Citation: Dong Xiang, Kunzhen Li, Kanghua Miao, Ran Long, Yujie Xiong, Xiongwu Kang. Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230802. doi: 10.3866/PKU.WHXB202308027 shu

Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance

  • Corresponding author: Yujie Xiong, yjxiong@ustc.edu.cn Xiongwu Kang, esxkang@scut.edu.cn
  • Received Date: 15 August 2023
    Revised Date: 20 September 2023
    Accepted Date: 28 September 2023
    Available Online: 9 October 2023

    Fund Project: the National Natural Science Foundation of China U2032151the National Natural Science Foundation of China 21725102the National Natural Science Foundation of China 91961106

  • The electrochemical carbon dioxide reduction reaction (eCO2RR) can convert CO2 into valuable chemicals, achieving a carbon cycle. Copper-based catalysts have demonstrated a unique ability to produce C2+ products in eCO2RR, which is often limited by the scaling relationship of the reaction intermediates, complex reaction mechanism and competitive H2 evolution. Organic functionalization is a promising strategy for regulating the activity and selectivity of eCO2RR toward C2+ products. However, the mechanism behind such regulation of eCO2RR, especially at the molecular level, remains elusive. In this study, Cu nanoparticles were prepared and functionalized with a set of amine derivatives, including hexadecylamine (HDA), N-methylhexadecylamine (N-MHDA), hexadecyldimethylamine (HDDMA), and palmitamide (PMM). The impact of the molecular structure of the amine surfactants on the selectivity and activity toward eCO2RR was systematically explored through both experiments and theoretical calculations. X-ray photoelectron spectroscopy and density functional theory calculations revealed that HDA functionalization of the Cu catalyst surface resulted in negative charge transfer from amine molecules to Cu. ECO2RR was examined in a 1.0 mol∙L−1 KOH aqueous electrolyte. HDA functionalization of the Cu catalyst achieved the highest Faradaic efficiency (FE) of 73.5% for C2 products and 46.4% for C2H4, respectively. It also provided the highest C2 partial current density of 131.4 mA∙cm−2 at −0.9 Ⅴ vs. reversible hydrogen electrode (RHE) among these amine derivatives functionalized Cu catalysts. In contrast, the highest FE and partial current density for C2 products achieved with pristine Cu catalysts were only 27.0% and 50.5 mA·cm−2, respectively. Theoretical studies demonstrated that hydrogen bonding interactions of HDA with CO2 and eCO2RR intermediates enriched CO2, CO, and other intermediates, lowered the kinetic energy barrier of CO―CHO coupling and thereby promoted eCO2RR to C2 products. Replacing the H atoms of the amine group with methyl groups in N-MHDA and HDDMA resulted in dominant hydrogen evolution reaction (HER) in eCO2RR. PMM bonding with the Cu surface through a Cu―O bond, instead of Cu―N bonding as in HDA, N-MHDA and HDDMA, resulted in preferred ethanol production. In situ Raman spectroscopy indicated CO adsorption on Cu at atop sites for HDA-capped Cu catalysts, instead of bridge site CO adsorption on clean Cu surfaces, possibly due to the enriched CO in the former case. HDA also increased the local pH relative to pristine Cu catalysts. The Cu-HDA-based rechargeable Zn-CO2 battery exhibited a superior maximum power density of 6.48 mW∙cm–2 at a discharge current density of 16 mA∙cm–2 and remarkable rechargeable durability for 60 h, outperforming most of the reported catalysts in the literature. This work enhances CO2-C2 conversion by tuning the eCO2RR activity and selectivity of Cu-based materials, unravels the reaction mechanism at the molecular level, and provides new insights for promoting C2 products in eCO2RR through surface functionalization with organic molecules.
  • 加载中
    1. [1]

      Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575, 87. doi: 10.1038/s41586-019-1681-6  doi: 10.1038/s41586-019-1681-6

    2. [2]

      McGinnis, R. Joule 2020, 4, 509. doi: 10.1016/j.joule.2020.01.002  doi: 10.1016/j.joule.2020.01.002

    3. [3]

      Wang, J.; Zou, J.; Hu, X.; Ning, S.; Wang, X.; Kang, X.; Chen, S. J. Mater. Chem. A 2019, 7, 27514. doi: 10.1039/c9ta11140a  doi: 10.1039/c9ta11140a

    4. [4]

      Chen, K.; Cao, M.; Ni, G.; Chen, S.; Liao, H.; Zhu, L.; Li, H.; Fu, J.; Hu, J.; Cortés, E.; et al. Appl. Catal. B 2022, 306, 121093. doi: 10.1016/j.apcatb.2022.121093  doi: 10.1016/j.apcatb.2022.121093

    5. [5]

      Chen, K.; Cao, M.; Lin, Y.; Fu, J.; Liao, H.; Zhou, Y.; Li, H.; Qiu, X.; Hu, J.; Zheng, X.; et al. Adv. Funct. Mater. 2021, 32, 2111322. doi: 10.1002/adfm.202111322  doi: 10.1002/adfm.202111322

    6. [6]

      Peng, C.; Yang, S.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J.; Chen, Y.; Li, W.; Wang, Z.; Sham, T K.; et al. Adv. Mater. 2022, 34, e2204476. Doi: 10.1002/adma.202204476  doi: 10.1002/adma.202204476

    7. [7]

      Xiang, D.; Li, K.; Li, M.; Long, R.; Xiong, Y.; Yakhvarov, D.; Kang, X. Mater. Today Phys. 2023, 33, 101045. doi: 10.1016/j.mtphys.2023.101045  doi: 10.1016/j.mtphys.2023.101045

    8. [8]

      Wang, H. Nano Res. 2021, 15, 2834. doi: 10.1007/s12274-021-3984-9  doi: 10.1007/s12274-021-3984-9

    9. [9]

      Zang, D.; Gao, X. J.; Li, L.; Wei, Y.; Wang, H. Nano Res. 2022, 15, 8872. doi: 10.1007/s12274-022-4698-3  doi: 10.1007/s12274-022-4698-3

    10. [10]

      Wang, Q.; Liu, K.; Hu, K.; Cai, C.; Li, H.; Li, H.; Herran, M.; Lu, Y. -R.; Chan, T. -S.; Ma, C.; et al. Nat. Commun. 2022, 13, 6082. doi: 10.1038/s41467-022-33692-0  doi: 10.1038/s41467-022-33692-0

    11. [11]

      Chen, S.; Li, X.; Kao, C. W.; Luo, T.; Chen, K.; Fu, J.; Ma, C.; Li, H.; Li, M.; Chan, T. S.; et al. Angew. Chem. Int. Ed. 2022, 61, e202206233. doi: 10.1002/anie.202206233  doi: 10.1002/anie.202206233

    12. [12]

      Wang, J.; Ning, S.; Luo, M.; Xiang, D.; Chen, W.; Kang, X.; Jiang, Z.; Chen, S. Appl. Catal. B 2021, 288, 119979. doi: 10.1016/j.apcatb.2021.119979  doi: 10.1016/j.apcatb.2021.119979

    13. [13]

      Han, L.; Tian, B.; Gao, X.; Zhong, Y.; Wang, S.; Song, S.; Wang, Z.; Zhang, Y.; Kuang, Y.; Sun, X. SmartMat 2022, 3, 142. doi: 10.1002/smm2.1082  doi: 10.1002/smm2.1082

    14. [14]

      Wang, Q.; Liu, K.; Fu, J.; Cai, C.; Li, H.; Long, Y.; Chen, S.; Liu, B.; Li, H.; Li, W.; et al. Angew. Chem. Int. Ed. 2021, 60, 25241. doi: 10.1002/anie.202109329  doi: 10.1002/anie.202109329

    15. [15]

      Wang, Y.; Liu, J.; Zheng, G. Adv. Mater. 2021, 33, e2005798. doi: 10.1002/adma.202005798  doi: 10.1002/adma.202005798

    16. [16]

      Yang, D.; Wang, X. SmartMat 2022, 3, 54. doi: 10.1002/smm2.1102  doi: 10.1002/smm2.1102

    17. [17]

      Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; et al. Nat. Chem. 2018, 10, 974. doi: 10.1038/s41557-018-0092-x  doi: 10.1038/s41557-018-0092-x

    18. [18]

      Li, Y. C.; Wang, Z.; Yuan, T.; Nam, D. H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F.; de Arquer, F. P. G.; et al. J. Am. Chem. Soc. 2019, 141, 8584. doi: 10.1021/jacs.9b02945  doi: 10.1021/jacs.9b02945

    19. [19]

      He, C.; Duan, D.; Low, J.; Bai, Y.; Jiang, Y.; Wang, X.; Chen, S.; Long, R.; Song, L.; Xiong, Y. Nano Res. 2023, 16, 4494. doi: 10.1007/s12274-021-3532-7  doi: 10.1007/s12274-021-3532-7

    20. [20]

      Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Joule 2018, 2, 2551. doi: 10.1016/j.joule.2018.09.021  doi: 10.1016/j.joule.2018.09.021

    21. [21]

      Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Proc. Natl. Acad. Sci. 2017, 114, 5918. doi: 10.1073/pnas.1618935114  doi: 10.1073/pnas.1618935114

    22. [22]

      Zhu, C.; Zhang, Z.; Zhong, L.; Zhao, S.; Shi, G.; Wu, B.; Gu, H.; Wu, J.; Gao, X.; Liu, K.; et al. J. Energy Chem. 2022, 70, 382. doi: 10.1016/j.jechem.2022.02.027  doi: 10.1016/j.jechem.2022.02.027

    23. [23]

      Zhou, Y.; Liang, Y.; Fu, J.; Liu, K.; Chen, Q.; Wang, X.; Li, H.; Zhu, L.; Hu, J.; Pan, H.; et al. Nano Lett. 2022, 22, 1963. doi: 10.1021/acs.nanolett.1c04653  doi: 10.1021/acs.nanolett.1c04653

    24. [24]

      Yang, B.; Liu, K.; Li, H.; Liu, C.; Fu, J.; Li, H.; Huang, J. E.; Ou, P.; Alkayyali, T.; Cai, C.; et al. J. Am. Chem. Soc. 2022, 144, 3039. doi: 10.1021/jacs.1c11253  doi: 10.1021/jacs.1c11253

    25. [25]

      Li, F.; Thevenon, A.; Rosas-Hernandez, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2  doi: 10.1038/s41586-019-1782-2

    26. [26]

      Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2020, 4, 20. doi: 10.1038/s41929-020-00547-0  doi: 10.1038/s41929-020-00547-0

    27. [27]

      Lin, J.; Zhou, Y.; Wen, J.; Si, W.; Gao, H.; Wang, G.; Kang, X. J. Energy Chem. 2022, 75, 164. doi: 10.1016/j.jechem.2022.08.014  doi: 10.1016/j.jechem.2022.08.014

    28. [28]

      Li, F.; Li, Y. C.; Wang, Z.; Li, J.; Nam, D. -H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S. -F.; et al. Nat. Catal. 2019, 3, 75. doi: 10.1038/s41929-019-0383-7  doi: 10.1038/s41929-019-0383-7

    29. [29]

      Checco, A.; Hofmann, T.; DiMasi, E.; Black, C. T.; Ocko, B. M. Nano Lett. 2010, 10, 1354. doi: 10.1021/nl9042246  doi: 10.1021/nl9042246

    30. [30]

      Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Nat. Mater. 2019, 18, 1222. doi: 10.1038/s41563-019-0445-x  doi: 10.1038/s41563-019-0445-x

    31. [31]

      Xie, M. S.; Xia, B. Y.; Li, Y.; Yan, Y.; Yang, Y.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang, X. Energy Environ. Sci. 2016, 9, 1687. doi: 10.1039/c5ee03694a  doi: 10.1039/c5ee03694a

    32. [32]

      Zhao, H.; Hu, J.; Wang, J.; Zhou, L.; Liu, H. Acta Phys. -Chim. Sin. 2007, 23, 801.  doi: 10.1016/S1872-1508(07)60046-1

    33. [33]

      Zhao, Y.; Wang, C.; Liu, Y.; MacFarlane, D. R.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1801400. doi: 10.1002/aenm.201801400  doi: 10.1002/aenm.201801400

    34. [34]

      Wei, X.; Yin, Z.; Lyu, K.; Li, Z.; Gong, J.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. ACS Catal. 2020, 10, 4103. doi: 10.1021/acscatal.0c00049  doi: 10.1021/acscatal.0c00049

    35. [35]

      Lyu, Z.; Zhu, S.; Xie, M.; Zhang, Y.; Chen, Z.; Chen, R.; Tian, M.; Chi, M.; Shao, M.; Xia, Y. Angew. Chem. Int. Ed. 2021, 60, 1909. doi: 10.1002/anie.202011956  doi: 10.1002/anie.202011956

    36. [36]

      Xie, Y.; Chen, Y. J. Mater. Sci. 2021, 56, 10135. doi: 10.1007/s10853-021-05920-3  doi: 10.1007/s10853-021-05920-3

    37. [37]

      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705  doi: 10.1021/acs.chemrev.8b00705

    38. [38]

      Kim, J. -Y.; Hong, D.; Lee, J. -C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J.; et al. Nat. Commun. 2021, 12, 3765. doi: 10.1038/s41467-021-24105-9  doi: 10.1038/s41467-021-24105-9

    39. [39]

      Todorova, T. K.; Schreiber, M. W.; Fontecave, M. ACS Catal. 2019, 10, 1754. doi: 10.1021/acscatal.9b04746  doi: 10.1021/acscatal.9b04746

    40. [40]

      Li, H.; Li, Y.; Koper, M. T. M.; Calle-Vallejo, F. J. Am. Chem. Soc. 2014, 136, 15694. doi: 10.1021/ja508649p  doi: 10.1021/ja508649p

    41. [41]

      Kong, X.; Zhao, J.; Ke, J.; Wang, C.; Li, S.; Si, R.; Liu, B.; Zeng, J.; Geng, Z. Nano Lett. 2022, 22, 3801. doi: 10.1021/acs.nanolett.2c00945  doi: 10.1021/acs.nanolett.2c00945

    42. [42]

      Gao, J.; Zhang, H.; Guo, X.; Luo, J.; Zakeeruddin, S. M.; Ren, D.; Gratzel, M. J. Am. Chem. Soc. 2019, 141, 18704. doi: 10.1021/jacs.9b07415  doi: 10.1021/jacs.9b07415

    43. [43]

      Pan, Z.; Wang, K.; Ye, K.; Wang, Y.; Su, H. -Y.; Hu, B.; Xiao, J.; Yu, T.; Wang, Y.; Song, S. ACS Catal. 2020, 10, 3871. doi: 10.1021/acscatal.9b05115  doi: 10.1021/acscatal.9b05115

    44. [44]

      Moradzaman, M.; Mul, G. ChemElectroChem 2021, 8, 1478. doi: 10.1002/celc.202001598  doi: 10.1002/celc.202001598

    45. [45]

      Zhang, G.; Zhao, Z. J.; Cheng, D.; Li, H.; Yu, J.; Wang, Q.; Gao, H.; Guo, J.; Wang, H.; Ozin, G. A.; et al. Nat. Commun. 2021, 12, 5745. doi: 10.1038/s41467-021-26053-w  doi: 10.1038/s41467-021-26053-w

    46. [46]

      Zhang, Z.; Melo, L.; Jansonius, R. P.; Habibzadeh, F.; Grant, E. R.; Berlinguette, C. P. ACS Energy Lett. 2020, 5, 3101. doi: 10.1021/acsenergylett.0c01606  doi: 10.1021/acsenergylett.0c01606

    47. [47]

      Zhu, S.; Jiang, B.; Cai, W. B.; Shao, M. J. Am. Chem. Soc. 2017, 139, 15664. doi: 10.1021/jacs.7b10462  doi: 10.1021/jacs.7b10462

    48. [48]

      Jiang, S.; Klingan, K.; Pasquini, C.; Dau, H. J. Chem. Phys. 2019, 150, 041718. doi: 10.1063/1.5054109  doi: 10.1063/1.5054109

    49. [49]

      Kaur, S.; Kumar, M.; Gupta, D.; Mohanty, P. P.; Das, T.; Chakraborty, S.; Ahuja, R.; Nagaiah, T. C. Nano Energy 2023, 109, 108242. doi: 10.1016/j.nanoen.2023.108242  doi: 10.1016/j.nanoen.2023.108242

    50. [50]

      Gong, S.; Wang, W.; Zhang, C.; Zhu, M.; Lu, R.; Ye, J.; Yang, H.; Wu, C.; Liu, J.; Rao, D.; et al. Adv. Funct. Mater. 2022, 32, 2110649. doi: 10.1002/adfm.202110649  doi: 10.1002/adfm.202110649

    51. [51]

      Ni, W.; Liu, Z.; Zhang, Y.; Ma, C.; Deng, H.; Zhang, S.; Wang, S. Adv. Mater. 2021, 33, e2003238. doi: 10.1002/adma.202003238  doi: 10.1002/adma.202003238

    52. [52]

      Wang, F.; Wang, G.; Deng, P.; Chen, Y.; Li, J.; Wu, D.; Wang, Z.; Wang, C.; Hua, Y.; Tian, X. Small 2023, 19, e2301128. doi: 10.1002/smll.202301128  doi: 10.1002/smll.202301128

    53. [53]

      Zeng, Z.; Gan, L. Y.; Bin Yang, H.; Su, X.; Gao, J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J.; Cai, W.; et al. Nat. Commun. 2021, 12, 4088. doi: 10.1038/s41467-021-24052-5  doi: 10.1038/s41467-021-24052-5

    54. [54]

      Zheng, W.; Wang, Y.; Shuai, L.; Wang, X.; He, F.; Lei, C.; Li, Z.; Yang, B.; Lei, L.; Yuan, C.; et al. Adv. Funct. Mater. 2021, 31, 2008146. doi: 10.1002/adfm.202008146  doi: 10.1002/adfm.202008146

    55. [55]

      Li, J.; Chen, L. -W.; Hao, Y. -C.; Yuan, M.; Lv, J.; Dong, A.; Li, S.; Gu, H.; Yin, A. -X.; Chen, W.; et al. Chem. Eng. J. 2023, 461, 141865. doi: 10.1016/j.cej.2023.141865  doi: 10.1016/j.cej.2023.141865

    56. [56]

      Xu, A.; Chen, X.; Wei, D.; Chu, B.; Yu, M.; Yin, X.; Xu, J. Small 2023, 19, 2302253. doi: 10.1002/smll.202302253  doi: 10.1002/smll.202302253

    57. [57]

      Gao, S.; Jin, M.; Sun, J.; Liu, X.; Zhang, S.; Li, H.; Luo, J.; Sun, X. J. Mater. Chem. A 2021, 9, 21024. doi: 10.1039/D1TA04360A  doi: 10.1039/D1TA04360A

  • 加载中
    1. [1]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    2. [2]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    3. [3]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    4. [4]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    11. [11]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    12. [12]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    18. [18]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(2)
  • Abstract views(278)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return