Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst
- Corresponding author: Feifei Yang, feiyang@cumt.edu.cn Tianyu Zhang, tzhang@bjfu.edu.cn
Citation:
Feifei Yang, Wei Zhou, Chaoran Yang, Tianyu Zhang, Yanqiang Huang. Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst[J]. Acta Physico-Chimica Sinica,
;2024, 40(7): 230801.
doi:
10.3866/PKU.WHXB202308017
Holdren, J. P. Science 2012, 319, 424. doi: 10.1126/science.1153386
doi: 10.1126/science.1153386
Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A
doi: 10.1039/C1CS15008A
Olah, G. A. Angew. Chem. Int. Ed. 2005, 44, 2636. doi: 10.1002/anie.200462121
doi: 10.1002/anie.200462121
Lyu, H. L.; Hu, B.; Liu, G. L.; Hong, X. L.; Zhuang, L. Acta Phys. -Chim. Sin. 2021, 36, 1911008. doi: 10.3866/PKU.WHXB201911008
doi: 10.3866/PKU.WHXB201911008
Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. Chem. Soc. Rev. 2020, 49, 1385. doi: 10.1039/C9CS00614A
doi: 10.1039/C9CS00614A
Han, B. X. Acta Phys. -Chim. Sin. 2021, 37, 2010063. doi: 10.3866/PKU.WHXB202010063
doi: 10.3866/PKU.WHXB202010063
Martin, O.; Martin, A. J.; Mondelli, C.; Mitchell, S.; Segawa, T. F.; Hauert, R.; Drouilly, C.; Curulla-Ferre, D.; Perez-Ramirez, J. Angew. Chem. Int. Ed. 2016, 55, 6261. doi: 10.1002/anie.201600943
doi: 10.1002/anie.201600943
Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. J. Appl. Catal. B: Environ. 2017, 218, 488. doi: 10.1016/j.apcatb.2017.06.069
doi: 10.1016/j.apcatb.2017.06.069
Frei, M. S.; Mondelli, C.; Garcia-Muelas, R.; Kley, K. S.; Puertolas, B.; Lopez, N.; Safonova, O. V.; Stewart, J. A.; Curulla Ferre, D.; Perez-Ramirez, J. Nat. Commun. 2019, 10, 3377. doi: 10.1038/s41467-019-11349-9
doi: 10.1038/s41467-019-11349-9
Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. ACS Catal. 2021, 11, 1406. doi: 10.1021/acscatal.0c03665
doi: 10.1021/acscatal.0c03665
Shen, C.; Bao, Q.; Xue, W.; Sun, K.; Zhang, Z.; Jia, X.; Mei, D.; Liu, C. J. Energy Chem. 2022, 65, 623. doi: 10.1016/j.jechem.2021.06.039
doi: 10.1016/j.jechem.2021.06.039
Su, H. Y.; Sun, K.; Liu, J.; Ma, X.; Jian, M.; Sun, C.; Xu, Y.; Yin, H.; Li, W. Appl. Surf. Sci. 2021, 561, 149925. doi: 10.1016/j.apsusc.2021.149925
doi: 10.1016/j.apsusc.2021.149925
Hu, J.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q.; Wen, W.; Yu, S.; Pan, Y.; et al. Nat. Catal. 2021, 4, 242. doi: 10.1038/s41929-021-00584-3
doi: 10.1038/s41929-021-00584-3
Zhou, S.; Zeng, H. C. ACS Catal. 2022, 12, 9872. doi: 10.1021/acscatal.2c02838
doi: 10.1021/acscatal.2c02838
Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V. I.; Garcia, H. Appl. Catal. B: Environ. 2019, 245, 351. doi: 10.1016/j.apcatb.2018.12.034
doi: 10.1016/j.apcatb.2018.12.034
Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.; et al. Nat. Nanotechnol. 2018, 13, 411. doi: 10.1038/s41565-018-0089-z
doi: 10.1038/s41565-018-0089-z
Lu, Z.; Cheng, Y.; Li, S.; Yang, Z.; Wu, R. Appl. Surf. Sci. 2020, 528, 147047. doi: 10.1016/j.apsusc.2020.147047
doi: 10.1016/j.apsusc.2020.147047
Aguilar, N.; Atilhan, M.; Aparicio, S. Appl. Surf. Sci. 2020, 534, 147611. doi: 10.1016/j.apsusc.2020.147611
doi: 10.1016/j.apsusc.2020.147611
Zheng, J.; Lebedev, K.; Wu, S.; Huang, C.; Ayvali, T.; Wu, T. S.; Li, Y.; Ho, P. L; Soo, Y. L.; Kirkland, A.; et al. J. Am. Chem. Soc. 2021, 143, 7979. doi: 10.1021/jacs.1c01097
doi: 10.1021/jacs.1c01097
Woo, H. C.; Nam, I. S.; Lee, J. S.; Chung, J. S.; Kim, Y. G. J. Catal. 1993, 142, 672. doi: 10.1006/jcat.1993.1240
doi: 10.1006/jcat.1993.1240
Santos, V. P.; Linden, B.; Chojecki, A.; Budroni, G.; Corthals, S.; Shibata, H.; Meima, G. R.; Kapteijn, F.; Makkee, M.; Gascon, J. ACS Catal. 2013, 3, 1634. doi: 10.1021/cs4003518
doi: 10.1021/cs4003518
Claure, M. T.; Chai, S. H.; Dai, S.; Unocic, K. A.; Alamgir, F. M.; Agrawal, P. K.; Jones, C. W. J. Catal. 2015, 324, 88. doi: 10.1016/j.jcat.2015.01.015
doi: 10.1016/j.jcat.2015.01.015
Zeng, F.; Xi, X.; Cao, H.; Pei, Y.; Heeres, H. J.; Palkovits, R. Appl. Catal. B: Environ. 2019, 246, 232. doi: 10.1016/j.apcatb.2019.01.063
doi: 10.1016/j.apcatb.2019.01.063
Juneau, M.; Vonglis, M.; Hartvigsen, J.; Frost, L.; Bayerl, D.; Dixit, M.; Mpourmpakis, G.; Morse, J. R.; Baldwin, J. W.; Willauer, H. D.; et al. Energy Environ. Sci. 2020, 13, 2524. doi: 10.1039/D0EE01457E
doi: 10.1039/D0EE01457E
Zhang, S.; Wu, Z.; Liu, X.; Shao, Z.; Xia, L.; Zhong, L.; Wang, H.; Sun, Y. Appl. Catal. B: Environ. 2021, 293, 120207. doi: 10.1016/j.apcatb.2021.120207
doi: 10.1016/j.apcatb.2021.120207
Porosoff, M. D.; Baldwin, J. W.; Peng, X.; Mpourmpakis, G.; Willauer, H. D. Chem Sus Chem 2017, 10, 2408. doi: 10.1002/cssc.201700412
doi: 10.1002/cssc.201700412
Rabelo-Neto, R. C.; Almeida, M. P.; Silveira, E. B.; Ayala, M.; Watson, C. D.; Villarreal, J.; Cronauer, D. C.; Kropf, A. J.; Martinelli, M.; Noronha, F. B.; et al. Appl. Catal. B: Environ. 2022, 315, 121533. doi: 10.1016/j.apcatb.2022.121533
doi: 10.1016/j.apcatb.2022.121533
Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2011, 115, 9025. doi: 10.1021/jp110069r
doi: 10.1021/jp110069r
Bertrand, P. A. Phys. Rev. B: Condens. Matter. 1991, 44, 5745. doi: 10.1103/PhysRevB.44.5745
doi: 10.1103/PhysRevB.44.5745
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. Adv. Funct. Mater. 2012, 22, 1385. doi: 10.1002/adfm.201102111
doi: 10.1002/adfm.201102111
Wang, X.; Zhang, Y.; Si, H.; Zhang, Q.; Wu, J.; Gao, L.; Wei, X.; Sun, Y.; Liao, Q.; Zhang, Z.; et al. J. Am. Chem. Soc. 2020, 142, 4298. doi: 10.1021/jacs.9b12113
doi: 10.1021/jacs.9b12113
Wang, Q.; Li, X.; Ma, X.; Li, Z.; Yang, Y. ACS Appl. Mater. Interfaces 2022, 14, 7741. doi: 10.1021/acsami.1c18291
doi: 10.1021/acsami.1c18291
Yu, M.; Kosinov, N.; van Haandel, L.; Kooyman, P. J.; Hensen, E. J. M. ACS Catal. 2020, 10, 1838. doi: 10.1021/acscatal.9b03178
doi: 10.1021/acscatal.9b03178
Iranmahbood, J.; Hill, D. O.; Toghiani, H. Appl. Catal. A: Gen. 2002, 231, 99. doi: 10.1016/S0926-860X[01]01011-0
doi: 10.1016/S0926-860X[01]01011-0
Travert, A.; Nakamura, H.; Santen, R. A. V.; Cristol, S.; Paul, J. F.; Payen, E. J. Am. Chem. Soc. 2002, 124, 7084. doi: 10.1021/ja011634o
doi: 10.1021/ja011634o
Cai, L.; He, J.; Liu, Q.; Yao, T.; Chen, L.; Yan, W.; Hu, F.; Jiang, Y.; Zhao, Y.; Hu, T.; et al. J. Am. Chem. Soc. 2015, 137, 2622. doi: 10.1021/ja5120908
doi: 10.1021/ja5120908
Liu, G.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H.; et al. Nat. Chem. 2017, 9, 810. doi: 10.1038/nchem.2740
doi: 10.1038/nchem.2740
Shuxian, Z.; Hall, W. K.; Ertl, G.; Konzinger, H. J. Catal. 1986, 100, 167. doi: 10.1016/0021-9517[86]90082-5
doi: 10.1016/0021-9517[86]90082-5
Portela, L.; Grange, P.; Delmon, B. Catal. Rev. 1995, 37, 699. doi: 10.1080/01614949508006452
doi: 10.1080/01614949508006452
Nakamura, I.; Hamada, H.; Fujitani, T. Surf. Sci. 2003, 544, 45. doi: 10.1016/j.susc.2003.08.010
doi: 10.1016/j.susc.2003.08.010
Travert, A.; Dujardin, C.; Mauge, F.; Cristol, S.; Paul, J. F.; Payen, E.; Bougeard, D. Catal. Today 2001, 70, 255. doi: 10.1016/S0920-5861[01]00422-9
doi: 10.1016/S0920-5861[01]00422-9
Chen, J.; Maugé, F.; Fallah, J. E.; Oliviero, L. J. Catal. 2014, 320, 170. doi: 10.1016/j.jcat.2014.10.005
doi: 10.1016/j.jcat.2014.10.005
Chen, J.; Garcia, E. D.; Oliviero, E.; Oliviero, L.; Maugé, F. J. Catal. 2016, 339, 153. doi: 10.1016/j.jcat.2016.04.010
doi: 10.1016/j.jcat.2016.04.010
Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2012, 116, 1826. doi: 10.1021/jp206555b
doi: 10.1021/jp206555b
Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. Catal. Commun. 2014, 52, 92. doi: 10.1016/j.catcom.2014.02.011
doi: 10.1016/j.catcom.2014.02.011
Liu, R.; Chen, C.; Chu, W.; Sun, W. Materials 2022, 15, 3775. doi: 10.3390/ma15113775
doi: 10.3390/ma15113775
Huang, M.; Cho, K. J. Phys. Chem. C 2009, 113, 5238. doi: 10.1021/jp807705y
doi: 10.1021/jp807705y
Zhang, C.; Liu, B.; Wang, Y.; Zhao, L.; Zhang, J.; Zong, Q.; Gao, J.; Xu, C. RSC Adv. 2017, 7, 11862. doi: 10.1039/C6RA27422F
doi: 10.1039/C6RA27422F
Dorokhov, V. S.; Ishutenko, D. I.; Nikul'shin, P. A.; Kotsareva, K. V.; Trusova, E. A.; Bondarenko, T. N.; Eliseev, O. L.; Lapidus, A. L.; Rozhdestvenskaya, N. N.; Kogan, V. M. Kinet. Catal. 2013, 54, 243. doi:10.1134/S0023158413020043
doi: 10.1134/S0023158413020043
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Qilin YU , Yifei XU , Pengjun ZHANG , Shuwei HAO , Chongqiang ZHU , Chunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328