Citation: Kexin Yan, Zhaoqi Ye, Lingtao Kong, He Li, Xue Yang, Yahong Zhang, Hongbin Zhang, Yi Tang. Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230801. doi: 10.3866/PKU.WHXB202308019 shu

Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption

  • Corresponding author: Hongbin Zhang, zhanghongbin@fudan.edu.cn Yi Tang, yitang@fudan.edu.cn
  • Received Date: 12 August 2023
    Revised Date: 2 October 2023
    Accepted Date: 9 October 2023
    Available Online: 18 October 2023

    Fund Project: the National Key R&D Program of China 2018YFA0209402the National Natural Science Foundation of China 22088101the National Natural Science Foundation of China 22175040

  • Zeolites with short microporous channels offer advantages in the diffusion of guest molecules, leading to significant improvements in their adsorption and catalytic performance, as well as a reduction in coke formation during catalytic reactions. However, preparing zeolite L (LTL) with an ultrashort length (20–50 nm) along the c-axis has proven challenging due to its preferential growth behavior along the one-dimensional microporous channel direction. Additionally, the conventional synthesis method of zeolite L struggles to achieve both low aspect ratio and short length along the c-axis due to the coupling of nucleation and growth stages during crystallization. In this study, we present an innovative approach by utilizing seeds of nanorod-cluster zeolite L, pre-prepared under high alkalinity conditions, to synthesize a novel morphology of zeolite L mesocrystals. The resulting zeolite L product exhibits a unique cluster structure composed of a series of disc nanocrystals with an ultrashort c-axis length (approximately 29 nm), and the entire crystallization process is completed within just 4 h in a low alkaline system without the need for additional additives. This intentionally designed seed-induced synthesis method effectively decouples the nucleation and growth stages of zeolite L, enabling precise control of each stage to achieve the desired morphology. By analyzing the time-resolved evolution of mesoscopic nuclei and microscopic building units in the synthetic system, we find that the ring-cage structures dissolved from seeds exist as four-membered rings and eight-membered rings. These structures accelerate gel ordering and shorten the induction period. Meanwhile, the reserved part of the seeds provides densely-distributed nuclei for growth, resulting in the formation of the novel disc-cluster structures. Furthermore, by controlling growth conditions, we confirm the assembly of worm-like precursor particles during the growth period, allowing for precise regulation of the length along the c-axis of each disc within the range of 18 to 55 nm. Moreover, we extensively demonstrate the significantly enhanced adsorption and diffusion properties of zeolite L with an ultrashort c-axis for a range of model molecules, spanning sizes from 0.43 to 4.5 nm, in both gaseous and liquid phase systems. Our typical sample exhibits advantages in the diffusion rate of small molecules and the adsorption capacity of large molecules in the gaseous phase. It holds great potential for practical applications in the adsorption and separation of aromatic hydrocarbons, as well as the adsorption of dyes and proteins.
  • 加载中
    1. [1]

      Yao, J.; Wu, Q.; Fan, J.; Komiyama, S.; Yong, X.; Zhang, W.; Zhao, T.; Guo, Z.; Yang, G.; Tsubaki, N. ACS Nano 2021, 15 (8), 13568. doi: 10.1021/acsnano.1c04419  doi: 10.1021/acsnano.1c04419

    2. [2]

      Qureshi, B. A.; Lan, X.; Arslan, M. T.; Wang, T. Ind. Eng. Chem. Res. 2019, 58 (28), 12611. doi: 10.1021/acs.iecr.9b01882  doi: 10.1021/acs.iecr.9b01882

    3. [3]

      Verboekend, D.; Milina, M.; Mitchell, S.; Pérez-Ramírez, J. Cryst. Growth Des. 2013, 13 (11), 5025. doi: 10.1021/cg4010483  doi: 10.1021/cg4010483

    4. [4]

      Verboekend, D.; Pérez-Ramírez, J. Catal. Sci. Technol. 2011, 1 (6), 879. doi: 10.1039/c1cy00150g  doi: 10.1039/c1cy00150g

    5. [5]

      Petkovich, N. D.; Stein, A. Chem. Soc. Rev. 2013, 42 (9), 3721. doi: 10.1039/c2cs35308c  doi: 10.1039/c2cs35308c

    6. [6]

      Sun, Y.; Cao, S.; Wang, J.; Tang, H.; Yang, Z.; Ma, T.; Gong, Y.; Mo, G.; Li, Z. ACS Sustain. Chem. Eng. 2022, 10 (29), 9431. doi: 10.1021/acssuschemeng.2c01813  doi: 10.1021/acssuschemeng.2c01813

    7. [7]

      Wang, C.; Fang, W.; Liu, Z.; Wang, L.; Liao, Z.; Yang, Y.; Li, H.; Liu, L.; Zhou, H.; Qin, X.; et al. Nat. Nanotechnol. 2022, 17 (7), 714. doi: 10.1038/s41565-022-01154-9  doi: 10.1038/s41565-022-01154-9

    8. [8]

      Su, X.; Liu, B.; Feng, C.; Wu, W. Microporous Mesoporous Mat. 2022, 344, 112215. doi: 10.1016/j.micromeso.2022.112215  doi: 10.1016/j.micromeso.2022.112215

    9. [9]

      Hao, J.; Xu, S.; Cheng, D.; Chen, F.; Zhan, X. Catal. Sci. Technol. 2022, 12 (12), 3912. doi: 10.1039/d2cy00154c  doi: 10.1039/d2cy00154c

    10. [10]

      Yue, Q.; Liu, C.; Zhao, H.; Liu, H.; Ruterana, P.; Zhao, J.; Qin, Z.; Mintova, S. Nano Res. 2023. doi: 10.1007/s12274-023-5749-0  doi: 10.1007/s12274-023-5749-0

    11. [11]

      Xu, J.; Zhang, Z.; Yu, D.; Du, W.; Song, N.; Duan, X.; Zhou, X. Nano Res. 2023, 16 (5), 6278. doi: 10.1007/s12274-023-5440-5  doi: 10.1007/s12274-023-5440-5

    12. [12]

      Jardim, E. D. O.; Serrano, E.; Martínez, J. C.; Linares, N.; García-Martínez, J. Cryst. Growth Des. 2020, 20 (2), 515. doi: 10.1021/acs.cgd.9b01180  doi: 10.1021/acs.cgd.9b01180

    13. [13]

      Linares, N.; Jardim, E. O.; Sachse, A.; Serrano, E.; Garcia-Martinez, J. Angew. Chem. Int. Ed. 2018, 57 (28), 8724. doi: 10.1002/anie.201803759  doi: 10.1002/anie.201803759

    14. [14]

      Schwieger, W.; Machoke, A. G.; Weissenberger, T.; Inayat, A.; Selvam, T.; Klumpp, M.; Inayat, A. Chem. Soc. Rev. 2016, 45 (12), 3353. doi: 10.1039/c5cs00599j  doi: 10.1039/c5cs00599j

    15. [15]

      Hu, Y.; Liu, C.; Zhang, Y.; Ren, N.; Tang, Y. Microporous Mesoporous Mat. 2009, 119 (1–3), 306. doi: 10.1016/j.micromeso.2008.11.005  doi: 10.1016/j.micromeso.2008.11.005

    16. [16]

      Larlus, O.; Valtchev, V. P. Chem. Mat. 2004, 16 (17), 3381. doi: 10.1021/cm0498741  doi: 10.1021/cm0498741

    17. [17]

      Brent, R.; Stevens, S. M.; Terasaki, O.; Anderson, M. W. Cryst. Growth Des. 2010, 10 (12), 5182. doi: 10.1021/cg100964j  doi: 10.1021/cg100964j

    18. [18]

      Brent, R.; Anderson, M. W. Angew. Chem. Int. Ed. 2008, 47 (29), 5327. doi: 10.1002/anie.200800977  doi: 10.1002/anie.200800977

    19. [19]

      Lee, Y. -J.; Lee, J. S.; Yoon, K. B. Microporous Mesoporous Mat. 2005, 80 (1–3), 237. doi: 10.1016/j.micromeso.2004.12.003  doi: 10.1016/j.micromeso.2004.12.003

    20. [20]

      Ban, T.; Saito, H.; Naito, M.; Ohya, Y.; Takahashi, Y. J. Porous Mat. 2006, 14 (2), 119. doi: 10.1007/s10934-006-9016-z  doi: 10.1007/s10934-006-9016-z

    21. [21]

      Li, R.; Smolyakova, A.; Maayan, G.; Rimer, J. D. Chem. Mat. 2017, 29 (21), 9536. doi: 10.1021/acs.chemmater.7b03798  doi: 10.1021/acs.chemmater.7b03798

    22. [22]

      Das, R.; Ghosh, S.; Naskar, M. K. Mater. Lett. 2015, 143, 94. doi: 10.1016/j.matlet.2014.12.076  doi: 10.1016/j.matlet.2014.12.076

    23. [23]

      Lupulescu, A. I.; Kumar, M.; Rimer, J. D. J. Am. Chem. Soc. 2013, 135 (17), 6608. doi: 10.1021/ja4015277  doi: 10.1021/ja4015277

    24. [24]

      Ye, Z.; Kong, L.; Zhao, Y.; Zhang, C.; Yang, X.; Yan, K.; Zhang, Y.; Zhang, H.; Tang, Y. Chem. Synth. 2022, 2 (4), 20. doi: 10.20517/cs.2022.25  doi: 10.20517/cs.2022.25

    25. [25]

      Cho, H. S.; Hill, A. R.; Cho, M.; Miyasaka, K.; Jeong, K.; Anderson, M. W.; Kang, J. K.; Terasaki, O. Cryst. Growth Des. 2017, 17 (9), 4516. doi: 10.1021/acs.cgd.7b00832  doi: 10.1021/acs.cgd.7b00832

    26. [26]

      Ruiz, A. Z.; Brühwiler, D.; Ban, T.; Calzaferri, G. Mon. Chem. 2004, 136 (1), 77. doi: 10.1007/s00706-004-0253-z  doi: 10.1007/s00706-004-0253-z

    27. [27]

      Li, R.; Linares, N.; Sutjianto, J. G.; Chawla, A.; Garcia-Martinez, J.; Rimer, J. D. Angew. Chem. Int. Ed. 2018, 57 (35), 11283. doi: 10.1002/anie.201805877  doi: 10.1002/anie.201805877

    28. [28]

      Zhang, F.; Chen, W.; Wu, Q.; Yang, Z.; Wang, L.; Meng, X.; Zhang, B.; Zheng, A.; Deng, F.; Liu, C.; et al. J. Phys. Chem. C 2020, 124 (25), 13819. doi: 10.1021/acs.jpcc.0c04315  doi: 10.1021/acs.jpcc.0c04315

    29. [29]

      Jain, R.; Chawla, A.; Linares, N.; Garcia Martinez, J.; Rimer, J. D. Adv. Mater. 2021, 33 (22), e2100897. doi: 10.1002/adma.202100897  doi: 10.1002/adma.202100897

    30. [30]

      Ye, Z.; Zhao, Y.; Zhang, H.; Zhang, Y.; Tang, Y. Chem. -Eur. J. 2020, 26 (28), 6147. doi: 10.1002/chem.201904807  doi: 10.1002/chem.201904807

    31. [31]

      Ye, Z.; Zhang, H.; Zhang, Y.; Tang, Y. Front. Chem. Sci. Eng. 2019, 14 (2), 143. doi: 10.1007/s11705-019-1852-x  doi: 10.1007/s11705-019-1852-x

    32. [32]

      Kim, D.; Ghosh, S.; Akter, N.; Kraetz, A.; Duan, X. Sci. Adv. 2022, 8, eabm8162. doi: 10.1126/sciadv.abm8162  doi: 10.1126/sciadv.abm8162

    33. [33]

      Ye, Z.; Zhao, Y.; Zhang, H.; Shi, Z.; Li, H.; Yang, X.; Wang, L.; Kong, L.; Zhang, C.; Sheng, Z.; et al. J. Colloid Interface Sci. 2022, 608, 1366. doi: 10.1016/j.jcis.2021.10.125  doi: 10.1016/j.jcis.2021.10.125

    34. [34]

      Lin, F.; Ye, Z.; Kong, L.; Liu, P.; Zhang, Y.; Zhang, H.; Tang, Y. Nanomaterials 2022, 12 (9), 1601. doi: 10.3390/nano12091601  doi: 10.3390/nano12091601

    35. [35]

      Yang, J.; Liu, J.; Liu, P.; Li, L.; Tang, X.; Shang, H.; Li, J.; Chen, B. Angew. Chem. Int. Ed. 2022, 61 (8), e202116850. doi: 10.1002/anie.202116850  doi: 10.1002/anie.202116850

    36. [36]

      Zhang, H.; Zhang, H.; Zhao, Y.; Shi, Z.; Zhang, Y.; Tang, Y. Chem. Mat. 2017, 29 (21), 9247. doi: 10.1021/acs.chemmater.7b03121  doi: 10.1021/acs.chemmater.7b03121

    37. [37]

      Zhang, H.; Zhao, Y.; Zhang, H.; Wang, P.; Shi, Z.; Mao, J.; Zhang, Y.; Tang, Y. Chem. -Eur. J. 2016, 22 (21), 7141. doi: 10.1002/chem.201600028  doi: 10.1002/chem.201600028

    38. [38]

      Jain, R.; Mallette, A. J.; Rimer, J. D. J. Am. Chem. Soc. 2021, 143 (51), 21446. doi: 10.1021/jacs.1c11014  doi: 10.1021/jacs.1c11014

    39. [39]

      Kumar, M.; Li, R.; Rimer, J. D. Chem. Mat. 2016, 28 (6), 1714. doi: 10.1021/acs.chemmater.5b04569  doi: 10.1021/acs.chemmater.5b04569

    40. [40]

      Groen, J. C.; Zhu, W.; Brouwer, S.; Huynink, S. J.; Kapteijn, F.; Moulijn, J. A.; Pérez-Ramírez, J. J. Am. Chem. Soc. 2007, 129 (2), 355. doi: 10.1021/ja065737o  doi: 10.1021/ja065737o

    41. [41]

      Devi, R.; Borah, R.; Deka, R. C. Appl. Catal. A-Gen. 2012, 433434, 122. doi: 10.1016/j.apcata.2012.05.010  doi: 10.1016/j.apcata.2012.05.010

    42. [42]

      Tangale, N. P.; Sonar, S. K.; Niphadkar, P. S.; Joshi, P. N. J. Ind. Eng. Chem. 2016, 40, 128. doi: 10.1016/j.jiec.2016.06.016  doi: 10.1016/j.jiec.2016.06.016

    43. [43]

      Li, C.; Xiong, G.; Liu, J. K.; Ying, P. L.; Xin, Q.; Feng, Z. C. J. Phys. Chem. B 2001, 105 (15), 2993. doi: 10.1021/jp0042359  doi: 10.1021/jp0042359

    44. [44]

      Fan, F.; Sun, K.; Feng, Z.; Xia, H.; Han, B.; Lian, Y.; Ying, P.; Li, C. Chem. -Eur. J. 2009, 15 (13), 3268. doi: 10.1002/chem.200801916  doi: 10.1002/chem.200801916

    45. [45]

      Chua, Y. T.; Stair, P. C.; Wachs, I. E. J. Phys. Chem. B. 2001, 105 (36), 8600. doi: 10.1021/jp011366g  doi: 10.1021/jp011366g

    46. [46]

      Yu, Y.; Xiong, G.; Li, C.; Xiao, F. Microporous Mesoporous Mat. 2001, 46 (1), 23. doi: 10.1016/s1387-1811(01)00271-2  doi: 10.1016/s1387-1811(01)00271-2

    47. [47]

      Chen, C. T.; Iyoki, K.; Hu, P.; Yamada, H.; Ohara, K.; Sukenaga, S.; Ando, M.; Shibata, H.; Okubo, T.; Wakihara, T. J. Am. Chem. Soc. 2021, 143 (29), 10986. doi: 10.1021/jacs.1c03351  doi: 10.1021/jacs.1c03351

    48. [48]

      Dusselier, M.; Davis, M. E. Chem. Rev. 2018, 118 (11), 5265. doi: 10.1021/acs.chemrev.7b00738  doi: 10.1021/acs.chemrev.7b00738

    49. [49]

      Myers, A. L.; Prausnitz, J. M. AICHE J. 1965, 11 (1), 121. doi: 10.1002/aic.690110125  doi: 10.1002/aic.690110125

    50. [50]

      Choy, K. K. H.; Porter, J. F.; Mckay, G. J. Chem. Eng. Data 2000, 45 (4), 575. doi: 10.1021/je9902894  doi: 10.1021/je9902894

    51. [51]

      Bulut, E.; Özacar, M.; Şengil, İ. A. Microporous Mesoporous Mat. 2008, 115 (3), 234. doi: 10.1016/j.micromeso.2008.01.039  doi: 10.1016/j.micromeso.2008.01.039

    52. [52]

      Hu, Y.; Zhang, Y.; Ren, N.; Tang, Y. J. Phys. Chem. C 2009, 113 (42), 18040. doi: 10.1021/jp903989p  doi: 10.1021/jp903989p

    53. [53]

      Zhang, R.; Somasundaran, P. Adv. Colloid Interface Sci. 2006, 123, 213. doi: 10.1016/j.cis.2006.07.004  doi: 10.1016/j.cis.2006.07.004

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    8. [8]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    11. [11]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    15. [15]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    16. [16]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    17. [17]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    18. [18]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    19. [19]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(906)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return