Citation: Feifei Yang, Wei Zhou, Chaoran Yang, Tianyu Zhang, Yanqiang Huang. Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230801. doi: 10.3866/PKU.WHXB202308017 shu

Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst

  • Corresponding author: Feifei Yang, feiyang@cumt.edu.cn Tianyu Zhang, tzhang@bjfu.edu.cn
  • Received Date: 12 August 2023
    Revised Date: 7 September 2023
    Accepted Date: 8 September 2023
    Available Online: 14 September 2025

    Fund Project: the National Key Research and Development Program of China 2022YFA1506200National Natural Science Foundation of China 22208021Natural Science Foundation of Jiangsu Province, China BK20231075the Safety Discipline Group Project of China University of Mining and Technology, China 2022ZZX03the Carbon Peak Carbon Neutrality Technology Innovation Special Fund Project of Jiangsu Province, China BE2022613China National Postdoctoral Program for Innovative Talents BX2021294

  • Selective hydrogenation of CO2 to methanol with renewable H2 is a promising approach to effectively utilize the anthropogenic greenhouse gas CO2 in response to the growing environmental and energy challenges. Recently, MoS2 has gained attention as an attractive catalyst for CO2 hydrogenation due to its tunable S vacancy sites. However, its catalytic reactivity towards methanol production is still unsatisfactory because the general edge S vacancy site tends to favor CH4 formation. Herein, we report that the alkali K decorated MoS2 catalyst enables a dramatically enhancement in selective hydrogenation of CO2 to methanol, in contrast to the pristine MoS2 nanosheets that produce mainly CH4. We incorporated the K promoter into MoS2 using a simple physical mixture method, and we found that the loading of K has a crucial impact on the catalytic performance. The K-MoS2 catalyst with an appropriate K loading of 0.5 wt.% (mass fraction) delivers an optimized methanol selectivity of 81% and a methanol space time yield of 3.6 mmol·g-1·h-1 at mild reaction conditions of 220 ℃ and 5 MPa, which greatly outperforms the bare MoS2. Higher K loading would lead CO as the dominating product, while lower K loading is insufficient to tune the selectivity. Detailed characterization techniques, including X-ray diffraction (XRD), Raman, H2-temperature programmed reduction (TPR), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), CO-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and H2-D2-temperature programmed surface reaction (TPSR), reveal that K atoms tend to occupy the edge sites on MoS2 and serve as electron donators, which enhance the density of states at the Fermi surface and the basicity of the edge active sites, while preventing H2 dissociation on the edge S vacancy. The reaction mechanism, as studied by CO2-temperature programmed desorption (TPD) and CO2 + H2 DRIFTS, suggests a reverse water-gas shift route for CO2hydrogenation to methanol. The increased basicity at the edge active site has therefore facilitates CO2 adsorption and lowers the activation barrier for CO2 dissociation to CO. It also restrains the methanation activity of intermediate CO and directs the reaction path toward CO hydrogenation to methanol. However, the excessive inhibition of H2 dissociation at higher K loading levels causes the facile desorption of CO, resulting in high CO selectivity. These results highlight the appearing effect of K promoter on modulating the edge active sites of MoS2 to favor methanol formation over CH4, and provide a simple yet effective strategy for tuning the structure and catalytic performance of MoS2. This extends the application of MoS2-based catalysts in methanol synthesis via CO2 hydrogenation.
  • 加载中
    1. [1]

      Holdren, J. P. Science 2012, 319, 424. doi: 10.1126/science.1153386  doi: 10.1126/science.1153386

    2. [2]

      Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A  doi: 10.1039/C1CS15008A

    3. [3]

      Olah, G. A. Angew. Chem. Int. Ed. 2005, 44, 2636. doi: 10.1002/anie.200462121  doi: 10.1002/anie.200462121

    4. [4]

      Lyu, H. L.; Hu, B.; Liu, G. L.; Hong, X. L.; Zhuang, L. Acta Phys. -Chim. Sin. 2021, 36, 1911008. doi: 10.3866/PKU.WHXB201911008  doi: 10.3866/PKU.WHXB201911008

    5. [5]

      Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. Chem. Soc. Rev. 2020, 49, 1385. doi: 10.1039/C9CS00614A  doi: 10.1039/C9CS00614A

    6. [6]

      Han, B. X. Acta Phys. -Chim. Sin. 2021, 37, 2010063. doi: 10.3866/PKU.WHXB202010063  doi: 10.3866/PKU.WHXB202010063

    7. [7]

      Martin, O.; Martin, A. J.; Mondelli, C.; Mitchell, S.; Segawa, T. F.; Hauert, R.; Drouilly, C.; Curulla-Ferre, D.; Perez-Ramirez, J. Angew. Chem. Int. Ed. 2016, 55, 6261. doi: 10.1002/anie.201600943  doi: 10.1002/anie.201600943

    8. [8]

      Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. J. Appl. Catal. B: Environ. 2017, 218, 488. doi: 10.1016/j.apcatb.2017.06.069  doi: 10.1016/j.apcatb.2017.06.069

    9. [9]

      Frei, M. S.; Mondelli, C.; Garcia-Muelas, R.; Kley, K. S.; Puertolas, B.; Lopez, N.; Safonova, O. V.; Stewart, J. A.; Curulla Ferre, D.; Perez-Ramirez, J. Nat. Commun. 2019, 10, 3377. doi: 10.1038/s41467-019-11349-9  doi: 10.1038/s41467-019-11349-9

    10. [10]

      Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. ACS Catal. 2021, 11, 1406. doi: 10.1021/acscatal.0c03665  doi: 10.1021/acscatal.0c03665

    11. [11]

      Shen, C.; Bao, Q.; Xue, W.; Sun, K.; Zhang, Z.; Jia, X.; Mei, D.; Liu, C. J. Energy Chem. 2022, 65, 623. doi: 10.1016/j.jechem.2021.06.039  doi: 10.1016/j.jechem.2021.06.039

    12. [12]

      Su, H. Y.; Sun, K.; Liu, J.; Ma, X.; Jian, M.; Sun, C.; Xu, Y.; Yin, H.; Li, W. Appl. Surf. Sci. 2021, 561, 149925. doi: 10.1016/j.apsusc.2021.149925  doi: 10.1016/j.apsusc.2021.149925

    13. [13]

      Hu, J.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q.; Wen, W.; Yu, S.; Pan, Y.; et al. Nat. Catal. 2021, 4, 242. doi: 10.1038/s41929-021-00584-3  doi: 10.1038/s41929-021-00584-3

    14. [14]

      Zhou, S.; Zeng, H. C. ACS Catal. 2022, 12, 9872. doi: 10.1021/acscatal.2c02838  doi: 10.1021/acscatal.2c02838

    15. [15]

      Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V. I.; Garcia, H. Appl. Catal. B: Environ. 2019, 245, 351. doi: 10.1016/j.apcatb.2018.12.034  doi: 10.1016/j.apcatb.2018.12.034

    16. [16]

      Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.; et al. Nat. Nanotechnol. 2018, 13, 411. doi: 10.1038/s41565-018-0089-z  doi: 10.1038/s41565-018-0089-z

    17. [17]

      Lu, Z.; Cheng, Y.; Li, S.; Yang, Z.; Wu, R. Appl. Surf. Sci. 2020, 528, 147047. doi: 10.1016/j.apsusc.2020.147047  doi: 10.1016/j.apsusc.2020.147047

    18. [18]

      Aguilar, N.; Atilhan, M.; Aparicio, S. Appl. Surf. Sci. 2020, 534, 147611. doi: 10.1016/j.apsusc.2020.147611  doi: 10.1016/j.apsusc.2020.147611

    19. [19]

      Zheng, J.; Lebedev, K.; Wu, S.; Huang, C.; Ayvali, T.; Wu, T. S.; Li, Y.; Ho, P. L; Soo, Y. L.; Kirkland, A.; et al. J. Am. Chem. Soc. 2021, 143, 7979. doi: 10.1021/jacs.1c01097  doi: 10.1021/jacs.1c01097

    20. [20]

      Woo, H. C.; Nam, I. S.; Lee, J. S.; Chung, J. S.; Kim, Y. G. J. Catal. 1993, 142, 672. doi: 10.1006/jcat.1993.1240  doi: 10.1006/jcat.1993.1240

    21. [21]

      Santos, V. P.; Linden, B.; Chojecki, A.; Budroni, G.; Corthals, S.; Shibata, H.; Meima, G. R.; Kapteijn, F.; Makkee, M.; Gascon, J. ACS Catal. 2013, 3, 1634. doi: 10.1021/cs4003518  doi: 10.1021/cs4003518

    22. [22]

      Claure, M. T.; Chai, S. H.; Dai, S.; Unocic, K. A.; Alamgir, F. M.; Agrawal, P. K.; Jones, C. W. J. Catal. 2015, 324, 88. doi: 10.1016/j.jcat.2015.01.015  doi: 10.1016/j.jcat.2015.01.015

    23. [23]

      Zeng, F.; Xi, X.; Cao, H.; Pei, Y.; Heeres, H. J.; Palkovits, R. Appl. Catal. B: Environ. 2019, 246, 232. doi: 10.1016/j.apcatb.2019.01.063  doi: 10.1016/j.apcatb.2019.01.063

    24. [24]

      Juneau, M.; Vonglis, M.; Hartvigsen, J.; Frost, L.; Bayerl, D.; Dixit, M.; Mpourmpakis, G.; Morse, J. R.; Baldwin, J. W.; Willauer, H. D.; et al. Energy Environ. Sci. 2020, 13, 2524. doi: 10.1039/D0EE01457E  doi: 10.1039/D0EE01457E

    25. [25]

      Zhang, S.; Wu, Z.; Liu, X.; Shao, Z.; Xia, L.; Zhong, L.; Wang, H.; Sun, Y. Appl. Catal. B: Environ. 2021, 293, 120207. doi: 10.1016/j.apcatb.2021.120207  doi: 10.1016/j.apcatb.2021.120207

    26. [26]

      Porosoff, M. D.; Baldwin, J. W.; Peng, X.; Mpourmpakis, G.; Willauer, H. D. Chem Sus Chem 2017, 10, 2408. doi: 10.1002/cssc.201700412  doi: 10.1002/cssc.201700412

    27. [27]

      Rabelo-Neto, R. C.; Almeida, M. P.; Silveira, E. B.; Ayala, M.; Watson, C. D.; Villarreal, J.; Cronauer, D. C.; Kropf, A. J.; Martinelli, M.; Noronha, F. B.; et al. Appl. Catal. B: Environ. 2022, 315, 121533. doi: 10.1016/j.apcatb.2022.121533  doi: 10.1016/j.apcatb.2022.121533

    28. [28]

      Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2011, 115, 9025. doi: 10.1021/jp110069r  doi: 10.1021/jp110069r

    29. [29]

      Bertrand, P. A. Phys. Rev. B: Condens. Matter. 1991, 44, 5745. doi: 10.1103/PhysRevB.44.5745  doi: 10.1103/PhysRevB.44.5745

    30. [30]

      Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. Adv. Funct. Mater. 2012, 22, 1385. doi: 10.1002/adfm.201102111  doi: 10.1002/adfm.201102111

    31. [31]

      Wang, X.; Zhang, Y.; Si, H.; Zhang, Q.; Wu, J.; Gao, L.; Wei, X.; Sun, Y.; Liao, Q.; Zhang, Z.; et al. J. Am. Chem. Soc. 2020, 142, 4298. doi: 10.1021/jacs.9b12113  doi: 10.1021/jacs.9b12113

    32. [32]

      Wang, Q.; Li, X.; Ma, X.; Li, Z.; Yang, Y. ACS Appl. Mater. Interfaces 2022, 14, 7741. doi: 10.1021/acsami.1c18291  doi: 10.1021/acsami.1c18291

    33. [33]

      Yu, M.; Kosinov, N.; van Haandel, L.; Kooyman, P. J.; Hensen, E. J. M. ACS Catal. 2020, 10, 1838. doi: 10.1021/acscatal.9b03178  doi: 10.1021/acscatal.9b03178

    34. [34]

      Iranmahbood, J.; Hill, D. O.; Toghiani, H. Appl. Catal. A: Gen. 2002, 231, 99. doi: 10.1016/S0926-860X[01]01011-0  doi: 10.1016/S0926-860X[01]01011-0

    35. [35]

      Travert, A.; Nakamura, H.; Santen, R. A. V.; Cristol, S.; Paul, J. F.; Payen, E. J. Am. Chem. Soc. 2002, 124, 7084. doi: 10.1021/ja011634o  doi: 10.1021/ja011634o

    36. [36]

      Cai, L.; He, J.; Liu, Q.; Yao, T.; Chen, L.; Yan, W.; Hu, F.; Jiang, Y.; Zhao, Y.; Hu, T.; et al. J. Am. Chem. Soc. 2015, 137, 2622. doi: 10.1021/ja5120908  doi: 10.1021/ja5120908

    37. [37]

      Liu, G.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H.; et al. Nat. Chem. 2017, 9, 810. doi: 10.1038/nchem.2740  doi: 10.1038/nchem.2740

    38. [38]

      Shuxian, Z.; Hall, W. K.; Ertl, G.; Konzinger, H. J. Catal. 1986, 100, 167. doi: 10.1016/0021-9517[86]90082-5  doi: 10.1016/0021-9517[86]90082-5

    39. [39]

      Portela, L.; Grange, P.; Delmon, B. Catal. Rev. 1995, 37, 699. doi: 10.1080/01614949508006452  doi: 10.1080/01614949508006452

    40. [40]

      Nakamura, I.; Hamada, H.; Fujitani, T. Surf. Sci. 2003, 544, 45. doi: 10.1016/j.susc.2003.08.010  doi: 10.1016/j.susc.2003.08.010

    41. [41]

      Travert, A.; Dujardin, C.; Mauge, F.; Cristol, S.; Paul, J. F.; Payen, E.; Bougeard, D. Catal. Today 2001, 70, 255. doi: 10.1016/S0920-5861[01]00422-9  doi: 10.1016/S0920-5861[01]00422-9

    42. [42]

      Chen, J.; Maugé, F.; Fallah, J. E.; Oliviero, L. J. Catal. 2014, 320, 170. doi: 10.1016/j.jcat.2014.10.005  doi: 10.1016/j.jcat.2014.10.005

    43. [43]

      Chen, J.; Garcia, E. D.; Oliviero, E.; Oliviero, L.; Maugé, F. J. Catal. 2016, 339, 153. doi: 10.1016/j.jcat.2016.04.010  doi: 10.1016/j.jcat.2016.04.010

    44. [44]

      Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2012, 116, 1826. doi: 10.1021/jp206555b  doi: 10.1021/jp206555b

    45. [45]

      Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. Catal. Commun. 2014, 52, 92. doi: 10.1016/j.catcom.2014.02.011  doi: 10.1016/j.catcom.2014.02.011

    46. [46]

      Liu, R.; Chen, C.; Chu, W.; Sun, W. Materials 2022, 15, 3775. doi: 10.3390/ma15113775  doi: 10.3390/ma15113775

    47. [47]

      Huang, M.; Cho, K. J. Phys. Chem. C 2009, 113, 5238. doi: 10.1021/jp807705y  doi: 10.1021/jp807705y

    48. [48]

      Zhang, C.; Liu, B.; Wang, Y.; Zhao, L.; Zhang, J.; Zong, Q.; Gao, J.; Xu, C. RSC Adv. 2017, 7, 11862. doi: 10.1039/C6RA27422F  doi: 10.1039/C6RA27422F

    49. [49]

      Dorokhov, V. S.; Ishutenko, D. I.; Nikul'shin, P. A.; Kotsareva, K. V.; Trusova, E. A.; Bondarenko, T. N.; Eliseev, O. L.; Lapidus, A. L.; Rozhdestvenskaya, N. N.; Kogan, V. M. Kinet. Catal. 2013, 54, 243. doi:10.1134/S0023158413020043  doi: 10.1134/S0023158413020043

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    14. [14]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    15. [15]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    16. [16]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    17. [17]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

Metrics
  • PDF Downloads(3)
  • Abstract views(290)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return