., Shen C. Appl. Surf. Sci, 2022, 600, 154119 doi: 10.1016/j.apsusc.2022.154119 doi: 10.1016/j.apsusc.2022.154119
-
[37]
Tallman K. R., Wheeler G. P., Kern C. J., Stavitski E., Tong X., Takeuchi K. J., Marschilok A. C., Bock D. C., Takeuchi E. S. J. Phys. Chem. C, 2021, 125, 58 doi: 10.1021/acs.jpcc.0c08095 doi: 10.1021/acs.jpcc.0c08095
-
[38]
Yang Y., Wang H., Zhu C., Ma J. Angew. Chem. Int. Ed, 2023, 62, e202300057 doi: 10.1002/anie.202300057 doi: 10.1002/anie.202300057
-
[39]
Liu J., Wu M., Li X., Wu D., Wang H., Huang J., Ma J. Adv. Energy Mater, 2023, 13, 2300084 doi: 10.1002/aenm.202300084 doi: 10.1002/aenm.202300084
-
[40]
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V. Petersson G. A., Nakatsuji H., et al. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.
-
[41]
Neese F. WIREs Comput. Mol. Sci, 2018, 8, e1327 doi: 10.1002/wcms.1327 doi: 10.1002/wcms.1327
-
[42]
Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865 doi: 10.1103/PhysRevLett.77.3865
-
[43]
Hutter J., Iannuzzi M., Schiffmann F., VandeVondele J. WIREs Comput. Mol. Sci, 2014, 4, 15 doi: 10.1002/wcms.1159 doi: 10.1002/wcms.1159
-
[44]
Fan X., Chen L., Borodin O., Ji X., Chen J., Hou S., Deng T., Zheng J., Yang C. Liou S. -C., et al. Nat. Nanotechnol, 2018, 13, 715 doi: 10.1038/s41565-018-0183-2 doi: 10.1038/s41565-018-0183-2
-
[45]
Li X., Liu J., He J., Wang H., Qi S., Wu D., Huang J., Li F., Hu W., Ma J. Adv. Funct. Mater, 2021, 31, 2104395 doi: 10.1002/adfm.202104395 doi: 10.1002/adfm.202104395
-
[46]
Kim S. C., Oyakhire S. T., Athanitis C., Wang J., Zhang Z., Zhang W., Boyle D. T. Kim M. S., Yu Z., Gao X., et al. Proc. Natl. Acad. Sci, 2023, 120, e2214357120 doi: 10.1073/pnas.2214357120 doi: 10.1073/pnas.2214357120
-
[47]
Zhao L., Chen G., Weng Y., Yan T., Shi L., An Z., Zhang D. Chem. Eng. J, 2020, 401, 126138 doi: 10.1016/j.cej.2020.126138 doi: 10.1016/j.cej.2020.126138
-
[48]
Qiao Y., Zhou Z., Chen Z., Du S., Cheng Q., Zhai H., Fritz N. J., Du Q., Yang Y. Nano Energy, 2018, 45, 68 doi: 10.1016/j.nanoen.2017.12.036 doi: 10.1016/j.nanoen.2017.12.036
-
[49]
Wu Z., Li R., Zhang S., lv L., Deng T., Zhang H., Zhang R., Liu J., Ding S., Fan L., et al. Chem, 2023, 9, 650 doi: 10.1016/j.chempr.2022.10.027 doi: 10.1016/j.chempr.2022.10.027
-
[50]
Li X., Zhang K., Mitlin D., Paek E., Wang M., Jiang F., Huang Y., Yang Z., Gong Y., Gu L., et al. Small, 2018, 14, 1802570 doi: 10.1002/smll.201802570 doi: 10.1002/smll.201802570
-
[51]
Bai Y., Jiang K., Sun S., Wu Q., Lu X., Wan N. Electrochim. Acta, 2014, 134, 347 doi: 10.1016/j.electacta.2014.04.155 doi: 10.1016/j.electacta.2014.04.155
-
[52]
Yao L., Liang F., Jin J., Chowdari B. V. R., Yang J., Wen Z. Chem. Eng. J, 2020, 389, 124403 doi: 10.1016/j.cej.2020.124403 doi: 10.1016/j.cej.2020.124403
-
[53]
Gao X. -W., Deng Y. -F., Wexler D., Chen G. -H., Chou S. -L., Liu H. -K., Shi Z. -C., Wang J. -Z. J. Mater. Chem. A, 2015, 3, 404 doi: 10.1039/C4TA04018J doi: 10.1039/C4TA04018J
-
[54]
Ding J. -F., Xu R., Yao N., Chen X., Xiao Y., Yao Y. -X., Yan C., Xie J., Huang J. -Q. Angew. Chem. Int. Ed, 2021, 60, 11442 doi: 10.1002/anie.202101627 doi: 10.1002/anie.202101627
-
[55]
Wang Z., Zhu C., Liu J., Hu X., Yang Y., Qi S., Wang H., Wu D., Huang J., He P., et al. Adv. Funct. Mater, 2023, 33, 2212150 doi: 10.1002/adfm.202212150 doi: 10.1002/adfm.202212150
-
[56]
Huang J., Liu J., He J., Wu M., Qi S., Wang H., Li F., Ma J. Angew. Chem. Int. Ed, 2021, 60, 20717 doi: 10.1002/anie.202107957 doi: 10.1002/anie.202107957
-
[57]
Jiang G., Liu J., Wang Z., Ma J. Adv. Funct. Mater, 2023, 2300629. doi: 10.1002/adfm.202300629 doi: 10.1002/adfm.202300629
-
[58]
Rath P. C., Wang Y. -W., Patra J., Umesh B., Yeh T. -J., Okada S., Li J., Chang J. -K. Chem. Eng. J, 2021, 415, 128904 doi: 10.1016/j.cej.2021.128904 doi: 10.1016/j.cej.2021.128904
-
[59]
Zheng X., Liao Y., Zhang Z., Zhu J., Ren F., He H., Xiang Y., Zheng Y., Yang Y. J. Energy Chem, 2020, 42, 62 doi: 10.1016/j.jechem.2019.05.023 doi: 10.1016/j.jechem.2019.05.023
-
[60]
Etacheri V., Haik O., Goffer Y., Roberts G. A., Stefan I. C., Fasching R., Aurbach D. Langmuir, 2012, 28, 965 doi: 10.1021/la203712s doi: 10.1021/la203712s
-
[61]
Xia J., Petibon R., Xiao A., Lamanna W. M., Dahn J. R. J. Electrochem. Soc, 2016, 163, A1637 doi: 10.1149/2.0831608jes doi: 10.1149/2.0831608jes
-
[62]
Fan X., Wang C. Chem. Soc. Rev, 2021, 50, 10486 doi: 10.1039/D1CS00450F doi: 10.1039/D1CS00450F
-
[63]
Xu N., Shi J., Liu G., Yang X., Zheng J., Zhang Z., Yang Y. J. Power Sources Adv, 2021, 7, 100043 doi: 10.1016/j.powera.2020.100043 doi: 10.1016/j.powera.2020.100043
-
[64]
Wang T., Rao L., Jiao X., Choi J., Yap J., Kim J. -H. ACS Appl. Energy Mater, 2022, 5, 7346 doi: 10.1021/acsaem.2c00861 doi: 10.1021/acsaem.2c00861
-
[65]
Song Y., Mao Q., Li Q., Huang Z., Wan Y., Hong B., Zhong Q. ACS Appl. Energy Mater, 2023, 6, 4271 doi: 10.1021/acsaem.3c00196 doi: 10.1021/acsaem.3c00196
-
[66]
Wu F., Schür A. R. Kim G. -T., Dong X., Kuenzel M., Diemant T., D'Orsi G., Simonetti E., De Francesco M., Bellusci M., et al. Energy Storage Mater, 2021, 42, 826 doi: 10.1016/j.ensm.2021.08.030 doi: 10.1016/j.ensm.2021.08.030
-
[67]
Xu M., Liu Y., Li B., Li W., Li X., Hu S. Electrochem. Commun, 2012, 18, 123 doi: 10.1016/j.elecom.2012.02.037 doi: 10.1016/j.elecom.2012.02.037
-
[68]
Pham T. D., Faheem A. B., Kim J., Kwak K., Lee K. -K. Electrochim. Acta, 2023, 142496. doi: 10.1016/j.electacta.2023.142496 doi: 10.1016/j.electacta.2023.142496
-
[69]
Winter E., Briccola M., Schmidt T. J., Trabesinger S. Appl. Res, 2022, e202200096. doi: 10.1002/appl.202200096 doi: 10.1002/appl.202200096
-
[70]
Ma Q., Zhang X., Wang A., Xia Y., Liu X., Luo J. Adv. Funct. Mater, 2020, 30, 2002824 doi: 10.1002/adfm.202002824 doi: 10.1002/adfm.202002824
-
[71]
Yang Y. -P., Jiang J. -C., Huang A. -C., Tang Y., Liu Y. -C., Xie L. -J., Zhang C. -Z., Wu Z. -H., Xing Z. -X., Yu F. Process Saf. Environ. Prot, 2022, 160, 80 doi: 10.1016/j.psep.2022.02.018 doi: 10.1016/j.psep.2022.02.018
-
[72]
Zhang C. -M., Li F., Zhu X. -Q., Yu J. -G. Molecules, 2022, 27, 3107; doi: 103390/molecules27103107 doi: 10.3390/molecules.27103107
-
[73]
Li Y., Li W., Shimizu R., Cheng D., Nguyen H., Paulsen J., Kumakura S., Zhang M., Meng Y. S. Adv. Energy Mater, 2022, 12, 2103033 doi: 10.1002/aenm.202103033 doi: 10.1002/aenm.202103033
-
[74]
Martinez A. C., Rigaud S., Grugeon S., Tran-Van P., Armand M., Cailleu D., Pilard S., Laruelle S. Electrochim. Acta, 2022, 426, 140765 doi: 10.1016/j.electacta.2022.140765 doi: 10.1016/j.electacta.2022.140765
-
[75]
Fu A., Lin J., Zhang Z., Xu C., Zou Y., Liu C., Yan P., Wu D. -Y., Yang Y., Zheng J. ACS Energy Lett, 2022, 7, 1364 doi: 10.1021/acsenergylett.2c00316 doi: 10.1021/acsenergylett.2c00316
-
[76]
Xu M., Zhou L., Dong Y., Chen Y., Garsuch A., Lucht B. L. J. Electrochem. Soc, 2013, 160, A2005 doi: 10.1149/2.053311jes doi: 10.1149/2.053311jes
-
[77]
Xu M., Zhou L., Dong Y., Chen Y., Demeaux J., MacIntosh A. D., Garsuch A., Lucht B. L. Energy Environ. Sci, 2016, 9, 1308 doi: 10.1039/C5EE03360H doi: 10.1039/C5EE03360H
-
[78]
Yang X., Lin M., Zheng G., Wu J., Wang X., Ren F., Zhang W., Liao Y., Zhao W., Zhang Z., et al. Adv. Funct. Mater, 2020, 30, 2004664 doi: 10.1002/adfm.202004664 doi: 10.1002/adfm.202004664
-
[79]
Liu F., Zhang Z., Yu Z., Fan X., Yi M., Bai M., Song Y., Mao Q., Hong B., Zhang Z., et al. Chem. Eng. J, 2022, 434, 134745 doi: 10.1016/j.cej.2022.134745 doi: 10.1016/j.cej.2022.134745
-
[80]
Zhang Q. -K., Zhang X. -Q., Wan J., Yao N., Song T. -L., Xie J., Hou L. -P., Zhou M. -Y., Chen X. Li B. -Q., et al. Nat. Energy, 2023, 8, 725 doi: 10.1038/s41560-023-01275-y doi: 10.1038/s41560-023-01275-y
-
[1]
-
-
-
[1]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[2]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[3]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[4]
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
-
[5]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[6]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[7]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[8]
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
-
[9]
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
-
[10]
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
-
[11]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[12]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[13]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[14]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[15]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[16]
Caiyun Jin , Zexuan Wu , Guopeng Li , Zhan Luo , Nian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094
-
[17]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[18]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[19]
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
-
[20]
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(172)
- HTML views(17)