Citation: Feifei Yang,  Wei Zhou,  Chaoran Yang,  Tianyu Zhang,  Yanqiang Huang. Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230801. doi: 10.3866/PKU.WHXB202308017 shu

Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst

  • Corresponding author: Feifei Yang,  Tianyu Zhang, 
  • Received Date: 12 August 2023
    Revised Date: 7 September 2023
    Accepted Date: 8 September 2023

    Fund Project: This work was supported by the National Key Research and Development Program of China (2022YFA1506200), National Natural Science Foundation of China (22208021), Natural Science Foundation of Jiangsu Province, China (BK20231075), the Safety Discipline Group Project of China University of Mining and Technology, China (2022ZZX03), and the Carbon Peak Carbon Neutrality Technology Innovation Special Fund Project of Jiangsu Province, China (BE2022613), and China National Postdoctoral Program for Innovative Talents (BX2021294).

  • Selective hydrogenation of CO2 to methanol with renewable H2 is a promising approach to effectively utilize the anthropogenic greenhouse gas CO2 in response to the growing environmental and energy challenges. Recently, MoS2 has gained attention as an attractive catalyst for CO2 hydrogenation due to its tunable S vacancy sites. However, its catalytic reactivity towards methanol production is still unsatisfactory because the general edge S vacancy site tends to favor CH4 formation. Herein, we report that the alkali K decorated MoS2 catalyst enables a dramatically enhancement in selective hydrogenation of CO2 to methanol, in contrast to the pristine MoS2 nanosheets that produce mainly CH4. We incorporated the K promoter into MoS2 using a simple physical mixture method, and we found that the loading of K has a crucial impact on the catalytic performance. The K-MoS2 catalyst with an appropriate K loading of 0.5 wt.% (mass fraction) delivers an optimized methanol selectivity of 81% and a methanol space time yield of 3.6 mmol·g-1·h-1 at mild reaction conditions of 220 °C and 5 MPa, which greatly outperforms the bare MoS2. Higher K loading would lead CO as the dominating product, while lower K loading is insufficient to tune the selectivity. Detailed characterization techniques, including X-ray diffraction (XRD), Raman, H2-temperature programmed reduction (TPR), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), CO-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and H2-D2-temperature programmed surface reaction (TPSR), reveal that K atoms tend to occupy the edge sites on MoS2 and serve as electron donators, which enhance the density of states at the Fermi surface and the basicity of the edge active sites, while preventing H2 dissociation on the edge S vacancy. The reaction mechanism, as studied by CO2-temperature programmed desorption (TPD) and CO2 + H2 DRIFTS, suggests a reverse water-gas shift route for CO2hydrogenation to methanol. The increased basicity at the edge active site has therefore facilitates CO2 adsorption and lowers the activation barrier for CO2 dissociation to CO. It also restrains the methanation activity of intermediate CO and directs the reaction path toward CO hydrogenation to methanol. However, the excessive inhibition of H2 dissociation at higher K loading levels causes the facile desorption of CO, resulting in high CO selectivity. These results highlight the appearing effect of K promoter on modulating the edge active sites of MoS2 to favor methanol formation over CH4, and provide a simple yet effective strategy for tuning the structure and catalytic performance of MoS2. This extends the application of MoS2-based catalysts in methanol synthesis via CO2 hydrogenation.
  • 加载中
    1. [1]

      (1) Holdren, J. P. Science 2012, 319, 424. doi:10.1126/science.1153386

    2. [2]

      (2) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi:10.1039/C1CS15008A

    3. [3]

      (3) Olah, G. A. Angew. Chem. Int. Ed. 2005, 44, 2636. doi:10.1002/anie.200462121

    4. [4]

    5. [5]

      (5) Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. Chem. Soc. Rev. 2020, 49, 1385. doi:10.1039/C9CS00614A

    6. [6]

    7. [7]

      (7) Martin, O.; Martin, A. J.; Mondelli, C.; Mitchell, S.; Segawa, T. F.; Hauert, R.; Drouilly, C.; Curulla-Ferre, D.; Perez-Ramirez, J. Angew. Chem. Int. Ed. 2016, 55, 6261. doi:10.1002/anie.201600943

    8. [8]

      (8) Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. J. Appl. Catal. B:Environ. 2017, 218, 488. doi:10.1016/j.apcatb.2017.06.069

    9. [9]

      (9) Frei, M. S.; Mondelli, C.; Garcia-Muelas, R.; Kley, K. S.; Puertolas, B.; Lopez, N.; Safonova, O. V.; Stewart, J. A.; Curulla Ferre, D.; Perez-Ramirez, J. Nat. Commun. 2019, 10, 3377. doi:10.1038/s41467-019-11349-9

    10. [10]

      (10) Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. ACS Catal. 2021, 11, 1406. doi:10.1021/acscatal.0c03665

    11. [11]

      (11) Shen, C.; Bao, Q.; Xue, W.; Sun, K.; Zhang, Z.; Jia, X.; Mei, D.; Liu, C. J. Energy Chem. 2022, 65, 623. doi:10.1016/j.jechem.2021.06.039

    12. [12]

      (12) Su, H. Y.; Sun, K.; Liu, J.; Ma, X.; Jian, M.; Sun, C.; Xu, Y.; Yin, H.; Li, W. Appl. Surf. Sci. 2021, 561, 149925. doi:10.1016/j.apsusc.2021.149925

    13. [13]

      (13) Hu, J.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q.; Wen, W.; Yu, S.; Pan, Y.; et al. Nat. Catal. 2021, 4, 242. doi:10.1038/s41929-021-00584-3

    14. [14]

      (14) Zhou, S.; Zeng, H. C. ACS Catal. 2022, 12, 9872. doi:10.1021/acscatal.2c02838

    15. [15]

      (15) Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V. I.; Garcia, H. Appl. Catal. B:Environ. 2019, 245, 351. doi:10.1016/j.apcatb.2018.12.034

    16. [16]

      (16) Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.; et al. Nat. Nanotechnol. 2018, 13, 411. doi:10.1038/s41565-018-0089-z

    17. [17]

      (17) Lu, Z.; Cheng, Y.; Li, S.; Yang, Z.; Wu, R. Appl. Surf. Sci. 2020, 528, 147047. doi:10.1016/j.apsusc.2020.147047

    18. [18]

      (18) Aguilar, N.; Atilhan, M.; Aparicio, S. Appl. Surf. Sci. 2020, 534, 147611. doi:10.1016/j.apsusc.2020.147611

    19. [19]

      (19) Zheng, J.; Lebedev, K.; Wu, S.; Huang, C.; Ayvali, T.; Wu, T. S.; Li, Y.; Ho, P. L; Soo, Y. L.; Kirkland, A.; et al. J. Am. Chem. Soc. 2021, 143, 7979. doi:10.1021/jacs.1c01097

    20. [20]

      (20) Woo, H. C.; Nam, I. S.; Lee, J. S.; Chung, J. S.; Kim, Y. G. J. Catal. 1993, 142, 672. doi:10.1006/jcat.1993.1240

    21. [21]

      (21) Santos, V. P.; Linden, B.; Chojecki, A.; Budroni, G.; Corthals, S.; Shibata, H.; Meima, G. R.; Kapteijn, F.; Makkee, M.; Gascon, J. ACS Catal. 2013, 3, 1634. doi:10.1021/cs4003518

    22. [22]

      (22) Claure, M. T.; Chai, S. H.; Dai, S.; Unocic, K. A.; Alamgir, F. M.; Agrawal, P. K.; Jones, C. W. J. Catal. 2015, 324, 88. doi:10.1016/j.jcat.2015.01.015

    23. [23]

      (23) Zeng, F.; Xi, X.; Cao, H.; Pei, Y.; Heeres, H. J.; Palkovits, R. Appl. Catal. B:Environ. 2019, 246, 232. doi:10.1016/j.apcatb.2019.01.063

    24. [24]

      (24) Juneau, M.; Vonglis, M.; Hartvigsen, J.; Frost, L.; Bayerl, D.; Dixit, M.; Mpourmpakis, G.; Morse, J. R.; Baldwin, J. W.; Willauer, H. D.; et al. Energy Environ. Sci. 2020, 13, 2524. doi:10.1039/D0EE01457E

    25. [25]

      (25) Zhang, S.;Wu, Z.; Liu, X.; Shao, Z.; Xia, L.; Zhong, L.; Wang, H.; Sun, Y. Appl. Catal. B:Environ. 2021, 293, 120207. doi:10.1016/j.apcatb.2021.120207

    26. [26]

      (26) Porosoff, M. D.; Baldwin, J. W.; Peng, X.; Mpourmpakis, G.; Willauer, H. D. ChemSusChem 2017, 10, 2408. doi:10.1002/cssc.201700412

    27. [27]

      (27) Rabelo-Neto, R. C.; Almeida, M. P.; Silveira, E. B.; Ayala, M.; Watson, C. D.; Villarreal, J.; Cronauer, D. C.; Kropf, A. J.; Martinelli, M.; Noronha, F. B.; et al. Appl. Catal. B:Environ. 2022, 315, 121533. doi:10.1016/j.apcatb.2022.121533

    28. [28]

      (28) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2011, 115, 9025. doi:10.1021/jp110069r

    29. [29]

      (29) Bertrand, P. A. Phys. Rev. B:Condens. Matter. 1991, 44, 5745. doi:10.1103/PhysRevB.44.5745

    30. [30]

      (30) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. Adv. Funct. Mater. 2012, 22, 1385. doi:10.1002/adfm.201102111

    31. [31]

      (31) Wang, X.; Zhang, Y.; Si, H.; Zhang, Q.; Wu, J.; Gao, L.; Wei, X.; Sun, Y.; Liao, Q.; Zhang, Z.; et al. J. Am. Chem. Soc. 2020, 142, 4298. doi:10.1021/jacs.9b12113

    32. [32]

      (32) Wang, Q.; Li, X.; Ma, X.; Li, Z.; Yang, Y. ACS Appl. Mater. Interfaces 2022, 14, 7741. doi:10.1021/acsami.1c18291

    33. [33]

      (33) Yu, M.; Kosinov, N.; van Haandel, L.; Kooyman, P. J.; Hensen, E. J. M. ACS Catal. 2020, 10, 1838. doi:10.1021/acscatal.9b03178

    34. [34]

      (34) Iranmahbood, J.; Hill, D. O.; Toghiani, H. Appl. Catal. A:Gen. 2002, 231, 99. doi:10.1016/S0926-860X(01)01011-0

    35. [35]

      (35) Travert, A.; Nakamura, H.; Santen, R. A. V.; Cristol, S.; Paul, J. F.; Payen, E. J. Am. Chem. Soc. 2002, 124, 7084. doi:10.1021/ja011634o

    36. [36]

      (36) Cai, L.; He, J.; Liu, Q.; Yao, T.; Chen, L.; Yan, W.; Hu, F.; Jiang, Y.; Zhao, Y.; Hu, T.; et al. J. Am. Chem. Soc. 2015, 137, 2622. doi:10.1021/ja5120908

    37. [37]

      (37) Liu, G.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H.; et al. Nat. Chem. 2017, 9, 810. doi:10.1038/nchem.2740

    38. [38]

      (38) Shuxian, Z.; Hall, W. K.; Ertl, G.; Konzinger, H. J. Catal. 1986, 100, 167. doi:10.1016/0021-9517(86)90082-5

    39. [39]

      (39) Portela, L.; Grange, P.; Delmon, B. Catal. Rev. 1995, 37, 699. doi:10.1080/01614949508006452

    40. [40]

      (40) Nakamura, I.; Hamada, H.; Fujitani, T. Surf. Sci. 2003, 544, 45. doi:10.1016/j.susc.2003.08.010

    41. [41]

      (41) Travert, A.; Dujardin, C.; Mauge, F.; Cristol, S.; Paul, J. F.; Payen, E.; Bougeard, D. Catal. Today 2001, 70, 255. doi:10.1016/S0920-5861(01)00422-9

    42. [42]

      (42) Chen, J.; Maugé, F.; Fallah, J. E.; Oliviero, L. J. Catal. 2014, 320, 170. doi:10.1016/j.jcat.2014.10.005

    43. [43]

      (43) Chen, J.; Garcia, E. D.; Oliviero, E.; Oliviero, L.; Maugé, F. J. Catal. 2016, 339, 153. doi:10.1016/j.jcat.2016.04.010

    44. [44]

      (44) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2012, 116, 1826. doi:10.1021/jp206555b

    45. [45]

      (45) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. Catal. Commun. 2014, 52, 92. doi:10.1016/j.catcom.2014.02.011

    46. [46]

      (46) Liu, R.; Chen, C.; Chu, W.; Sun, W. Materials 2022, 15, 3775. doi:10.3390/ma15113775

    47. [47]

      (47) Huang, M.; Cho, K. J. Phys. Chem. C 2009, 113, 5238. doi:10.1021/jp807705y

    48. [48]

      (48) Zhang, C.; Liu, B.; Wang, Y.; Zhao, L.; Zhang, J.; Zong, Q.; Gao, J.; Xu, C. RSC Adv. 2017, 7, 11862. doi:10.1039/C6RA27422F

    49. [49]

      (49) Dorokhov, V. S.; Ishutenko, D. I.; Nikul'shin, P. A.; Kotsareva, K. V.; Trusova, E. A.; Bondarenko, T. N.; Eliseev, O. L.; Lapidus, A. L.; Rozhdestvenskaya, N. N.; Kogan, V. M. Kinet. Catal. 2013, 54, 243. doi:10.1134/S0023158413020043

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    9. [9]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    10. [10]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    13. [13]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    15. [15]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    16. [16]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    17. [17]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    18. [18]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    19. [19]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    20. [20]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

Metrics
  • PDF Downloads(2)
  • Abstract views(236)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return