Citation: Jiandong Liu,  Zhijia Zhang,  Mikhail Kamenskii,  Filipp Volkov,  Svetlana Eliseeva,  Jianmin Ma. Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 100011. doi: 10.3866/PKU.WHXB202308048 shu

Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries

  • Corresponding author: Jianmin Ma, nanoelechem@hnu.edu.cn
  • Received Date: 30 August 2023
    Revised Date: 6 October 2023
    Accepted Date: 30 October 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (U21A20311).

  • Achieving high energy density batteries is currently a key focus in the field of energy storage. Lithium batteries, due to their high energy density, have garnered significant attention in research. Increasing the upper limit of the battery’s cut-off voltage can boost the energy density of lithium batteries. However, high-voltage conditions can lead to irreversible phase transitions and side reactions in cathode materials, which can degrade battery performance and even result in safety risks, including explosions. The electrolyte can also decompose, causing capacity loss and releasing flammable gases when subjected to high voltage, which can lead to battery swelling and potential combustion and explosions. Designing an ideal cathode electrolyte interphase (CEI) on the cathode’s surface to regulate the electrode-electrolyte interface reaction can effectively enhance the cycling stability of the battery, reduce irreversible phase transitions in the cathode, and improve the oxidation stability of the electrolyte. The ideal CEI should possess high ion conductivity, high thermal stability, and should minimize interface side reactions to ensure optimal battery performance. Understanding the formation and development of CEI is crucial for enhancing battery performance under high voltage. Apart from creating artificial CEI, modifying electrolytes has gained significant attention. By altering the electrolyte recipe, an ideal CEI can be achieved. Electrolyte engineering is considered an effective strategy for attaining an ideal CEI and enhancing the stability of high nickel positive electrodes. This approach is simple, cost-effective, and holds great promise for achieving higher energy density in lithium batteries. To provide a better understanding of CEI in lithium ion batteries (LIBs), this article reviews the latest advancements in CEI, including the formation mechanism of CEI, the key factors influencing CEI, methods for modifying CEI, and techniques for characterizing CEI. Additionally, it summarizes the current status of artificial CEI development and in situ CEI generation through electrolyte design. The aim is to offer fundamental guidance for future research and the design of high-voltage battery CEI. Finally, the article outlines the opportunities and challenges in electrolyte engineering for modified CEI, pointing towards the future direction of constructing an ideal CEI.
  • 加载中
    1. [1]

      (1) Goodenough, J. B.; Park, K.-S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438

    2. [2]

      (2) Jia, H.; Xu, W. Trends Chem. 2022, 4, 627. doi: 10.1016/j.trechm.2022.04.010

    3. [3]

      (3) Wu, Y.; Liu, X.; Wang, L.; Feng, X.; Ren, D.; Li, Y.; Rui, X.; Wang, Y.; Han, X.; Xu, G.-L.; et al. Energy Storage Mater. 2021, 37, 77. doi: 10.1016/j.ensm.2021.02.001

    4. [4]

      (4) Pham, H. Q.; Chung, G. J.; Han, J.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. J. Chem. Phys. 2020, 152, 094709. doi: 10.1063/1.5144280

    5. [5]

      (5) Zhang, J.; Wang, P.-F.; Bai, P.; Wan, H.; Liu, S.; Hou, S.; Pu, X.; Xia, J.; Zhang, W.; Wang, Z.; et al. Adv. Mater. 2022, 34, 2108353. doi: 10.1002/adma.202108353

    6. [6]

      (6) Li, W.; Song, B.; Manthiram, A. Chem. Soc. Rev. 2017, 46, 3006. doi: 10.1039/C6CS00875E

    7. [7]

      (7) Kong, D.; Hu, J.; Chen, Z.; Song, K.; Li, C.; Weng, M.; Li, M.; Wang, R.; Liu, T.; Liu, J.; et al. Adv. Energy Mater. 2019, 9, 1901756. doi: 10.1002/aenm.201901756

    8. [8]

      (8) Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Chem 2018, 4, 1877. doi: 10.1016/j.chempr.2018.05.002

    9. [9]

      (9) Song, S. H.; Cho, M.; Park, I.; Yoo, J.-G.; Ko, K.-T.; Hong, J.; Kim, J.; Jung, S.-K.; Avdeev, M.; Ji, S.; et al. Adv. Energy Mater. 2020, 10, 2000521. doi: 10.1002/aenm.202000521

    10. [10]

      (10) Piao, Z.; Gao, R.; Liu, Y.; Zhou, G.; Cheng, H.-M. Adv. Mater.

    11. [11]

      2023, 35, 2206009. doi: 10.1002/adma.202206009

    12. [12]

      (11) Qin, Y.; Cheng, H.; Zhou, J.; Liu, M.; Ding, X.; Li, Y.; Huang, Y.; Chen, Z.; Shen, C.; Wang, D.; et al. Energy Storage Mater. 2023, 57, 411. doi: 10.1016/j.ensm.2023.02.022

    13. [13]

      (12) Sun, H. H.; Kim, U.-H.; Park, J.-H.; Park, S.-W.; Seo, D.-H.; Heller, A.; Mullins, C. B.; Yoon, C. S.; Sun, Y.-K. Nat. Commun. 2021, 12, 6552. doi: 10.1038/s41467-021-26815-6

    14. [14]

      (13) Zhou, K.; Xie, Q.; Li, B.; Manthiram, A. Energy Storage Mater. 2021, 34, 229. doi: 10.1016/j.ensm.2020.09.015

    15. [15]

      (14) Li, J.; Li, W.; Wang, S.; Jarvis, K.; Yang, J.; Manthiram, A. Chem. Mater. 2018, 30, 3101. doi: 10.1021/acs.chemmater.8b01077

    16. [16]

      (15) Xie, Q.; Li, W.; Dolocan, A.; Manthiram, A. Chem. Mater. 2019, 31, 8886. doi: 10.1021/acs.chemmater.9b02916

    17. [17]

      (16) Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Energy Storage Mater. 2021, 38, 309. doi: 10.1016/j.ensm.2021.03.015

    18. [18]

      (17) Woo, S. U.; Yoon, C. S.; Amine, K.; Belharouak, I.; Sun, Y. K. J. Electrochem. Soc. 2007, 154, A1005. doi: 10.1149/1.2776160

    19. [19]

      (18) Ahmed, B.; Xia, C.; Alshareef, H. N. Nano Today 2016, 11, 250. doi: 10.1016/j.nantod.2016.04.004

    20. [20]

      (19) Li, W.; Liu, X.; Celio, H.; Smith, P.; Dolocan, A.; Chi, M.; Manthiram, A. Adv. Energy Mater. 2018, 8, 1703154. doi: 10.1002/aenm.201703154

    21. [21]

      (20) You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A. Angew. Chem. Int. Ed. 2018, 57, 6480. doi: 10.1002/anie.201801533

    22. [22]

      (21) Gao, S.; Zhan, X.; Cheng, Y.-T. J. Power Sources 2019, 410411, 45. doi: 10.1016/j.jpowsour.2018.10.094

    23. [23]

      (22) Shu, Y.; Xie, Y.; Yan, W.; Meng, S.; Sun, D.; Jin, Y.; Xiang, L. Ceramics Int. 2020, 46, 14840. doi: 10.1016/j.ceramint.2020.03.009

    24. [24]

      (23) Mou, J.; Deng, Y.; He, L.; Zheng, Q.; Jiang, N.; Lin, D. Electrochim. Acta 2018, 260, 101. doi: 10.1016/j.electacta.2017.11.059

    25. [25]

      (24) Cao, G.; Jin, Z.; Zhu, J.; Li, Y.; Xu, B.; Xiong, Y.; Yang, J. J. Alloys Compd. 2020, 832, 153788. doi: 10.1016/j.jallcom.2020.153788

    26. [26]

      (25) Zhang, Z.; Yang, J.; Huang, W.; Wang, H.; Zhou, W.; Li, Y.; Li, Y.; Xu, J.; Huang, W.; Chiu, W.; et al. Matter 2021, 4, 302. doi: 10.1016/j.matt.2020.10.021

    27. [27]

      (26) Chen, D.; Mahmoud, M. A.; Wang, J.-H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi: 10.1021/acs.nanolett.9b00179

    28. [28]

      (27) Wang, S.; Dai, A.; Cao, Y.; Yang, H.; Khalil, A.; Lu, J.; Li, H.; Ai, X. J. Mater. Chem. A 2021, 9, 11623. doi: 10.1039/D1TA02563E

    29. [29]

      (28) Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. J. Electrochem. Soc. 1985, 132, 1521. doi: 10.1149/1.2114158

    30. [30]

      (29) Kanamura, K.; Toriyama, S.; Shiraishi, S.; Ohashi, M.; Takehara, Z.-I. J. Electroanal. Chem. 1996, 419, 77. doi: 10.1016/S0022-0728(96)04862-0

    31. [31]

      (30) Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Adv. Mater. 2019, 31, 1902029. doi: 10.1002/adma.201902029

    32. [32]

      (31) Aikens, D. A. J. Chem. Edu. 1983, 60, A25. doi: 10.1021/ed060pA25.1

    33. [33]

      (32) Fang, S.; Jackson, D.; Dreibelbis, M. L.; Kuech, T. F.; Hamers, R. J. J. Power Sources 2018, 373, 184. doi: 10.1016/j.jpowsour.2017.09.050

    34. [34]

      (33) Zhang, J.-N.; Li, Q.; Wang, Y.; Zheng, J.; Yu, X.; Li, H. Energy Storage Mater. 2018, 14, 1. doi: 10.1016/j.ensm.2018.02.016

    35. [35]

      (34) Zhang, Z.; Qin, C.; Wang, K.; Han, X.; Li, J.; Sui, M.; Yan, P. J. Energy Chem. 2023, 81, 192. doi: 10.1016/j.jechem.2023.01.046

    36. [36]

      (35) Zhou, Y.-N.; Ma, J.; Hu, E.; Yu, X.; Gu, L.; Nam, K.-W.; Chen, L.; Wang, Z.; Yang, X.-Q. Nat. Commun. 2014, 5, 5381. doi: 10.1038/ncomms6381

    37. [37]

      (36) Chen, M.; Wang, W.; Shi, Z.; Liu, Z.; Shen, C. Appl. Surf. Sci. 2022, 600, 154119. doi: 10.1016/j.apsusc.2022.154119

    38. [38]

      (37) Tallman, K. R.; Wheeler, G. P.; Kern, C. J.; Stavitski, E.; Tong, X.; Takeuchi, K. J.; Marschilok, A. C.; Bock, D. C.; Takeuchi, E. S. J. Phys. Chem. C 2021, 125, 58. doi: 10.1021/acs.jpcc.0c08095

    39. [39]

      (38) Yang, Y.; Wang, H.; Zhu, C.; Ma, J. Angew. Chem. Int. Ed. 2023, 62, e202300057. doi: 10.1002/anie.202300057

    40. [40]

      (39) Liu, J.; Wu, M.; Li, X.; Wu, D.; Wang, H.; Huang, J.; Ma, J. Adv. Energy Mater. 2023, 13, 2300084. doi: 10.1002/aenm.202300084

    41. [41]

      (40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.

    42. [42]

      (41) Neese, F. WIREs Comput. Mol. Sci. 2018, 8, e1327. doi: 10.1002/wcms.1327

    43. [43]

      (42) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    44. [44]

      (43) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. WIREs Comput. Mol. Sci. 2014, 4, 15. doi: 10.1002/wcms.1159

    45. [45]

      (44) Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2

    46. [46]

      (45) Li, X.; Liu, J.; He, J.; Wang, H.; Qi, S.; Wu, D.; Huang, J.; Li, F.; Hu, W.; Ma, J. Adv. Funct. Mater. 2021, 31, 2104395. doi: 10.1002/adfm.202104395

    47. [47]

      (46) Kim, S. C.; Oyakhire, S. T.; Athanitis, C.; Wang, J.; Zhang, Z.; Zhang, W.; Boyle, D. T.; Kim, M. S.; Yu, Z.; Gao, X.; et al. Proc. Natl. Acad. Sci. 2023, 120, e2214357120. doi: 10.1073/pnas.2214357120

    48. [48]

      (47) Zhao, L.; Chen, G.; Weng, Y.; Yan, T.; Shi, L.; An, Z.; Zhang, D. Chem. Eng. J. 2020, 401, 126138. doi: 10.1016/j.cej.2020.126138

    49. [49]

      (48) Qiao, Y.; Zhou, Z.; Chen, Z.; Du, S.; Cheng, Q.; Zhai, H.; Fritz, N. J.; Du, Q.; Yang, Y. Nano Energy 2018, 45, 68. doi: 10.1016/j.nanoen.2017.12.036

    50. [50]

      (49) Wu, Z.; Li, R.; Zhang, S.; lv, L.; Deng, T.; Zhang, H.; Zhang, R.; Liu, J.; Ding, S.; Fan, L.; et al. Chem 2023, 9, 650. doi: 10.1016/j.chempr.2022.10.027

    51. [51]

      (50) Li, X.; Zhang, K.; Mitlin, D.; Paek, E.; Wang, M.; Jiang, F.; Huang, Y.; Yang, Z.; Gong, Y.; Gu, L.; et al. Small 2018, 14, 1802570. doi: 10.1002/smll.201802570

    52. [52]

      (51) Bai, Y.; Jiang, K.; Sun, S.; Wu, Q.; Lu, X.; Wan, N. Electrochim. Acta 2014, 134, 347. doi: 10.1016/j.electacta.2014.04.155

    53. [53]

      (52) Yao, L.; Liang, F.; Jin, J.; Chowdari, B. V. R.; Yang, J.; Wen, Z. Chem. Eng. J. 2020, 389, 124403. doi: 10.1016/j.cej.2020.124403

    54. [54]

      (53) Gao, X.-W.; Deng, Y.-F.; Wexler, D.; Chen, G.-H.; Chou, S.-L.; Liu, H.-K.; Shi, Z.-C.; Wang, J.-Z. J. Mater. Chem. A 2015, 3, 404. doi: 10.1039/C4TA04018J

    55. [55]

      (54) Ding, J.-F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y.-X.; Yan, C.; Xie, J.; Huang, J.-Q. Angew. Chem. Int. Ed. 2021, 60, 11442. doi: 10.1002/anie.202101627

    56. [56]

      (55) Wang, Z.; Zhu, C.; Liu, J.; Hu, X.; Yang, Y.; Qi, S.; Wang, H.; Wu, D.; Huang, J.; He, P.; et al. Adv. Funct. Mater. 2023, 33, 2212150. doi: 10.1002/adfm.202212150

    57. [57]

      (56) Huang, J.; Liu, J.; He, J.; Wu, M.; Qi, S.; Wang, H.; Li, F.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 20717. doi: 10.1002/anie.202107957

    58. [58]

      (57) Jiang, G.; Liu, J.; Wang, Z.; Ma, J. Adv. Funct. Mater. 2023, 2300629. doi: 10.1002/adfm.202300629

    59. [59]

      (58) Rath, P. C.; Wang, Y.-W.; Patra, J.; Umesh, B.; Yeh, T.-J.; Okada, S.; Li, J.; Chang, J.-K. Chem. Eng. J. 2021, 415, 128904. doi: 10.1016/j.cej.2021.128904

    60. [60]

      (59) Zheng, X.; Liao, Y.; Zhang, Z.; Zhu, J.; Ren, F.; He, H.; Xiang, Y.; Zheng, Y.; Yang, Y. J. Energy Chem. 2020, 42, 62. doi: 10.1016/j.jechem.2019.05.023

    61. [61]

      (60) Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D. Langmuir 2012, 28, 965. doi: 10.1021/la203712s

    62. [62]

      (61) Xia, J.; Petibon, R.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A1637. doi: 10.1149/2.0831608jes

    63. [63]

      (62) Fan, X.; Wang, C. Chem. Soc. Rev. 2021, 50, 10486. doi: 10.1039/D1CS00450F

    64. [64]

      (63) Xu, N.; Shi, J.; Liu, G.; Yang, X.; Zheng, J.; Zhang, Z.; Yang, Y.J. Power Sources Adv. 2021, 7, 100043. doi: 10.1016/j.powera.2020.100043

    65. [65]

      (64) Wang, T.; Rao, L.; Jiao, X.; Choi, J.; Yap, J.; Kim, J.-H. ACS Appl. Energy Mater. 2022, 5, 7346. doi: 10.1021/acsaem.2c00861

    66. [66]

      (65) Song, Y.; Mao, Q.; Li, Q.; Huang, Z.; Wan, Y.; Hong, B.; Zhong, Q. ACS Appl. Energy Mater. 2023, 6, 4271. doi: 10.1021/acsaem.3c00196

    67. [67]

      (66) Wu, F.; Schür, A. R.; Kim, G.-T.; Dong, X.; Kuenzel, M.; Diemant, T.; D'Orsi, G.; Simonetti, E.; De Francesco, M.; Bellusci, M.; et al. Energy Storage Mater. 2021, 42, 826. doi: 10.1016/j.ensm.2021.08.030

    68. [68]

      (67) Xu, M.; Liu, Y.; Li, B.; Li, W.; Li, X.; Hu, S. Electrochem. Commun. 2012, 18, 123. doi: 10.1016/j.elecom.2012.02.037

    69. [69]

      (68) Pham, T. D.; Faheem, A. B.; Kim, J.; Kwak, K.; Lee, K.-K. Electrochim. Acta 2023, 142496. doi: 10.1016/j.electacta.2023.142496

    70. [70]

      (69) Winter, E.; Briccola, M.; Schmidt, T. J.; Trabesinger, S. Appl. Res. 2022, e202200096. doi: 10.1002/appl.202200096

    71. [71]

      (70) Ma, Q.; Zhang, X.; Wang, A.; Xia, Y.; Liu, X.; Luo, J. Adv. Funct. Mater. 2020, 30, 2002824. doi: 10.1002/adfm.202002824

    72. [72]

      (71) Yang, Y.-P.; Jiang, J.-C.; Huang, A.-C.; Tang, Y.; Liu, Y.-C.; Xie, L.-J.; Zhang, C.-Z.; Wu, Z.-H.; Xing, Z.-X.; Yu, F. Process Saf. Environ. Prot. 2022, 160, 80. doi: 10.1016/j.psep.2022.02.018

    73. [73]

      (72) Zhang, C.-M.; Li, F.; Zhu, X.-Q.; Yu, J.-G. Molecules 2022, 27, 3107; doi: 10.3390/molecules27103107

    74. [74]

      (73) Li, Y.; Li, W.; Shimizu, R.; Cheng, D.; Nguyen, H.; Paulsen, J.; Kumakura, S.; Zhang, M.; Meng, Y. S. Adv. Energy Mater. 2022, 12, 2103033. doi: 10.1002/aenm.202103033

    75. [75]

      (74) Martinez, A. C.; Rigaud, S.; Grugeon, S.; Tran-Van, P.; Armand, M.; Cailleu, D.; Pilard, S.; Laruelle, S. Electrochim. Acta 2022, 426, 140765. doi: 10.1016/j.electacta.2022.140765

    76. [76]

      (75) Fu, A.; Lin, J.; Zhang, Z.; Xu, C.; Zou, Y.; Liu, C.; Yan, P.; Wu, D.-Y.; Yang, Y.; Zheng, J. ACS Energy Lett. 2022, 7, 1364. doi: 10.1021/acsenergylett.2c00316

    77. [77]

      (76) Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Garsuch, A.; Lucht, B. L. J. Electrochem. Soc. 2013, 160, A2005. doi: 10.1149/2.053311jes

    78. [78]

      (77) Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Demeaux, J.; MacIntosh, A. D.; Garsuch, A.; Lucht, B. L. Energy Environ. Sci. 2016, 9, 1308. doi: 10.1039/C5EE03360H

    79. [79]

      (78) Yang, X.; Lin, M.; Zheng, G.; Wu, J.; Wang, X.; Ren, F.; Zhang, W.; Liao, Y.; Zhao, W.; Zhang, Z.; et al. Adv. Funct. Mater. 2020, 30, 2004664. doi: 10.1002/adfm.202004664

    80. [80]

      (79) Liu, F.; Zhang, Z.; Yu, Z.; Fan, X.; Yi, M.; Bai, M.; Song, Y.; Mao, Q.; Hong, B.; Zhang, Z.; et al. Chem. Eng. J. 2022, 434, 134745. doi: 10.1016/j.cej.2022.134745

    81. [81]

      (80) Zhang, Q.-K.; Zhang, X.-Q.; Wan, J.; Yao, N.; Song, T.-L.; Xie, J.; Hou, L.-P.; Zhou, M.-Y.; Chen, X.; Li, B.-Q.; et al. Nat. Energy 2023, 8, 725. doi: 10.1038/s41560-023-01275-y

  • 加载中
    1. [1]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    18. [18]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

Metrics
  • PDF Downloads(5)
  • Abstract views(79)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return