Citation: Ran Yu,  Chen Hu,  Ruili Guo,  Ruonan Liu,  Lixing Xia,  Cenyu Yang,  Jianglan Shui. 杂多酸H3PW12O40高效催化MgH2储氢[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 230803. doi: 10.3866/PKU.WHXB202308032 shu

杂多酸H3PW12O40高效催化MgH2储氢

  • Corresponding author: Jianglan Shui, shuijianglan@buaa.edu.cn
  • Received Date: 18 August 2023
    Revised Date: 11 October 2023
    Accepted Date: 25 October 2023

    Fund Project: The project was supported by the State Grid Corporation of China (SGJSDK00KJJS2100323).

  • 本文研究了杂多酸对储氢材料的催化效应,通过机械球磨法制备MgH2-xH3PW12O40 (x = 7%、10%、13%,质量分数)复合物样品,与纯的球磨MgH2对比,展示了杂多酸H3PW12O40对MgH2储氢动力学的提升作用。其中,MgH2-10H3PW12O40的放氢活化能比纯MgH2降低了46.23 kJ·mol-1,可在250 ℃、1 min内吸收6.25%的氢,在300 ℃、15 min内释放6.54%的氢气,而同等温度下MgH2在30 min内仅释放1.2%氢。即使是在较低的温度100 ℃,MgH2-10H3PW12O40也可在1 h内吸收5%的氢,而MgH2只能吸收0.9%的氢。结构表征结果表明H3PW12O40分子在球磨和储氢过程中被转变为WO3和W簇,其作用一方面是催化Mg―H键、H―H键的断裂,另一方面是促进MgH2颗粒在球磨过程中细化并抑制其团聚长大。该研究开创了多酸分子在储氢领域的催化应用。
  • 加载中
    1. [1]

      (1) Dan, L.; Wang, H.; Yang, X. B.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. ACS Appl. Mater. Interfaces 2023, 15, 30372. doi: 10.1021/acsami.3c06033

    2. [2]

      (2) Zhang, X. L.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Mater. Today Nano 2020, 9, 100064. doi: 10.1016/j.mtnano.2019.100064

    3. [3]

    4. [4]

    5. [5]

      (5) Shao, Y. T.; Gao, H. G.; Tang, Q. K.; Liu, Y. N.; Liu, J. C.; Zhu, Y. F.; Zhang, J. G.; Li, L. Q.; Hu, X. H.; Ba, Z. X. Appl. Surf. Sci. 2022, 585, 152561. doi: 10.1016/j.apsusc.2022.152561

    6. [6]

      (6) Wang, P.; Tian, Z. H.; Wang, Z. X.; Xia, C. Q.; Yang, T.; Ou, X. L. Int. J. Hydrog. Energy 2021, 46, 27107. doi: 10.1016/j.ijhydene.2021.05.172

    7. [7]

      (7) Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Huang, Z. G.; Lu, Y. H.; Gao, M. X.; Pan, H. G. Energy Environ. Sci. 2021, 14, 2302. doi: 10.1039/d0ee03160g

    8. [8]

      (8) Xu, N.; Wang, K. W.; Zhu, Y. F.; Zhang, Y. Adv. Mater. 2023, 35, 2303173. doi: 10.1002/adma.202303173

    9. [9]

      (9) Liu, H. Z.; Lu, C. L.; Wang, X. C.; Xu, L.; Huang, X. T.; Wang, X. H.; Ning, H.; Lan, Z. Q.; Guo, J. ACS Appl. Mater. Interfaces 2021, 13, 13235. doi: 10.1021/acsami.0c23150

    10. [10]

      (10) Zhu, W.; Ren, L.; Lu, C.; Xu, H.; Sun, F. Z.; Ma, Z. W.; Zou, J. X. ACS Nano 2021, 15, 18494. doi: 10.1021/acsnano.1c08343

    11. [11]

      (11) Ren, L.; Zhu, W.; Zhang, Q. Y.; Lu, C.; Sun, F. Z.; Lin, X.; Zou, J. X. Chem. Eng. J. 2022, 434, 134701. doi: 10.1016/j.cej.2022.134701

    12. [12]

      (12) Ma, Z. W.; Zou, J. X.; Khan, D.; Zhu, W.; Hu, C. Z.; Zeng, X. Q.; Ding, W. J. J. Mater. Sci. Technol. 2019, 35, 2132. doi: 10.1016/j.jmst.2019.05.049

    13. [13]

      (13) Yuan, Z. R.; Li, S. H.; Wang, K. W.; Xu, N.; Sun, W. W.; Sun, L. T.; Cao, H. J.; Lin, H. J.; Zhu, Y. F.; Zhang, Y. Chem. Eng. J. 2022, 435, 135050. doi: 10.1016/j.cej.2022.135050

    14. [14]

      (14) Wang, K.; Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Gao, M. X.; Pan, H. G. Chem. Eng. J. 2021, 406, 126831. doi: 10.1016/j.cej.2020.126831

    15. [15]

      (15) Ma, Z. W.; Panda, S.; Zhang, Q. Y.; Sun, F. Z.; Khan, D.; Ding, W. J.; Zou, J. X. Chem. Eng. J. 2021, 406, 126790. doi: 10.1016/j.cej.2020.126790

    16. [16]

      (16) Ding, Z.; Li, Y. T.; Yang, H.; Lu, Y. F.; Tan, J.; Li, J. B.; Li, Q.; Chen, Y. A.; Shaw, L. L.; Pan, F. S. J. Magnes. Alloy. 2022, 10, 2946. doi: 10.1016/j.jma.2022.09.028

    17. [17]

      (17) Meng, Q. F.; Huang, Y. Q.; Ye, J. K.; Xia, G. L.; Wang, G. F.; Dong, L. X.; Yang, Z. X.; Yu, X. B. J. Alloy. Compd. 2021, 851, 156874. doi: 10.1016/j.jallcom.2020.156874

    18. [18]

      (18) Verma, S. K.; Abu Shaz, M.; Yadav, T. P. Int. J. Hydrog. Energy 2023, 48, 21383. doi: 10.1016/j.ijhydene.2021.12.269

    19. [19]

      (19) Zhang, H. H.; Kong, Q. Q.; Hu, S.; Zhang, D. F.; Chen, H. P.; Xu, C. C.; Li, B. J.; Fan, Y. P.; Liu, B. Z. ACS Sustain. Chem. Eng. 2022, 10, 363. doi: 10.1021/acssuschemeng.1c06444

    20. [20]

      (20) Huang, T.; Huang, X.; Hu, C.; Wang, J.; Liu, H.; Ma, Z.; Zou, J.; Ding, W. Mater. Today Energy 2021, 19, 100613. doi: 10.1016/j.mtener.2020.100613

    21. [21]

      (21) Dan, L.; Hu, L.; Wang, H.; Zhu, M. Int. J. Hydrog. Energy 2019, 44, 29249. doi: 10.1016/j.ijhydene.2019.01.285

    22. [22]

      (22) Yahya, M. S.; Ismail, M. J. Phys. Chem. C 2018, 122, 11222. doi: 10.1021/acs.jpcc.8b02162

    23. [23]

      (23) L Duan, C. W.; Tian, Y. T.; Wang, X. Y.; Wu, J. H.; Liu, B. G.; Fu, D.; Zhang, Y. L.; Lv, W.; Hu, L. X.; Wang, F.; et al. Nano Energy 2023, 113, 108536. doi: 10.1016/j.nanoen.2023.108536

    24. [24]

      (24) Duan, X. Q.; Li, G. X.; Zhang, W. H.; Luo, H.; Tang, H. M.; Xu, L.; Sheng, P.; Wang, X. H.; Huang, X. T.; Huang, C. K.; et al. Rare Metals 2023, 42, 1923. doi: 10.1007/s12598-022-02231-7

    25. [25]

      (25) Liang, G.; Huot, J.; Boily, S.; Van, Neste. A.; Schulz, R. J. Alloy. Compd. 1999, 292, 247. doi: 10.1016/S0925-8388(99)00442-9

    26. [26]

      (26) Barkhordarian, G.; Klassen, T.; Bormann, R. J. Phys. Chem. B 2006, 110, 11020. doi: 10.1021/jp0541563

    27. [27]

      (27) Malka, I. E.; Pisarek, M.; Czujko, T.; Bystrzycki, J. Int. J. Hydrog. Energy 2011, 36, 12909. doi: 10.1016/j.ijhydene.2011.07.020

    28. [28]

      (28) Tonus, F.; Fuster, V.; Urretavizcaya, G.; Castro, F. J.; Bobet, J. L. Int. J. Hydrog. Energy 2009, 34, 3404. doi: 10.1016/j.ijhydene.2009.02.030

    29. [29]

      (29) Zhang, W.; Shen, N.; Han, S. M.; Chen, Y.; Xu, G.; Ke, D. D. Mater. Res. Bull. 2015, 72, 197. doi: 10.1016/j.materresbull.2015.07.042

    30. [30]

    31. [31]

      (31) Horn, M. R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P.; et al. Energy Environ. Sci. 2021, 14, 1652. doi: 10.1039/d0ee03407j

    32. [32]

      (32) Bijelic, A.; Aureliano, M.; Rompel, A. Angew. Chem. Int. Ed. 2019, 58, 2980. doi: 10.1002/anie.201803868

    33. [33]

      (33) Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Chem. Soc. Rev. 2014, 43, 4615. doi: 10.1039/c3cs60404g

    34. [34]

      (34) Chen, X. F.; Yang, A. B.; Wang, G. X.; Wei, M. F.; Liu, N.; Li, B.; Wu, L. X. Chem. Eng. J. 2022, 446, 137134. doi: 10.1016/j.cej.2022.137134

    35. [35]

      (35) Gautam, J.; Liu, Y.; Gu, J.; Ma, Z. Y.; Zha, J. J.; Dahal, B.; Zhang, L. N.; Chishti, A. N.; Ni, L. B.; Diao, G. W.; et al. Adv. Funct. Mater. 2021, 31, 2106147. doi: 10.1002/adfm.202106147

    36. [36]

      (36) Yan, H. J.; Xie, Y.; Jiao, Y. Q.; Wu, A. P.; Tian, C. G.; Zhang, X. M.; Wang, L.; Fu, H. G. Adv. Mater. 2018, 30, 1704156. doi: 10.1002/adma.201704156

    37. [37]

      (37) Yan, G.; Wu, C. X.; Tan, H. Q.; Feng, X. J.; Yan, L. K.; Zang, H. Y.; Li, Y. G. J. Mater. Chem. A 2017, 5, 765. doi: 10.1039/c6ta09052d

    38. [38]

      (38) Peng, Y. W.; Shan, C. S.; Wang, H. J.; Hong, L. Y.; Yao, S.; Wu, R. J.; Zhang, Z. M.; Lu, T. B. Adv. Energy Mater. 2019, 9, 1900597. doi: 10.1002/aenm.201900597

    39. [39]

      (39) Guo, X.; Wan, X.; Liu, Q.T.; Li, Y.C.; Li, W.W.; Shui, J. L. eScience 2022, 2, 304. doi: 10.1016/j.esci.2022.04.002

    40. [40]

      (40) Wang, S. S.; Yang, G. Y. Chem. Rev. 2015, 115, 4893. doi: 10.1021/cr500390v

    41. [41]

      (41) Wang, B.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Zhang, C. H.; Yang, Y.; Lu, Y. Z.; Liu, P. Chem. Eng. J. 2021, 412, 128690. doi: 10.1016/j.cej.2021.128690

    42. [42]

      (42) Huang, T. Y.; Ji, P. Y.; Huang, J. J.; Yu, B.; Wu, X. M. Surf. Coat. Technol. 2021, 410, 126941. doi: 10.1016/j.surfcoat.2021.126941

    43. [43]

      (43) Wei, X.; Dai, H. B.; Li, Y. N.; Wang, T. Y.; Li, S. Int. J. Hydrog. Energy 2023, 48, 23866. doi: 10.1016/j.ijhydene.2023.03.225

    44. [44]

      (44) Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H.; et al. Nano Res. 2020, 13, 2063. doi: 10.1007/s12274-020-2808-7

  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    20. [20]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

Metrics
  • PDF Downloads(0)
  • Abstract views(192)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return