Citation: Linfeng Xiao, Wanlu Ren, Shishi Shen, Mengshan Chen, Runhua Liao, Yingtang Zhou, Xibao Li. Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230803. doi: 10.3866/PKU.WHXB202308036 shu

Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction

  • Corresponding author: Runhua Liao, 001072@jcu.edu.cn Yingtang Zhou, zhouyingtang@zjou.edu.cn Xibao Li, lixibao@nchu.edu.cn
  • Received Date: 21 August 2023
    Revised Date: 28 September 2023
    Accepted Date: 28 September 2023
    Available Online: 13 October 2023

    Fund Project: the Zhejiang Province Key Research and Development Project 2023 C01191National Natural Science Foundation of China 22262024National Natural Science Foundation of China 51962023National Natural Science Foundation of China 51468024Jiangxi Academic and Technical Leader of Major Disciplines 20232BCJ22008Natural Science Foundation of Jiangxi Province 20232ACB204007Natural Science Foundation of Jiangxi Province 20192GYZD008-33Jingdezhen Science and Technology Bureau Project 20192GYZD008-33

  • The production of renewable fuels through water splitting via photocatalytic hydrogen production holds significant promise. Nonetheless, the sluggish kinetics of hydrogen evolution and the inadequate water adsorption on photocatalysts present notable challenges. In this study, we have devised a straightforward hydrothermal method to synthesize Bi2O3 (BO) derived from metal-organic frameworks (MOFs), loaded with flower-like ZnIn2S4 (ZIS). This approach substantially enhances water adsorption and surface catalytic reactions, resulting in a remarkable enhancement of photocatalytic activity. By employing triethanolamine (TEOA) as a sacrificial agent, the hydrogen evolution rate achieved with 15% (mass fraction) ZIS loading on BO reached an impressive value of 1610 μmol∙h−1∙g−1, marking a 6.34-fold increase compared to that observed for bare BO. Furthermore, through density functional theory (DFT) and ab initio molecular dynamics (AIMD) calculations, we have identified the reactions occurring at the ZIS/BO S-scheme heterojunction interface, including the identification of active sites for water adsorption and catalytic reactions. This study provides valuable insights into the development of high-performance composite photocatalytic materials with tailored electronic properties and wettability.
  • 加载中
    1. [1]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34 (11), 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    2. [2]

      Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen, Z.; Huang, J.; Zeng, F.; et al. Chin. J. Struct. Chem. 2022, 41 (4), 69. doi: 10.14102/j.cnki.0254-5861  doi: 10.14102/j.cnki.0254-5861

    3. [3]

      Yi, J.; Zhou, Z.; Xia, Y.; Zhou, G.; Zhang, G.; Li, L.; Wang, X.; Zhu, X.; Wang, X.; Pang, H. Chin. Chem. Lett. 2023, 34 (11), 108328. doi: 10.1016/j.cclet.2023.108328  doi: 10.1016/j.cclet.2023.108328

    4. [4]

      Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2023, 44, 4. doi: 10.1016/S1872-2067(22)64185-8  doi: 10.1016/S1872-2067(22)64185-8

    5. [5]

      Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42 (5), 743. doi: 10.1016/S1872-2067(20)63695-6  doi: 10.1016/S1872-2067(20)63695-6

    6. [6]

      Wang, J.; Sun, M.; Liu, C.; Ye, Y.; Chen, M.; Zhao, Z.; Zhang, Y.; Wu, X.; Wang, K.; Zhou, Y. Adv. Mater. 2023, 35, 2306103. doi: 10.1002/adma.202306103  doi: 10.1002/adma.202306103

    7. [7]

      Zhang, P.; Tian, Z.; Hung, C.; Liu, Y.; Jia, B.; Lan, K.; Kong, B.; Huang, F.; Mai, L.; Zhao, D. Cell Rep. Phys. Sci. 2020, 1 (7), 100081. doi: 10.1016/j.xcrp.2020.100081  doi: 10.1016/j.xcrp.2020.100081

    8. [8]

      Li, Y.; Kidkhunthod, P.; Zhou, Y.; Wang, X.; Lee, J. Adv. Func. Mater. 2022, 32 (41), 2205985. doi: 10.1002/adfm.202205985  doi: 10.1002/adfm.202205985

    9. [9]

      Sun, L.; Han, L.; Huang, J.; Luo, X.; Li, X. Int. J. Hydrog. Energy 2022, 47 (40), 17583. doi: 10.1016/j.ijhydene.2022.03.259  doi: 10.1016/j.ijhydene.2022.03.259

    10. [10]

      Lei, Y.; Huang, J.; Li, X.; Lv, C.; Hou, C.; Liu, J. Chin. J. Catal. 2022, 43 (8), 2249. doi: 10.1016/S1872-2067(22)64109-3  doi: 10.1016/S1872-2067(22)64109-3

    11. [11]

      Huang, B.; Fu, X.; Wang, K.; Wang, L.; Zhang, H.; Liu, Z.; Liu, B.; Li, J. Adv. Powder. Mater. 2023, doi: 10.1016/j.apmate.2023.100140  doi: 10.1016/j.apmate.2023.100140

    12. [12]

      Li, X.; Hu, Y.; Dong, F.; Huang, J.; Han, L.; Deng, F.; Luo, Y.; Xie, Y.; He, C.; Feng, Z.; Chen, Z.; Zhu, Y. Appl. Catal. B 2023, 325, 122341. doi: 10.1016/j.apcatb.2022.122341  doi: 10.1016/j.apcatb.2022.122341

    13. [13]

      Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Chin. Chem. Lett. 2022, 33 (12), 5200. doi: 10.1016/j.cclet.2022.01.058  doi: 10.1016/j.cclet.2022.01.058

    14. [14]

      Zhang, H.; Aierek, A.; Zhou, Y.; Ni, Z.; Feng, L.; Chen, A.; Wågberg, T.; Hu, G. Carbon Energy 2023, 5 (1), e217. doi: 10.1002/cey2.217  doi: 10.1002/cey2.217

    15. [15]

      Guo, Y.; Yan, B.; Deng, F.; Shao, P.; Zou, J.; Luo, X.; Zhang, S.; Li, X. Chin. Chem. Lett. 2023, 34 (2), 107468. doi: 10.1016/j.cclet.2022.04.066  doi: 10.1016/j.cclet.2022.04.066

    16. [16]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43 (10), 2652. doi: 10.1016/S1872-2067(22)64106-8  doi: 10.1016/S1872-2067(22)64106-8

    17. [17]

      Shan, A.; Teng, X.; Zhang, Y.; Zhang, P.; Xu, Y.; Liu, C.; Li, H.; Ye, H.; Wang, R. Nano Energy 2022, 94, 106913. doi: 10.1016/j.nanoen.2021.106913  doi: 10.1016/j.nanoen.2021.106913

    18. [18]

      Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2022, 38 (7), 2201008.  doi: 10.3866/PKU.WHXB202201008

    19. [19]

      Wang, K.; Qin, H.; Li, J.; Cheng, Q.; Zhu, Y.; Hu, H.; Peng, J.; Chen, S.; Wang, G.; Chou, S.; et al. Appl. Catal. B 2023, 332, 122763. doi: 10.1016/j.apcatb.2023.122763  doi: 10.1016/j.apcatb.2023.122763

    20. [20]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38 (7), 2112037.  doi: 10.3866/PKU.WHXB202112037

    21. [21]

      He, K.; Shen, R.; Hao, L.; Li, Y.; Zhang, P.; Jiang, J.; Li, X. Acta Phys. -Chim. Sin. 2022, 38 (11), 2201021.  doi: 10.3866/PKU.WHXB202201021

    22. [22]

      Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. Acta Phys. -Chim. Sin. 2021, 37 (6), 22010030.  doi: 10.3866/PKU.WHXB202010030

    23. [23]

      Zhu, Q.; Hailili, R.; Xin, Y.; Zhou, Y.; Hu, Y.; Pang, X.; Zhang, K.; Robertson, P.; Bahnemann, D.; Wang, C. Appl. Catal. B 2022, 319, 121888. doi: 10.1016/j.apcatb.2022.121888  doi: 10.1016/j.apcatb.2022.121888

    24. [24]

      Wang, Y.; Liu, Q.; Wong, N. -H.; Sunarso, J.; Huang, J.; Dai, G.; Hou, X.; Li, X. Ceram. Int. 2022, 48 (2), 2459. doi: 10.1016/j.ceramint.2021.10.027  doi: 10.1016/j.ceramint.2021.10.027

    25. [25]

      Wang, H.; Liu, J.; Xiao, X.; Meng, H.; Wu, J.; Guo, C.; Zheng, M.; Wang, X.; Guo, S.; Jiang, B. Chin. Chem. Lett. 2023, 34 (1), 107125. doi: 10.1016/j.cclet.2022.01.018  doi: 10.1016/j.cclet.2022.01.018

    26. [26]

      Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43 (2), 255. doi: 10.1016/S1872-2067(20)63784-6  doi: 10.1016/S1872-2067(20)63784-6

    27. [27]

      Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Appl. Catal. B 2017, 202, 620. doi: 10.1016/j.apcatb.2016.09.068  doi: 10.1016/j.apcatb.2016.09.068

    28. [28]

      Li, X.; Kang, B.; Dong, F.; Deng, F.; Han, L.; Gao, X.; Xu, J.; Hou, X.; Feng, Z.; Chen, Z.; et al. Appl. Surf. Sci. 2022, 593, 153422. doi: 10.1016/j.apsusc.2022.153422  doi: 10.1016/j.apsusc.2022.153422

    29. [29]

      Dai, M.; He, Z.; Cao, W.; Zhang, J.; Chen, W.; Jin, Q.; Que, W.; Wang, S. Sep. Purif. Technol. 2023, 309, 123004. doi: 10.1016/j.seppur.2022.123004  doi: 10.1016/j.seppur.2022.123004

    30. [30]

      Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003  doi: 10.1016/j.jmst.2023.03.003

    31. [31]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1  doi: 10.1016/S1872-2067(23)64420-1

    32. [32]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35 (26), 2300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    33. [33]

      Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023, 7 (1), 2100498. doi: 10.1002/adsu.202100498  doi: 10.1002/adsu.202100498

    34. [34]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Func. Mater. 2023, 33 (23), 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    35. [35]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39 (6), 2209037.  doi: 10.3866/PKU.WHXB202209037

    36. [36]

      Wang, Z.; Liu, R.; Zhang, J; Dai, K. Chin. J. Struc. Chem. 2022, 41 (06), 15. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

    37. [37]

      Liu, Q.; He, X.; Peng, J.; Yu, X.; Tang, H.; Zhang, J. Chin. J. Catal. 2021, 42 (9), 1478. doi: 10.1016/s1872-2067(20)63753-6  doi: 10.1016/s1872-2067(20)63753-6

    38. [38]

      Cui, Q.; Gu, X.; Zhao, Y.; Qi, K.; Yan, Y. J. Taiwan Inst. Chem. Eng. 2023, 142, 104679. doi: 10.1016/j.jtice.2023.104679  doi: 10.1016/j.jtice.2023.104679

    39. [39]

      Li, J.; Li, M.; Jin, Z. J. Colloid Interface Sci. 2021, 592, 237. doi: 10.1016/j.jcis.2021.02.053  doi: 10.1016/j.jcis.2021.02.053

    40. [40]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 135 (8), e202218688. doi: 10.1002/ange.202218688  doi: 10.1002/ange.202218688

    41. [41]

      Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.; Ba, K.; Zhang, H.; Zhang, L.; et al. Adv. Mater. 2023, 35(6), 2209141. doi: 10.1002/adma.202209141  doi: 10.1002/adma.202209141

    42. [42]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33 (22), 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    43. [43]

      Wang, Z.; Wang, D.; Deng, F.; Liu, X.; Li, X.; Luo, X.; Peng, Y.; Zhang, J.; Zou, J.; Ding, L.; et al. Chem. Eng. J. 2023, 463, 142313. doi: 10.1016/j.cej.2023.142313  doi: 10.1016/j.cej.2023.142313

    44. [44]

      Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43 (2), 359. doi: 10.1016/S1872-2067(21)63883-4  doi: 10.1016/S1872-2067(21)63883-4

    45. [45]

      Peng, Y.; Guo, X.; Xu, S.; Guo, Y.; Zhang, D.; Wang, M.; Wei, G.; Yang, X.; Li, Z.; Zhang, Y.; et al. J. Energy Chem. 2022, 75, 276. doi: 10.1016/j.jechem.2022.06.027  doi: 10.1016/j.jechem.2022.06.027

    46. [46]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7), 2108028.  doi: 10.3866/PKU.WHXB202108028

    47. [47]

      Zheng, J.; Zhou, H.; Zou, Y.; Wang, R.; Lyu, Y.; Jiang, S.; Wang, S. Energy Environ. Sci. 2019, 12 (8), 2345. doi: 10.1039/C9EE00524B  doi: 10.1039/C9EE00524B

    48. [48]

      Zhang, C.; Guo, Z.; Tian, Y.; Yu, C.; Liu, K.; Jiang, L. Nano Res. Energy 2023, 2 (2), e9120063. doi: 10.26599/NRE.2023.9120063  doi: 10.26599/NRE.2023.9120063

    49. [49]

      Zhang, H.; Zhou, Y.; Xu, M.; Chen, A.; Ni, Z.; Akdim, O.; Wågberg, T.; Huang, X.; Hu, G. ACS Nano 2023, 17(1), 636. doi: 10.1021/acsnano.2c09880  doi: 10.1021/acsnano.2c09880

    50. [50]

      Lin, K.; Wang, Z.; Hu, Z.; Luo, P.; Yang, X.; Zhang, X.; Rafiq, M.; Huang, F.; Cao, Y. J. Mater. Chem. A 2019, 7 (32), 19087. doi: 10.1039/C9TA06219J  doi: 10.1039/C9TA06219J

    51. [51]

      Tian, Y.; Cui, Q.; Xu, L.; Jiao, A.; Li, S.; Wang, X.; Chen, M. J. Mater. Sci. Technol. 2021, 94, 10. doi: 10.1016/j.jmst.2021.02.062  doi: 10.1016/j.jmst.2021.02.062

    52. [52]

      Chen, J.; Abazari, R.; Adegoke, K.; Maxakato, N.; Bello, O.; Tahir, M.; Tasleem, S.; Sanati, S.; Kirillov, A.; Zhou, Y. Coord. Chem. Rev. 2022, 469, 214664. doi: 10.1016/j.ccr.2022.214664  doi: 10.1016/j.ccr.2022.214664

    53. [53]

      Zhao, X.; Chen, J.; Zhao, C.; Liu, Y.; Liang, Q.; Zhou, M.; Li, Z.; Zhou, Y. Appl. Surf. Sci. 2021, 570, 151183. doi: 10.1016/j.apsusc.2021.151183  doi: 10.1016/j.apsusc.2021.151183

    54. [54]

      Zhu, Q.; Dar, A.; Zhou, Y.; Zhang, K.; Qin, J.; Pan, B.; Lin, J.; Patrocinio, A.; Wang, C. ACS EST Eng. 2022, 2 (8), 1365. doi: 10.1021/acsestengg.1c00479  doi: 10.1021/acsestengg.1c00479

    55. [55]

      Zhao, X.; Chen, J.; Bi, Z.; Chen, S.; Feng, L.; Zhou, X.; Zhang, H.; Zhou, Y.; Wågberg, T.; Hu, G. Adv. Sci. 2023, 10 (8), 2205889. doi: 10.1002/advs.202205889  doi: 10.1002/advs.202205889

    56. [56]

      Han, L.; Jing, F.; Zhang, J.; Luo, X.; Zhong, Y.; Wang, K.; Zang, S.; Teng, D.; Liu, Y.; Chen, J.; et al. Appl. Catal. B 2021, 282, 119602. doi: 10.1016/j.apcatb.2020.119602  doi: 10.1016/j.apcatb.2020.119602

    57. [57]

      Li, Q.; Gao, Y.; Zhang, M.; Gao, H.; Chen, J.; Jia, H. Appl. Catal. B 2022, 303, 120905. doi: 10.1016/j.apcatb.2021.120905  doi: 10.1016/j.apcatb.2021.120905

    58. [58]

      Tang, M.; Li, X.; Deng, F.; Han, L.; Xie, Y.; Huang, J.; Chen, Z.; Feng, Z.; Zhou, Y. Catalysts 2023, 13 (3), 634. doi: 10.3390/catal13030634  doi: 10.3390/catal13030634

    59. [59]

      Zhang, J.; Gu, X.; Zhao, Y.; Zhang, K.; Yan, Y.; Qi, K. Nanomaterials 2023, 13 (2), 305. doi: 10.3390/nano13020305  doi: 10.3390/nano13020305

    60. [60]

      Guan, Y.; Liu, Y.; Lv, Q.; Wu, J. J. Hazard. Mater. 2021, 418, 126280. doi: 10.1016/j.jhazmat.2021.126280  doi: 10.1016/j.jhazmat.2021.126280

    61. [61]

      Li, L.; Yang, Y.; Li, G.; Zhang, L. Small 2006, 2 (4), 548. doi: 10.1002/smll.200500382  doi: 10.1002/smll.200500382

    62. [62]

      Meng, Z.; Qiu, Z.; Shi, Y.; Wang, S.; Zhang, G.; Pi, Y.; Pang, H. eScience 2023, 3 (2), 100092. doi: 10.1016/j.esci.2023.100092  doi: 10.1016/j.esci.2023.100092

    63. [63]

      Dong, S.; Xia, L.; Chen, X.; Cui, L.; Zhu, W.; Lu, Z.; Sun, J.; Fan, M. Compos. Part B Eng. 2021, 215, 108765. doi: 10.1016/j.compositesb.2021.108765  doi: 10.1016/j.compositesb.2021.108765

    64. [64]

      Peng, Z.; Jiang, Y.; Xiao, Y.; Xu, H.; Zhang, W.; Ni, L. Appl. Surf. Sci. 2019, 487, 1084. doi: 10.1016/j.apsusc.2019.05.163  doi: 10.1016/j.apsusc.2019.05.163

    65. [65]

      Shen, J.; Zai, J.; Yuan, Y.; Qian, X. Int. J. Hydrog. Energy 2012, 37 (12), 16986. doi: 10.1016/j.ijhydene.2012.08.038  doi: 10.1016/j.ijhydene.2012.08.038

    66. [66]

      Bai, J.; Chen, W.; Shen, R.; Jiang, Z.; Zhang, P.; Liu, W.; Li, X. J. Mater. Sci. Technol. 2022, 112, 85. doi: 10.1016/j.jmst.2021.11.003  doi: 10.1016/j.jmst.2021.11.003

    67. [67]

      Zhao, X.; Chen, M.; Zhou, Y.; Zhang, H.; Hu, G. J. Mater. Chem. A 2023, 11 (11), 5830. doi: 10.1039/D2TA09698F  doi: 10.1039/D2TA09698F

    68. [68]

      Lei, Z.; You, W.; Liu, M.; Zhou, G.; Takata, T.; Hara, M.; Domen, K. Chem. Commun. 2003, 17, 2142. doi: 10.1039/B306813G  doi: 10.1039/B306813G

    69. [69]

      Xiao, Y.; Jiang, Y.; Liu, X.; Zhang, W.; Zhu, Z.; Gao, Y.; Xu, H.; Zhang, J.; Liu, Z.; Ni, L. J. Mater. Sci. 2020, 55, 14211. doi: 10.1007/s10853-020-05004-8  doi: 10.1007/s10853-020-05004-8

    70. [70]

      Dong, S.; Zhao, Y.; Yang, J.; Liu, X.; Li, W.; Zhang, L.; Wu, Y.; Sun, J.; Feng, J.; Zhu, Y. Appl. Catal. B 2021, 291, 120127. doi: 10.1016/j.apcatb.2021.120127  doi: 10.1016/j.apcatb.2021.120127

    71. [71]

      Lei, Z.; Cao, X.; Fan, J.; Hu, X.; Hu, J.; Li, N.; Sun, T.; Liu, E. Chem. Eng. J. 2023, 457, 141249. doi: 10.1016/j.cej.2022.14124  doi: 10.1016/j.cej.2022.14124

    72. [72]

      Dong, S.; Cui, L.; Tian, Y.; Xia, L.; Wu, Y.; Yu, J.; Bagley, D-M.; Sun, J.; Fan, M. J. Hazard. Mater. 2020, 399, 123017. doi: 10.1016/j.jhazmat.2020.123017  doi: 10.1016/j.jhazmat.2020.123017

    73. [73]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39 (6), 2209016.  doi: 10.3866/PKU.WHXB202209016

    74. [74]

      Shen, S.; Li, X.; Zhou, Y.; Han, L.; Xie, Y.; Deng, F.; Huang, J.; Chen, Z.; Feng, Z.; Xu, J.; et al. J. Mater. Sci. Technol. 2023, 155, 148. doi: 10.1016/j.jmst.2023.03.006  doi: 10.1016/j.jmst.2023.03.006

  • 加载中
    1. [1]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    2. [2]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    3. [3]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    5. [5]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    6. [6]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    7. [7]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    13. [13]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    17. [17]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    18. [18]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(2)
  • Abstract views(263)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return