Citation: Zehao Zhang, Zheng Wang, Haibo Li. Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230802. doi: 10.3866/PKU.WHXB202308020 shu

Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination

  • Corresponding author: Zheng Wang, wzheng@nxu.edu.cn Haibo Li, lihaibo@nxu.edu.cn
  • Received Date: 15 August 2023
    Revised Date: 10 September 2023
    Accepted Date: 12 September 2023
    Available Online: 18 September 2023

    Fund Project: the National Natural Science Foundation of China 22272085the National Natural Science Foundation of China 22169015

  • Capacitive deionization (CDI) has been considered one of the most promising desalination technologies in the past decade. However, it faces challenges related to low salt removal efficiency in high salinity water. To address this issue, ion intercalation materials have been developed as anodes for CDI due to their abundant electroactive sites capable of accommodating large salty ions. V2O3, a typical intercalation host, has garnered significant attention in the field of metal-ion batteries and appears to be a suitable candidate for CDI. Nevertheless, structural instability and slow ion diffusion, resulting from large volume expansion and low intrinsic electron/ion conductivity, present obstacles to its commercial application. Given their high specific surface area, abundant ion diffusion channels, and excellent conductivity, derivatives of metal-organic frameworks (MOFs) have become highly attractive in the electrochemical research community. In this study, 2D V2O3@porous carbon (V2O3@PC) nanosheets were prepared using homologous metal V2CFx MXene as a precursor for CDI anodes, aiming to enhance salt removal capacity. The structure, crystallinity, wettability, graphitization degree, and electrochemical behavior of V2O3@PC were investigated by adjusting carbonization temperatures. The findings reveal that V2O3@PC exhibits a typical 2D nanosheet structure, with highly crystalline V2O3 nanoparticles securely enveloped by graphitized PC. The electronic coupling between PC and V2O3 ensures high electron conductivity. This unique structure demonstrates excellent interfacial wettability and high conductivity, facilitating electrolyte penetration, accelerating interfacial charge transfer, and enhancing salt ion diffusion. Additionally, the PC effectively restricts the volume expansion of V2O3. Moreover, reversible electrochemical conversion between V3+/V4+ contributes to Na+ storage, aiding the desalination/regeneration process. Notably, X-ray diffraction (XRD) analysis revealed the preferential growth of V2O3 crystal planes at different carbonization temperatures. Consequently, the optimized V2O3@PC-850 electrode exhibits remarkable desalination performance, including a desalination capacity of 2.20 mmol·g−1, desalination rate of 0.13 mmol·g−1·min−1, water recovery rate of 62%, and energy consumption of 24.0 Wh·m−3 at 1.2 V in 1000 μS·cm−1 NaCl solutions. Compared to V2O3@PC-750 and V2O3@PC-950, the superior performance of V2O3@PC-850 can be attributed to its enhanced interfacial wettability, which promotes charge transfer and improves salt ion diffusion kinetics. Additionally, the preferential growth of the (110) crystal plane in V2O3@PC-850 enhances ion storage capacity, contributing to its superior desalination performance. This study offers new insights into the synergistic enhancement of electrochemical ion removal characteristics through the utilization of metal oxide and carbon nanomaterials.
  • 加载中
    1. [1]

      Jin, Z.; Zhang, M.; Mei, H.; Liu, H.; Pan, L.; Yan, Y.; Cheng, L.; Zhang, L. Carbon 2023, 202, 159. doi: 10.1016/j.carbon.2022.11.035  doi: 10.1016/j.carbon.2022.11.035

    2. [2]

      Qiu, X.; Kong, H.; Li, Y.; Wang, Q.; Wang, Y. ACS Appl. Mater. Interfaces 2022, 14 (49), 54855. doi: 10.1021/acsami.2c15997  doi: 10.1021/acsami.2c15997

    3. [3]

      Lu, Z.; Wei, Y.; Deng, J.; Ding, L.; Li, Z.-K.; Wang, H. ACS Nano 2019, 13 (9), 10535. doi: 10.1021/acsnano.9b04612  doi: 10.1021/acsnano.9b04612

    4. [4]

      Lei, J.; Xiong, Y.; Yu, F.; Ma, J. Chem. Eng. J. 2022, 437, 135381. doi: 10.1016/j.cej.2022.135381  doi: 10.1016/j.cej.2022.135381

    5. [5]

      Wang, K.; Liu, Y.; Xu, X.; Jiao, Y.; Pan, L. Chem. Eng. J. 2023, 463, 142394. doi: 10.1016/j.cej.2023.142394  doi: 10.1016/j.cej.2023.142394

    6. [6]

      Tu, X.; Liu, Y.; Wang, K.; Ding, Z.; Xu, X.; Lu, T.; Pan, L. J. Colloid Interface Sci. 2023, 642, 680. doi: 10.1016/j.jcis.2023.04.007  doi: 10.1016/j.jcis.2023.04.007

    7. [7]

      Xiong, Y.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2022, 38, 2006037.  doi: 10.3866/PKU.WHXB202006037

    8. [8]

      Jiang, Z. Y.; Yang, M.; Wang, Q.; Qu, Z. G.; Zhang, J. F. Desalination 2023, 548, 116274. doi: 10.1016/j.desal.2022.116274  doi: 10.1016/j.desal.2022.116274

    9. [9]

      Sivasubramanian, P.; Kumar, M.; Kirankumar, V. S.; Samuel, M. S.; Dong, C.-D.; Chang, J.-H. Desalination 2023, 559, 116652. doi: 10.1016/j.desal.2023.116652  doi: 10.1016/j.desal.2023.116652

    10. [10]

      Sui, Z.; Liu, W.; Xu, X.; Liu, Y.; Tian, Q. Diamond Relat. Mater. 2020, 104, 107758. doi: 10.1016/j.diamond.2020.107758  doi: 10.1016/j.diamond.2020.107758

    11. [11]

      Liu, Y.; Gao, X.; Wang, K.; Dou, X.; Zhu, H.; Yuan, X.; Pan, L. J. Mater. Chem. A 2020, 8 (17), 8476. doi: 10.1039/C9TA14112J  doi: 10.1039/C9TA14112J

    12. [12]

      Li, Q.; Xu, X.; Guo, J.; Hill, J. P.; Xu, H.; Xiang, L.; Li, C.; Yamauchi, Y.; Mai, Y. Angew. Chem. Int. Ed. 2021, 60 (51), 26528. doi: 10.1002/anie.202111823  doi: 10.1002/anie.202111823

    13. [13]

      Wang, G.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D. Environ. Sci. Technol. 2020, 54 (13), 8411. doi: 10.1021/acs.est.0c01518  doi: 10.1021/acs.est.0c01518

    14. [14]

      Xu, H.; Li, M.; Gong, S.; Zhao, F.; Zhao, Y.; Li, C.; Qi, J.; Wang, Z.; Wang, H.; Fan, X.; et al. J. Colloid Interface Sci. 2022, 624, 233. doi: 10.1016/j.jcis.2022.05.131  doi: 10.1016/j.jcis.2022.05.131

    15. [15]

      Geng, X.; Kuai, J.; Ren, X.; Guo, W. Water Sci. Technol. 2022, 86 (11), 3014. doi: 10.2166/wst.2022.383  doi: 10.2166/wst.2022.383

    16. [16]

      He, D.; Wong, C. E.; Tang, W.; Kovalsky, P.; Waite, T. D. Environ. Sci. Technol. Lett. 2016, 3 (5), 222. doi: 10.1021/acs.estlett.6b00124  doi: 10.1021/acs.estlett.6b00124

    17. [17]

      Liu, Q.; Hu, Z.; Li, W.; Zou, C.; Jin, H.; Wang, S.; Chou, S.; Dou, S.-X. Energy Environ. Sci. 2021, 14 (1), 15. doi: 10.1039/D0EE02997A  doi: 10.1039/D0EE02997A

    18. [18]

      Ahn, C.; Cavalleri, A.; Georges, A.; Ismail-Beigi, S.; Millis, A. J.; Triscone, J.-M. Nat. Mater. 2021, 20 (11), 1462. doi: 10.1038/s41563-021-00989-2  doi: 10.1038/s41563-021-00989-2

    19. [19]

      Cao, D.; Zheng, L.; Li, Q.; Zhang, J.; Dong, Y.; Yue, J.; Wang, X.; Bai, Y.; Tan, G.; Wu, C. Nano Lett. 2021, 21 (12), 5225. doi: 10.1021/acs.nanolett.1c01276  doi: 10.1021/acs.nanolett.1c01276

    20. [20]

      Hu, M.; Yang, W.; Tan, H.; Jin, L.; Zhang, L.; Kerns, P.; Dang, Y.; Dissanayake, S.; Schaefer, S.; Liu, B.; et al. Matter 2020, 2 (5), 1244. doi: 10.1016/j.matt.2020.02.002  doi: 10.1016/j.matt.2020.02.002

    21. [21]

      Li, B.; Wang, Y.; Jiang, N.; An, L.; Song, J.; Zuo, Y.; Ning, F.; Shang, H.; Xia, D. Nano Energy 2020, 72, 104727. doi: 10.1016/j.nanoen.2020.104727  doi: 10.1016/j.nanoen.2020.104727

    22. [22]

      Ding, Y.; Peng, Y.; Chen, S.; Zhang, X.; Li, Z.; Zhu, L.; Mo, L.-E.; Hu, L. ACS Appl. Mater. Interfaces 2019, 11 (47), 44109. doi: 10.1021/acsami.9b13729  doi: 10.1021/acsami.9b13729

    23. [23]

      Zhu, K.; Wei, S.; Shou, H.; Shen, F.; Chen, S.; Zhang, P.; Wang, C.; Cao, Y.; Guo, X.; Luo, M.; et al. Nat. Commun. 2021, 12 (1), 6878. doi: 10.1038/s41467-021-27203-w  doi: 10.1038/s41467-021-27203-w

    24. [24]

      Ren, X.; Ai, D.; Zhan, C.; Lv, R.; Kang, F.; Huang, Z.-H. Electrochim. Acta 2019, 318, 730. doi: 10.1016/j.electacta.2019.06.138  doi: 10.1016/j.electacta.2019.06.138

    25. [25]

      Fonseca, J.; Gong, T.; Jiao, L.; Jiang, H.-L. J. Mater. Chem. A 2021, 9 (17), 10562. doi: 10.1039/D1TA01043C  doi: 10.1039/D1TA01043C

    26. [26]

      Gu, Y.; Wu, Y.-n.; Li, L.; Chen, W.; Li, F.; Kitagawa, S. Angew. Chem. Int. Ed. 2017, 56 (49), 15658. doi: 10.1002/anie.201709738  doi: 10.1002/anie.201709738

    27. [27]

      Guo, Y.; Wang, W.; Lei, H.; Wang, M.; Jiao, S. Adv. Mater. 2022, 34 (13), 2110109. doi: 10.1002/adma.202110109  doi: 10.1002/adma.202110109

    28. [28]

      Shao, B.; Dong, H.; Gong, Y.; Mei, J.; Cai, F.; Liu, J.; Zhong, D.; Lu, T. Acta Phys. -Chim. Sin. 2024, 40, 2305026.  doi: 10.3866/PKU.WHXB202305026

    29. [29]

      Li, Y.; Lan, B.; Guan, B.; Dai, C.; Zhang, F.; Lin, Z. Acta Phys. -Chim. Sin. 2024, 40, 2306031.  doi: 10.3866/PKU.WHXB202306031

    30. [30]

      Wang, Y.; Guo, T.; Alhajji, E.; Tian, Z.; Shi, Z.; Zhang, Y.-Z.; Alshareef, H. N. Adv. Energy Mater. 2023, 13 (4), 2202860. doi: 10.1002/aenm.202202860  doi: 10.1002/aenm.202202860

    31. [31]

      An, Y.; Tian, Y.; Feng, J.; Qian, Y. Mater. Today 2022, 57, 146. doi: 10.1016/j.mattod.2022.06.006  doi: 10.1016/j.mattod.2022.06.006

    32. [32]

      Wang, W.; Li, H. J. Liaocheng Univ. 2023, 36 (3), 82. doi: 10.19728/j.issn1672-6634.2023010004  doi: 10.19728/j.issn1672-6634.2023010004

    33. [33]

      Xi, W.; Li, H. J. Inorg. Mater. 2021, 36 (3), 283. doi: 10.15541/jim20200243  doi: 10.15541/jim20200243

    34. [34]

      Li, X.; Li, M.; Yang, Q.; Li, H.; Xu, H.; Chai, Z.; Chen, K.; Liu, Z.; Tang, Z.; Ma, L.; et al. ACS Nano 2020, 14 (1), 541. doi: 10.1021/acsnano.9b06866  doi: 10.1021/acsnano.9b06866

    35. [35]

      Chen, L.; Sun, Y.; Wei, X.; Song, L.; Tao, G.; Cao, X.; Wang, D.; Zhou, G.; Song, Y. Adv. Mater. 2023, 35 (26), 2300771. doi: 10.1002/adma.202300771  doi: 10.1002/adma.202300771

    36. [36]

      Li, X.; Li, M.; Yang, Q.; Liang, G.; Huang, Z.; Ma, L.; Wang, D.; Mo, F.; Dong, B.; Huang, Q.; et al. Adv. Energy Mater. 2020, 10 (36), 2001791. doi: 10.1002/aenm.202001791  doi: 10.1002/aenm.202001791

    37. [37]

      Jin, T.; Li, H.; Li, Y.; Jiao, L.; Chen, J. Nano Energy 2018, 50, 462. doi: 10.1016/j.nanoen.2018.05.056  doi: 10.1016/j.nanoen.2018.05.056

    38. [38]

      Kim, J.-H.; Kim, Y.-S.; Moon, S.-H.; Park, D.-H.; Kim, M.-C.; Choi, J.-H.; Shin, J.-H.; Park, K.-W. Electrochim. Acta 2021, 389, 138685. doi: 10.1016/j.electacta.2021.138685  doi: 10.1016/j.electacta.2021.138685

    39. [39]

      Zhang, Z.; Li, H. Chem. Eng. J. 2022, 447, 137438. doi: 10.1016/j.cej.2022.137438  doi: 10.1016/j.cej.2022.137438

    40. [40]

      Zhang, Z.; Li, H. Appl. Surf. Sci. 2020, 514, 145920. doi: 10.1016/j.apsusc.2020.145920  doi: 10.1016/j.apsusc.2020.145920

    41. [41]

      Zhang, N.; Feng, X.; Rao, D.; Deng, X.; Cai, L.; Qiu, B.; Long, R.; Xiong, Y.; Lu, Y.; Chai, Y. Nat. Commun. 2020, 11 (1), 4066. doi: 10.1038/s41467-020-17934-7  doi: 10.1038/s41467-020-17934-7

    42. [42]

      Lu, C.; Yang, L.; Yan, B.; Sun, L.; Zhang, P.; Zhang, W.; Sun, Z. Adv. Funct. Mater. 2020, 30 (47), 2000852. doi: 10.1002/adfm.202000852  doi: 10.1002/adfm.202000852

    43. [43]

      Chen, Z.; Xu, X.; Wang, K.; Meng, F.; Lu, T.; Pan, L. Desalination 2023, 564, 116733. doi: 10.1016/j.desal.2023.116733  doi: 10.1016/j.desal.2023.116733

    44. [44]

      Liu, Y.; Du, X.; Wang, Z.; Zhang, L.; Chen, Q.; Wang, L.; Liu, Z.; Dou, X.; Zhu, H.; Yuan, X. Desalination 2021, 520, 115376. doi: 10.1016/j.desal.2021.115376  doi: 10.1016/j.desal.2021.115376

    45. [45]

      Han, J.; Yan, T.; Shen, J.; Shi, L.; Zhang, J.; Zhang, D. Environ. Sci. Technol. 2019, 53 (21), 12668. doi: 10.1021/acs.est.9b04274  doi: 10.1021/acs.est.9b04274

    46. [46]

      Liu, Y.; Gao, X.; Zhang, L.; Shen, X.; Du, X.; Dou, X.; Yuan, X. Desalination 2020, 494, 114665. doi: 10.1016/j.desal.2020.114665  doi: 10.1016/j.desal.2020.114665

    47. [47]

      El-Deen, A. G.; Choi, J.-H.; Kim, C. S.; Khalil, K. A.; Almajid, A. A.; Barakat, N. A. M. Desalination 2015, 361, 53. doi: 10.1016/j.desal.2015.01.033  doi: 10.1016/j.desal.2015.01.033

    48. [48]

      Wang, W.; Liu, Z.; Zhang, Z.; Li, H. Glob. Chall. 2022, 6 (2), 2100095. doi: 10.1002/gch2.202100095  doi: 10.1002/gch2.202100095

    49. [49]

      Guo, L.; Mo, R.; Shi, W.; Huang, Y.; Leong, Z. Y.; Ding, M.; Chen, F.; Yang, H. Y. Nanoscale 2017, 9 (35), 13305. doi: 10.1039/C7NR03579A  doi: 10.1039/C7NR03579A

    50. [50]

      Kim, S.; Lee, J.; Kim, C.; Yoon, J. Electrochim. Acta 2016, 203, 265. doi: 10.1016/j.electacta.2016.04.056  doi: 10.1016/j.electacta.2016.04.056

    51. [51]

      Lee, J.; Kim, S.; Kim, C.; Yoon, J. Energy Environ. Sci. 2014, 7 (11), 3683. doi: 10.1039/C4EE02378A  doi: 10.1039/C4EE02378A

    52. [52]

      Xi, W.; Li, H. Environ. Sci. : Nano 2020, 7 (3), 764. doi: 10.1039/C9EN01238A  doi: 10.1039/C9EN01238A

    53. [53]

      Han, J.; Shi, L.; Yan, T.; Zhang, J.; Zhang, D. Environ. Sci. : Nano 2018, 5 (10), 2337. doi: 10.1039/C8EN00652K  doi: 10.1039/C8EN00652K

    54. [54]

      Li, Y.; Yin, Y.; Xie, F.; Zhao, G.; Han, L.; Zhang, L.; Lu, T.; Amin, M. A.; Yamauchi, Y.; Xu, X.; et al. Environ. Res. 2022, 212, 113331. doi: 10.1016/j.envres.2022.113331  doi: 10.1016/j.envres.2022.113331

    55. [55]

      Halabaso, E. R.; Salvacion, J. W. L.; Kuncoro, E. P.; Doong, R.-A. Environ. Sci. : Nano 2021, 8 (10), 2844. doi: 10.1039/D1EN00514F  doi: 10.1039/D1EN00514F

    56. [56]

      Liu, B.; Yu, L.; Yu, F.; Ma, J. Desalination 2021, 500, 114897. doi: 10.1016/j.desal.2020.114897  doi: 10.1016/j.desal.2020.114897

    57. [57]

      Min, X.-B.; Liu, F.-S.; Wang, Y.-Y.; Yan, Y.-Q.; Wang, H.-Y. J. Cent. South Univ. 2022, 29 (2), 359. doi: 10.1007/s11771-022-4893-0  doi: 10.1007/s11771-022-4893-0

    58. [58]

      Cai, Y.; Wang, Y.; Fang, R.; Wang, J. Sep. Purif. Technol. 2022, 280, 119828. doi: 10.1016/j.seppur.2021.119828  doi: 10.1016/j.seppur.2021.119828

  • 加载中
    1. [1]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    4. [4]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    5. [5]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    14. [14]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    17. [17]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    20. [20]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

Metrics
  • PDF Downloads(0)
  • Abstract views(267)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return