Citation: Shi-Yu Lu, Wenzhao Dou, Jun Zhang, Ling Wang, Chunjie Wu, Huan Yi, Rong Wang, Meng Jin. Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230802. doi: 10.3866/PKU.WHXB202308024 shu

Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production

  • Corresponding author: Shi-Yu Lu, lushiyu@cqust.edu.cn Rong Wang, rongwang@cqust.edu.cn Meng Jin, jinmeng@cqust.edu.cn
  • Received Date: 15 August 2023
    Revised Date: 26 September 2023
    Accepted Date: 27 September 2023
    Available Online: 11 October 2023

    Fund Project: the Young Elite Scientists Sponsorship Program by CAST 2021QNRC001Natural Science Foundation of Chongqing CSTB2022NSCQ-MSX0557Natural Science Foundation of Chongqing cstc2020jcyj-msxmX0670Natural Science Foundation of Chongqing 2023NSCQ-MSX3724Talent Introduction of Chongqing University of Science and Technology ckrc2021050Talent Introduction of Chongqing University of Science and Technology ckrc20230401Talent Introduction of Chongqing University of Science and Technology ckrc2021053Science and Technology Research Program of Chongqing Municipal Education Commission KJQN202001525Science and Technology Research Program of Chongqing Municipal Education Commission KJQN202201532Science and Technology Research Program of Chongqing Municipal Education Commission KJQN202301542National Natural Science Foundation of China 22109016Open Research Fund of CNMGE Platform & NSCC-TJ CNMGE2023016

  • Large-scale hydrogen production through the electrochemical water splitting technique is an important way for addressing the impending energy and environmental crisis. This approach requires highly efficient and robust bifunctional cost-effective electrocatalysts. Engineering amorphous and crystalline phases within electrocatalysts is a key method for enhancing the catalytic kinetics of water electrolysis, due to their unique physicochemical properties. The interface and amorphous regions constructed within heterostructures serve as highly active sites that play a crucial role in electrochemical reactions. On the other hand, highly crystalline regions within the heterostructure demonstrated high tolerance in harsh environments, which helps to improve the stability of the overall catalyst. However, effectively tailoring the crystalline state of catalysts within a microenvironment presents a significant challenge. Herein, construction of a novel CrS/CoS2 heterojunction with precise control over crystallinity were presented. The optimized amorphous CrS/highly crystalline CoS2 heterojunction (A-CrS/HC-CoS2) exhibits a low overpotential of 90.6 mV (at 10 mA∙cm−2) and 370.5 mV (at 50 mA∙cm−2) for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations reveal that charge redistribution induces variations in the d-band center value at the A-CrS/HC-CoS2 heterostructure interface, enhancing the catalytic activity for both HER and OER. The displacement of the d-band due to charge redistribution in the Cr―S―Co bond within A-CrS/HC-CoS2 contributes to the modulation of the adsorption capacity of H* and OOH* intermediates on the catalyst surface, thereby optimizing the rate-determining step for HER and OER. The amorphous/highly crystalline structure also facilitates the structural and compositional evolution of A-CrS/HC-CoS2 during water electrolysis, ensuring excellent stability. As a bifunctional catalyst in a methanol-assisted energy-saving hydrogen production device, A-CrS/HC-CoS2 operates at a low cell voltage of 1.51 Ⅴ to deliver a current density of 10 mA∙cm−2, making it a promising candidate among metal-based catalysts. The well-preserved amorphous/crystalline heterointerfaces in A-CrS/HC-CoS2, along with favorable changes in surface composition, contribute to robust HER and OER stability. This work provides valuable insights into the manipulation of catalytic activity through crystalline control within amorphous/crystalline heterojunctions for bifunctional transition metal compound electrocatalysts.
  • 加载中
    1. [1]

      Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136 (28), 10053. doi: 10.1021/ja504099w  doi: 10.1021/ja504099w

    2. [2]

      Huang, G.; Xiao, Z.; Chen, R.; Wang, S. ACS Sustain. Chem. Eng. 2018, 6 (12), 15954. doi: 10.1021/acssuschemeng.8b04397  doi: 10.1021/acssuschemeng.8b04397

    3. [3]

      Liu, Z.; Zhao, L.; Liu, Y.; Gao, Z.; Yuan, S.; Li, X.; Li, N.; Miao, S. Appl. Catal. B-Environ. 2019, 246, 296. doi: 10.1016/j.apcatb.2019.01.062  doi: 10.1016/j.apcatb.2019.01.062

    4. [4]

      Lu, S. -Y.; Jin, M.; Zhang, Y.; Niu, Y. -B.; Gao, J. -C.; Li, C. M. Adv. Energ. Mater. 2018, 8 (11), 1702545. doi: 10.1002/aenm.201702545  doi: 10.1002/aenm.201702545

    5. [5]

      Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang, Z.; Shen, Y.; Tian, X. Acta Phys. -Chim. Sin. 2023, 39 (8), 2210039.  doi: 10.3866/PKU.WHXB202210039

    6. [6]

      Yu, L.; Huang, X.; Zhang, Q.; Zhang, Z. Acta Phys. -Chim. Sin. 2022, 38 (6), 2109020.  doi: 10.3866/PKU.WHXB202109020

    7. [7]

      Tang, S.; Wang, C.; Pu, X.; Gu, X.; Chen, Z. Acta Phys. -Chim. Sin. 2023, 39 (8), 2212037.  doi: 10.3866/PKU.WHXB202212037

    8. [8]

      Sun, K.; Zhao, Y.; Yin, J.; Jin, J.; Liu, H.; Xi, P. Acta Phys. -Chim. Sin. 2022, 38 (6), 2107005.  doi: 10.3866/PKU.WHXB202107005

    9. [9]

      Feng, L. L.; Yu, G.; Wu, Y.; Li, G. D.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. J. Am. Chem. Soc. 2015, 137 (44), 14023. doi: 10.1021/jacs.5b08186  doi: 10.1021/jacs.5b08186

    10. [10]

      Gao, Z.; Li, M.; Wang, J.; Zhu, J.; Zhao, X.; Huang, H.; Zhang, J.; Wu, Y.; Fu, Y.; Wang, X. Carbon 2018, 139, 369. doi: 10.1016/j.carbon.2018.07.006  doi: 10.1016/j.carbon.2018.07.006

    11. [11]

      Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Adv. Energy Mater. 2020, 10 (11), 1903120. doi: 10.1002/aenm.201903120  doi: 10.1002/aenm.201903120

    12. [12]

      Zhang, L.; Zhang, J.; Fang, J.; Wang, X. Y.; Yin, L.; Zhu, W.; Zhuang, Z. Small 2021, 17 (28), 2100832. doi: 10.1002/smll.202100832  doi: 10.1002/smll.202100832

    13. [13]

      Wang, S. Acta Phys. -Chim. Sin. 2021, 37 (7), 2011013.  doi: 10.3866/PKU.WHXB202011013

    14. [14]

      Guo, Y.; Gan, L.; Shang, C.; Wang, E.; Wang, J. Advan. Funct. Mater. 2017, 27 (5), 1602699. doi: 10.1002/adfm.201602699  doi: 10.1002/adfm.201602699

    15. [15]

      Zhu, Y.; Song, L.; Song, N.; Li, M.; Wang, C.; Lu, X. ACS Sustain. Chem. Eng. 2019, 7 (3), 2899. doi: 10.1021/acssuschemeng.8b05462  doi: 10.1021/acssuschemeng.8b05462

    16. [16]

      Chen, B.; Wang, J.; He, S.; Shen, Y.; Huang, S.; Zhou, H. J. Alloy. Compd. 2023, 948, 169655. doi: 10.1016/j.jallcom.2023.169655  doi: 10.1016/j.jallcom.2023.169655

    17. [17]

      Lu, S. -Y.; Li, S.; Jin, M.; Gao, J.; Zhang, Y. Appl. Catal. B-Environ. 2020, 267, 118675. doi: 10.1016/j.apcatb.2020.118675  doi: 10.1016/j.apcatb.2020.118675

    18. [18]

      Peng, W.; Wang, Z.; Lu, R.; Li, Q.; Wang, Z.; Zhao, Y.; Xu, L.; Mai, L. Chem. Eng. J. 2023, 457, 141173. doi: 10.1016/j.cej.2022.141173  doi: 10.1016/j.cej.2022.141173

    19. [19]

      Han, L.; Wu, Y.; Zhao, B.; Meng, W.; Zhang, D.; Li, M.; Pang, R.; Zhang, Y.; Cao, A.; Shang, Y. ACS Appl. Mater. Interfaces 2022, 14 (27), 30847. doi: 10.1021/acsami.2c06122  doi: 10.1021/acsami.2c06122

    20. [20]

      Xu, H.; Zhang, W. D.; Yao, Y.; Yang, J.; Liu, J.; Gu, Z. G.; Yan, X. J. Colloid Interface Sci. 2022, 629, 501. doi: 10.1016/j.jcis.2022.09.072  doi: 10.1016/j.jcis.2022.09.072

    21. [21]

      Jin, M.; Lu, S. -Y.; Ma, L.; Gan, M. -Y.; Lei, Y.; Zhang, X. -L.; Fu, G.; Yang, P. -S.; Yan, M. -F. J. Power Sources 2017, 341, 294. doi: 10.1016/j.jpowsour.2016.12.013  doi: 10.1016/j.jpowsour.2016.12.013

    22. [22]

      Zhang, J.; Xiao, B.; Liu, X.; Liu, P.; Xi, P.; Xiao, W.; Ding, J.; Gao, D.; Xue, D. J. Mater. Chem. A 2017, 5 (33), 17601. doi: 10.1039/c7ta05433e  doi: 10.1039/c7ta05433e

    23. [23]

      Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. ACS Energy Lett. 2018, 3 (4), 779. doi: 10.1021/acsenergylett.8b00066  doi: 10.1021/acsenergylett.8b00066

    24. [24]

      Xie, M.; Li, C.; Zhang, S.; Zhang, Z.; Li, Y.; Chen, X. B.; Shi, Z.; Feng, S. Small 2023, 2301436. doi: 10.1002/smll.202301436  doi: 10.1002/smll.202301436

    25. [25]

      Yang, L.; Huang, L.; Yao, Y.; Jiao, L. Appl. Catal. B-Environ. 2021, 282, 119584. doi: 10.1016/j.apcatb.2020.119584  doi: 10.1016/j.apcatb.2020.119584

    26. [26]

      Han, K. H.; Seok, J. Y.; Kim, I. H.; Woo, K.; Kim, J. H.; Yang, G. G.; Choi, H. J.; Kwon, S.; Jung, E. I.; Kim, S. O. Adv. Mater. 2022, 34 (34), 2203992. doi: 10.1002/adma.202203992  doi: 10.1002/adma.202203992

    27. [27]

      Shifa, T. A.; Gradone, A.; Yusupov, K.; Ibrahim, K. B.; Jugovac, M.; Sheverdyaeva, P. M.; Rosen, J.; Morandi, V.; Moras, P.; Vomiero, A. Chem. Eng. J. 2023, 453, 139781. doi: 10.1016/j.cej.2022.139781  doi: 10.1016/j.cej.2022.139781

    28. [28]

      Sun, F.; Hong, A.; Zhou, W.; Yuan, C.; Zhang, W. Mater. Today 2020, 25, 101707. doi: 10.1016/j.mtcomm.2020.101707  doi: 10.1016/j.mtcomm.2020.101707

    29. [29]

      Fang, B.; He, N.; Li, Y.; Lu, T.; He, P.; Chen, X.; Zhao, Z.; Pan, L. Electrochim. Acta 2023, 448, 142187. doi: 10.1016/j.electacta.2023.142187  doi: 10.1016/j.electacta.2023.142187

    30. [30]

      Wu, Q.; Liu, L.; Guo, H.; Li, L.; Tai, X. J. Alloy. Compd. 2020, 821, 153219. doi: 10.1016/j.jallcom.2019.153219  doi: 10.1016/j.jallcom.2019.153219

    31. [31]

      Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. New J. Chem. 2017, 41 (12), 4754. doi: 10.1039/c7nj00326a  doi: 10.1039/c7nj00326a

    32. [32]

      Hao, J.; Yang, W.; Peng, Z.; Zhang, C.; Huang, Z.; Shi, W. ACS Catal. 2017, 7, 4214. doi: 10.1021/acscatal.7b00792  doi: 10.1021/acscatal.7b00792

    33. [33]

      Jin, M.; Wang, R.; Jia, B.; Zhang, J.; Liu, H.; Lu, S. -Y. Appl. Surf. Sci. 2022, 591, 153201. doi: 10.1016/j.apsusc.2022.153201  doi: 10.1016/j.apsusc.2022.153201

    34. [34]

      Wang, P.; Bai, P.; Mu, J.; Jing, J.; Wang, L.; Su, Y. J. Colloid Interface Sci. 2023, 642, 1. doi: 10.1016/j.jcis.2023.03.133  doi: 10.1016/j.jcis.2023.03.133

    35. [35]

      Cao, X.; Wang, T.; Qin, H.; Lin, G.; Zhao, L.; Jiao, L. Nano Res. 2022, 16 (3), 3665. doi: 10.1007/s12274-022-4635-5  doi: 10.1007/s12274-022-4635-5

    36. [36]

      Cao, F.; Li, M.; Hu, Y.; Wu, X.; Li, X.; Meng, X.; Zhang, P.; Li, S.; Qin, G. Chem. Eng. J. 2023, 472, 144970. doi: 10.1016/j.cej.2023.144970  doi: 10.1016/j.cej.2023.144970

    37. [37]

      Zhang, S. -H.; Wu, M. -F.; Tang, T. -T.; Xing, Q. -J.; Peng, C. -Q.; Li, F.; Liu, H.; Luo, X. -B.; Zou, J. -P.; Min, X. -B.; et al. Chem. Eng. J. 2018, 335, 945. doi: 10.1016/j.cej.2017.10.182  doi: 10.1016/j.cej.2017.10.182

    38. [38]

      Wu, Y.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C.; Liu, M.; Lu, X. Adv. Mater. 2019, 31 (15), 1900178. doi: 10.1002/adma.201900178  doi: 10.1002/adma.201900178

    39. [39]

      Dong, C.; Yuan, X.; Wang, X.; Liu, X.; Dong, W.; Wang, R.; Duan, Y.; Huang, F. J. Mater. Chem. A 2016, 4 (29), 11292. doi: 10.1039/c6ta04052g  doi: 10.1039/c6ta04052g

    40. [40]

      Liu, D.; Tong, R.; Qu, Y.; Zhu, Q.; Zhong, X.; Fang, M.; Ho Lo, K.; Zhang, F.; Ye, Y.; Tang, Y.; et al. Appl. Catal. B-Environ. 2020, 267, 118721. doi: 10.1016/j.apcatb.2020.118721  doi: 10.1016/j.apcatb.2020.118721

    41. [41]

      Zhu, L.; Susac, D.; Teo, M.; Wong, K.; Wong, P.; Parsons, R.; Bizzotto, D.; Mitchell, K.; Campbell, S. J. Catal. 2008, 258 (1), 235. doi: 10.1016/j.jcat.2008.06.016  doi: 10.1016/j.jcat.2008.06.016

    42. [42]

      Jin, M.; Lu, S. -Y.; Zhong, X.; Liu, H.; Liu, H.; Gan, M.; Ma, L. ACS Sustain. Chem. Eng. 2020, 8 (4), 1933. doi: 10.1021/acssuschemeng.9b06329  doi: 10.1021/acssuschemeng.9b06329

    43. [43]

      Lu, S. Y.; Wang, J.; Wang, X.; Yang, W.; Jin, M.; Xu, L.; Yang, H.; Ge, X.; Shang, C.; Chao, Y.; et al. Small Methods 2022, 6 (6), 2101551. doi: 10.1002/smtd.202101551  doi: 10.1002/smtd.202101551

    44. [44]

      Fu, T.; Li, Z. Chem. Eng. Sci. 2015, 135, 3. doi: 10.1016/j.ces.2015.03.007  doi: 10.1016/j.ces.2015.03.007

  • 加载中
    1. [1]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    2. [2]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    7. [7]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    8. [8]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    10. [10]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    11. [11]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    12. [12]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    13. [13]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    14. [14]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    20. [20]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

Metrics
  • PDF Downloads(1)
  • Abstract views(389)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return