Citation: Ran Yu, Chen Hu, Ruili Guo, Ruonan Liu, Lixing Xia, Cenyu Yang, Jianglan Shui. Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 100001. doi: 10.3866/PKU.WHXB202308032 shu

Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2

  • Corresponding author: Jianglan Shui, shuijianglan@buaa.edu.cn
  • Received Date: 18 August 2023
    Revised Date: 11 October 2023
    Accepted Date: 25 October 2023

    Fund Project: the State Grid Corporation of China SGJSDK00KJJS2100323

  • Developing hydrogen energy to replace carbon-rich fossil fuels is the future direction of energy technology, but there is still a lack of safe and efficient hydrogen storage technology. Hydrogen storage in solid medium is a relatively safe way to store hydrogen, among which magnesium hydride (MgH2) is one of the most promising solid hydrogen storage materials. MgH2 has the advantages of high hydrogen storage density, low cost and good reversibility of hydrogen absorption and release. However, improving its poor thermodynamic and slow kinetic characteristics are still challenging. Catalysts derived from polyoxometalates have been successfully used for catalyzing hydrogen evolution reaction, oxidation of organic compounds, desulfurization reaction, and so on. However, these catalysts have not been applied to the hydrogen storage materials yet. In this paper, H3PW12O40 is selected as a representative of polyoxometalates and its catalytic effect on hydrogen storage is studied. MgH2-xH3PW12O40 (x = 7%, 10%, 13%, mass percentage) and pure MgH2 samples are prepared by mechanical ball milling method. Among them, MgH2-10H3PW12O40 exhibits the optimal performance in both kinetic characteristic and hydrogen storage capacity. It can rapidly absorb 6.25% hydrogen within 1 min at 250 ℃ and release 6.54% hydrogen within 15 min at 300 ℃, while ball-milled MgH2 only releases 1.2% hydrogen within 30 min at 300 ℃. At the same time, the activation energy of the composite decreases to 106.08 kJ∙mol−1, which is 46.23 kJ∙mol−1 lower than MgH2. The catalytic effect of H3PW12O40 on the hydrogen storage properties of MgH2 mainly comes from three aspects. Firstly, the addition of H3PW12O40 helps to avoid the agglomeration of MgH2 during the ball milling process, which makes the MgH2 particles become smaller after ball milling, thus increasing the specific surface area of the interaction with hydrogen. Secondly, the addition of H3PW12O40 makes MgH2 produce a large number of defects and lattice distortion during ball milling, which provides more channels for hydrogen diffusion. Thirdly, the catalytic components of WO3 and W are in situ formed during the ball milling process. They can be used as active components to accelerate the electron migration process, which promotes the cleavage of the Mg―H bond and the adsorption and dissociation of hydrogen.
  • 加载中
    1. [1]

      Dan, L.; Wang, H.; Yang, X. B.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. ACS Appl. Mater. Interfaces 2023, 15, 30372. doi: 10.1021/acsami.3c06033  doi: 10.1021/acsami.3c06033

    2. [2]

      Zhang, X. L.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Mater. Today Nano 2020, 9, 100064. doi: 10.1016/j.mtnano.2019.100064  doi: 10.1016/j.mtnano.2019.100064

    3. [3]

      Wang, J. S.; Han, S. M.; Li, Y.; Shen, N.; Zhang, W. Acta Phys.-Chim. Sin. 2014, 30, 2323.  doi: 10.3866/PKU.WHXB201410081

    4. [4]

      Jing, Z. J.; Tan, K. C.; He, T.; Yu, Y.; Pei, Q. J.; Wang, J. T.; Wu, H.; Chen, P. Acta Phys.-Chim. Sin. 2021, 37, 2009039.  doi: 10.3866/PKU.WHXB202009039

    5. [5]

      Shao, Y. T.; Gao, H. G.; Tang, Q. K.; Liu, Y. N.; Liu, J. C.; Zhu, Y. F.; Zhang, J. G.; Li, L. Q.; Hu, X. H.; Ba, Z. X. Appl. Surf. Sci. 2022, 585, 152561. doi: 10.1016/j.apsusc.2022.152561  doi: 10.1016/j.apsusc.2022.152561

    6. [6]

      Wang, P.; Tian, Z. H.; Wang, Z. X.; Xia, C. Q.; Yang, T.; Ou, X. L. Int. J. Hydrog. Energy 2021, 46, 27107. doi: 10.1016/j.ijhydene.2021.05.172  doi: 10.1016/j.ijhydene.2021.05.172

    7. [7]

      Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Huang, Z. G.; Lu, Y. H.; Gao, M. X.; Pan, H. G. Energy Environ. Sci. 2021, 14, 2302. doi: 10.1039/d0ee03160g  doi: 10.1039/d0ee03160g

    8. [8]

      Xu, N.; Wang, K. W.; Zhu, Y. F.; Zhang, Y. Adv. Mater. 2023, 35, 2303173. doi: 10.1002/adma.202303173  doi: 10.1002/adma.202303173

    9. [9]

      Liu, H. Z.; Lu, C. L.; Wang, X. C.; Xu, L.; Huang, X. T.; Wang, X. H.; Ning, H.; Lan, Z. Q.; Guo, J. ACS Appl. Mater. Interfaces 2021, 13, 13235. doi: 10.1021/acsami.0c23150  doi: 10.1021/acsami.0c23150

    10. [10]

      Zhu, W.; Ren, L.; Lu, C.; Xu, H.; Sun, F. Z.; Ma, Z. W.; Zou, J. X. ACS Nano 2021, 15, 18494. doi: 10.1021/acsnano.1c08343  doi: 10.1021/acsnano.1c08343

    11. [11]

      Ren, L.; Zhu, W.; Zhang, Q. Y.; Lu, C.; Sun, F. Z.; Lin, X.; Zou, J. X. Chem. Eng. J. 2022, 434, 134701. doi: 10.1016/j.cej.2022.134701  doi: 10.1016/j.cej.2022.134701

    12. [12]

      Ma, Z. W.; Zou, J. X.; Khan, D.; Zhu, W.; Hu, C. Z.; Zeng, X. Q.; Ding, W. J. J. Mater. Sci. Technol. 2019, 35, 2132. doi: 10.1016/j.jmst.2019.05.049  doi: 10.1016/j.jmst.2019.05.049

    13. [13]

      Yuan, Z. R.; Li, S. H.; Wang, K. W.; Xu, N.; Sun, W. W.; Sun, L. T.; Cao, H. J.; Lin, H. J.; Zhu, Y. F.; Zhang, Y. Chem. Eng. J. 2022, 435, 135050. doi: 10.1016/j.cej.2022.135050  doi: 10.1016/j.cej.2022.135050

    14. [14]

      Wang, K.; Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Gao, M. X.; Pan, H. G. Chem. Eng. J. 2021, 406, 126831. doi: 10.1016/j.cej.2020.126831  doi: 10.1016/j.cej.2020.126831

    15. [15]

      Ma, Z. W.; Panda, S.; Zhang, Q. Y.; Sun, F. Z.; Khan, D.; Ding, W. J.; Zou, J. X. Chem. Eng. J. 2021, 406, 126790. doi: 10.1016/j.cej.2020.126790  doi: 10.1016/j.cej.2020.126790

    16. [16]

      Ding, Z.; Li, Y. T.; Yang, H.; Lu, Y. F.; Tan, J.; Li, J. B.; Li, Q.; Chen, Y. A.; Shaw, L. L.; Pan, F. S. J. Magnes. Alloy. 2022, 10, 2946. doi: 10.1016/j.jma.2022.09.028  doi: 10.1016/j.jma.2022.09.028

    17. [17]

      Meng, Q. F.; Huang, Y. Q.; Ye, J. K.; Xia, G. L.; Wang, G. F.; Dong, L. X.; Yang, Z. X.; Yu, X. B. J. Alloy. Compd. 2021, 851, 156874. doi: 10.1016/j.jallcom.2020.156874  doi: 10.1016/j.jallcom.2020.156874

    18. [18]

      Verma, S. K.; Abu Shaz, M.; Yadav, T. P. Int. J. Hydrog. Energy 2023, 48, 21383. doi: 10.1016/j.ijhydene.2021.12.269  doi: 10.1016/j.ijhydene.2021.12.269

    19. [19]

      Zhang, H. H.; Kong, Q. Q.; Hu, S.; Zhang, D. F.; Chen, H. P.; Xu, C. C.; Li, B. J.; Fan, Y. P.; Liu, B. Z. ACS Sustain. Chem. Eng. 2022, 10, 363. doi: 10.1021/acssuschemeng.1c06444  doi: 10.1021/acssuschemeng.1c06444

    20. [20]

      Huang, T.; Huang, X.; Hu, C.; Wang, J.; Liu, H.; Ma, Z.; Zou, J.; Ding, W. Mater. Today Energy 2021, 19, 100613. doi: 10.1016/j.mtener.2020.100613  doi: 10.1016/j.mtener.2020.100613

    21. [21]

      Dan, L.; Hu, L.; Wang, H.; Zhu, M. Int. J. Hydrog. Energy 2019, 44, 29249. doi: 10.1016/j.ijhydene.2019.01.285  doi: 10.1016/j.ijhydene.2019.01.285

    22. [22]

      Yahya, M. S.; Ismail, M. J. Phys. Chem. C 2018, 122, 11222. doi: 10.1021/acs.jpcc.8b02162  doi: 10.1021/acs.jpcc.8b02162

    23. [23]

      L Duan, C. W.; Tian, Y. T.; Wang, X. Y.; Wu, J. H.; Liu, B. G.; Fu, D.; Zhang, Y. L.; Lv, W.; Hu, L. X.; Wang, F.; et al. Nano Energy 2023, 113, 108536. doi: 10.1016/j.nanoen.2023.108536  doi: 10.1016/j.nanoen.2023.108536

    24. [24]

      Duan, X. Q.; Li, G. X.; Zhang, W. H.; Luo, H.; Tang, H. M.; Xu, L.; Sheng, P.; Wang, X. H.; Huang, X. T.; Huang, C. K.; et al. Rare Metals 2023, 42, 1923. doi: 10.1007/s12598-022-02231-7  doi: 10.1007/s12598-022-02231-7

    25. [25]

      Liang, G.; Huot, J.; Boily, S.; Van, Neste. A.; Schulz, R. J. Alloy. Compd. 1999, 292, 247. doi: 10.1016/S0925-8388(99)00442-9  doi: 10.1016/S0925-8388(99)00442-9

    26. [26]

      Barkhordarian, G.; Klassen, T.; Bormann, R. J. Phys. Chem. B 2006, 110, 11020. doi: 10.1021/jp0541563  doi: 10.1021/jp0541563

    27. [27]

      Malka, I. E.; Pisarek, M.; Czujko, T.; Bystrzycki, J. Int. J. Hydrog. Energy 2011, 36, 12909. doi: 10.1016/j.ijhydene.2011.07.020  doi: 10.1016/j.ijhydene.2011.07.020

    28. [28]

      Tonus, F.; Fuster, V.; Urretavizcaya, G.; Castro, F. J.; Bobet, J. L. Int. J. Hydrog. Energy 2009, 34, 3404. doi: 10.1016/j.ijhydene.2009.02.030  doi: 10.1016/j.ijhydene.2009.02.030

    29. [29]

      Zhang, W.; Shen, N.; Han, S. M.; Chen, Y.; Xu, G.; Ke, D. D. Mater. Res. Bull. 2015, 72, 197. doi: 10.1016/j.materresbull.2015.07.042  doi: 10.1016/j.materresbull.2015.07.042

    30. [30]

      Yang, H. K. Acta Phys.-Chim. Sin. 2017, 33, 582.  doi: 10.3866/PKU.WHXB201611292

    31. [31]

      Horn, M. R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P.; et al. Energy Environ. Sci. 2021, 14, 1652. doi: 10.1039/d0ee03407j  doi: 10.1039/d0ee03407j

    32. [32]

      Bijelic, A.; Aureliano, M.; Rompel, A. Angew. Chem. Int. Ed. 2019, 58, 2980. doi: 10.1002/anie.201803868  doi: 10.1002/anie.201803868

    33. [33]

      Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Chem. Soc. Rev. 2014, 43, 4615. doi: 10.1039/c3cs60404g  doi: 10.1039/c3cs60404g

    34. [34]

      Chen, X. F.; Yang, A. B.; Wang, G. X.; Wei, M. F.; Liu, N.; Li, B.; Wu, L. X. Chem. Eng. J. 2022, 446, 137134. doi: 10.1016/j.cej.2022.137134  doi: 10.1016/j.cej.2022.137134

    35. [35]

      Gautam, J.; Liu, Y.; Gu, J.; Ma, Z. Y.; Zha, J. J.; Dahal, B.; Zhang, L. N.; Chishti, A. N.; Ni, L. B.; Diao, G. W.; et al. Adv. Funct. Mater. 2021, 31, 2106147. doi: 10.1002/adfm.202106147  doi: 10.1002/adfm.202106147

    36. [36]

      Yan, H. J.; Xie, Y.; Jiao, Y. Q.; Wu, A. P.; Tian, C. G.; Zhang, X. M.; Wang, L.; Fu, H. G. Adv. Mater. 2018, 30, 1704156. doi: 10.1002/adma.201704156  doi: 10.1002/adma.201704156

    37. [37]

      Yan, G.; Wu, C. X.; Tan, H. Q.; Feng, X. J.; Yan, L. K.; Zang, H. Y.; Li, Y. G. J. Mater. Chem. A 2017, 5, 765. doi: 10.1039/c6ta09052d  doi: 10.1039/c6ta09052d

    38. [38]

      Peng, Y. W.; Shan, C. S.; Wang, H. J.; Hong, L. Y.; Yao, S.; Wu, R. J.; Zhang, Z. M.; Lu, T. B. Adv. Energy Mater. 2019, 9, 1900597. doi: 10.1002/aenm.201900597  doi: 10.1002/aenm.201900597

    39. [39]

      Guo, X.; Wan, X.; Liu, Q.T.; Li, Y.C.; Li, W.W.; Shui, J. L. eScience 2022, 2, 304. doi: 10.1016/j.esci.2022.04.002  doi: 10.1016/j.esci.2022.04.002

    40. [40]

      Wang, S. S.; Yang, G. Y. Chem. Rev. 2015, 115, 4893. doi: 10.1021/cr500390v  doi: 10.1021/cr500390v

    41. [41]

      Wang, B.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Yang, Y.; Lu, Y. Z.; Liu, P. Chem. Eng. J. 2021, 412, 128690. doi: 10.1016/j.cej.2021.128690  doi: 10.1016/j.cej.2021.128690

    42. [42]

      Huang, T. Y.; Ji, P. Y.; Huang, J. J.; Yu, B.; Wu, X. M. Surf. Coat. Technol. 2021, 410, 126941. doi: 10.1016/j.surfcoat.2021.126941  doi: 10.1016/j.surfcoat.2021.126941

    43. [43]

      Wei, X.; Dai, H. B.; Li, Y. N.; Wang, T. Y.; Li, S. Int. J. Hydrog. Energy 2023, 48, 23866. doi: 10.1016/j.ijhydene.2023.03.225  doi: 10.1016/j.ijhydene.2023.03.225

    44. [44]

      Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H.; et al. Nano Res. 2020, 13, 2063. doi: 10.1007/s12274-020-2808-7  doi: 10.1007/s12274-020-2808-7

  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    5. [5]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

Metrics
  • PDF Downloads(0)
  • Abstract views(265)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return