Citation: Wei Sun, Yongjing Wang, Kun Xiang, Saishuai Bai, Haitao Wang, Jing Zou, Arramel, Jizhou Jiang. CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230801. doi: 10.3866/PKU.WHXB202308015 shu

CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction

  • Corresponding author: Kun Xiang, xiangkun@wit.edu.cn Jizhou Jiang, 027wit@163.com
  • Received Date: 12 August 2023
    Revised Date: 18 September 2023
    Accepted Date: 21 September 2023
    Available Online: 27 September 2023

    Fund Project: the National Natural Science Foundation of China 62004143the National Natural Science Foundation of China 22174033the Key R & D Program of Hubei Province 2022BAA084the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University JDGD-202227the Knowledge Innovation Program of Wuhan Shuguang Project 2022010801020355

  • Electrocatalysts play a pivotal role in the electrochemical water splitting process to produce hydrogen fuel. The advancement of this technology relies on the development of efficient, cost-effective, and readily available electrocatalysts. Two-dimensional (2D) MXene materials have garnered significant attention due to their unique physicochemical properties, rendering them promising candidates for electrocatalytic applications. While there are numerous types of MXene materials available, only a few possess intrinsic hydrogen evolution reaction (HER) catalytic activity. However, MXene materials can serve as excellent platforms for enhancing catalytic HER activity by combining them with other substances, owing to their large specific surface area, high conductivity, and abundant surface functional groups. In this study, we initially conducted a predictive analysis using density functional theory (DFT) to assess the potential of combining CoP with Ti3C2Tx MXene materials (where Tx represents ―F and ―OH functional groups) in reducing the adsorption free energy of hydrogen (ΔGH*). The results indicated that the CoP-Ti3C2Tx nanocomposites exhibited a ΔGH* value approaching 0, suggesting promising HER performance. Following this theoretical prediction, we synthesized the CoP-Ti3C2Tx MXene nanocomposites. Comprehensive characterization of the synthesized nanocomposites was performed using various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These analyses confirmed the successful decoration of CoP on the MXene nanosheets and provided insights into the structural and compositional properties of the nanocomposites. Furthermore, we evaluated the electrochemical performance of the CoP-Ti3C2Tx nanocomposites through linear sweep voltammetry and chronoamperometry measurements. The results demonstrated superior catalytic activity and stability for the HER compared to pure Ti3C2Tx and CoP catalysts. Specifically, the as-synthesized CoP-Ti3C2Tx MXene nanocomposites exhibited remarkable electrocatalytic HER kinetics, featuring a low overpotential of 135 mV at a current density of 10 mA∙cm−2 and a small Tafel slope of 48 mV∙dec−1 in a 0.5 mol∙L−1 H2SO4 solution, with the electrocatalyst maintaining stability for up to 50 h. Subsequent theoretical calculations were conducted to elucidate the factors contributing to the exceptional electrocatalytic performance of the CoP-Ti3C2Tx MXene nanocomposites. It was determined that the metallic conductivity of Ti3C2Tx MXene materials, well-structured interface charge transfer, and optimized electronic structure of CoP played significant roles in enhancing catalytic activity. In conclusion, this study underscores the potential of CoP-decorated Ti3C2Tx MXene nanocomposites as promising electrocatalysts for efficient HER in various energy conversion and storage devices. These findings represent a significant contribution to the development of robust and efficient catalysts for hydrogen generation, a critical component of renewable energy applications and sustainable development.
  • 加载中
    1. [1]

      Kittner, N.; Lill, F.; Kammen, D. M. Nat. Energy 2017, 2, 17125. doi: 10.1038/nenergy.2017.125  doi: 10.1038/nenergy.2017.125

    2. [2]

      Yang, Y.; Wu, X.; Ahmad, M.; Si, F.; Chen, S.; Liu, C.; Zhang, Y.; Wang, L.; Zhang, J.; Luo, J. -L.; Fu, X. -Z. Angew. Chem. Int. Ed. 2023, 62, e202302950, doi: 10.1002/anie.202302950  doi: 10.1002/anie.202302950

    3. [3]

      Fan, Z.; Zhang, W.; Li, L.; Wang, Y.; Zou, Y.; Wang, S.; Chen, Z. Green Chem. 2022, 24, 7818. doi: 10.1039/D2GC02956A  doi: 10.1039/D2GC02956A

    4. [4]

      Tang, S.; Liu, Z.; Qiu, F.; Liu, Q.; Mao, Y.; Zhang, L. Green Chem. 2022, 24, 9668. doi: 10.1039/D2GC03351H  doi: 10.1039/D2GC03351H

    5. [5]

      Jiang, J.; Bai, S.; Yang, M.; Zou, J.; Li, N.; Peng, J.; Wang, H.; Xiang, K.; Liu, S.; Zhai, T. Nano Res. 2022, 15, 5977. doi: 10.1007/s12274-022-4276-8  doi: 10.1007/s12274-022-4276-8

    6. [6]

      Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J. -L.; Fu, X. -Z. Adv. Funct. Mater. 2020, 30, 1909610. doi: 10.1002/adfm.201909610  doi: 10.1002/adfm.201909610

    7. [7]

      Ling, C. -Y.; Wang, J. -L. Acta Phys. -Chim. Sin. 2017, 33, 869.  doi: 10.3866/PKU.WHXB201702088

    8. [8]

      Shuai, T. -Y.; Zhan, Q. -N.; Xu, H. -M.; Zhang, Z. -J.; Li, G. -R. Green Chem. 2023, 25, 1749. doi: 10.1039/D2GC04205C  doi: 10.1039/D2GC04205C

    9. [9]

      Xiang, K.; Guo, J.; Xu, J.; Qu, T.; Zhang, Y.; Chen, S.; Hao, P.; Li, M.; Xie, M.; Guo, X.; Ding, W. ACS Appl. Energy Mater. 2018, 1, 4040. doi: 10.1021/acsaem.8b00723  doi: 10.1021/acsaem.8b00723

    10. [10]

      Xiang, K.; Song, Z.; Wu, D.; Deng, X.; Wang, X.; You, W.; Peng, Z.; Wang, L.; Luo, J. -L.; Fu, X. -Z. J. Mater. Chem. A 2021, 9, 6316. doi: 10.1039/D0TA10501E  doi: 10.1039/D0TA10501E

    11. [11]

      Yan, D.; Zhang, L.; Chen, Z.; Xiao, W.; Yang, X. Acta Phys. -Chim. Sin. 2021, 37, 2009054.  doi: 10.3866/PKU.WHXB202009054

    12. [12]

      Liao, L.; Cheng C.; Zhou, H.; Qi, Y.; Li, D.; Cai, F.; Yu, B.; Long, R.; Yu, F. Mater. Today Phys. 2022, 22, 100589. doi: 10.1016/j.mtphys.2021.100589  doi: 10.1016/j.mtphys.2021.100589

    13. [13]

      Hansen, J. N.; Prats, H.; Toudahl, K. K.; Secher, N. M.; Chan, K.; Kibsgaard, J.; Chorkendorff, I. ACS Energy Lett. 2021, 6, 1175. doi: 10.1021/acsenergylett.1c00246  doi: 10.1021/acsenergylett.1c00246

    14. [14]

      Chen, Q.; Du, C.; Yang, Y.; Shen, Q.; Qin, J.; Hong, M.; Zhang, X.; Chen, J. Mater. Today Phys. 2023, 30, 100931. doi: 10.1016/j.mtphys.2022.100931  doi: 10.1016/j.mtphys.2022.100931

    15. [15]

      Ling, C.; Shi, L.; Ouyang, Y.; Chen, Q.; Wang, J. Adv. Sci. 2016, 3, 1600180. doi: 10.1002/advs.201600180  doi: 10.1002/advs.201600180

    16. [16]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138  doi: 10.1002/adma.201304138

    17. [17]

      Jiang, J.; Zou, Y.; Arramel; Li, F.; Wang, J.; Zou, J.; Li, N. J. Mater. Chem. A 2021, 9, 24195. doi: 10.1039/D1TA07332J  doi: 10.1039/D1TA07332J

    18. [18]

      Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu, S. npj 2D Mater. Appl. 2021, 5, 78. doi: 10.1038/s41699-021-00259-4  doi: 10.1038/s41699-021-00259-4

    19. [19]

      Jiang, J.; Bai, S.; Zou, J.; Liu, S.; Hsu, J. -P.; Li, N.; Zhu, G.; Zhuang, Z.; Kang, Q.; Zhang Y. Nano Res. 2022, 15, 6551. doi: 10.1007/s12274-022-4312-8  doi: 10.1007/s12274-022-4312-8

    20. [20]

      Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.; Wu, P.; Hsu, J. -P. Nano Res. 2023, 16, 127. doi: 10.1007/s12274-022-4799-z  doi: 10.1007/s12274-022-4799-z

    21. [21]

      Jiang, J.; Li, F.; Zou, J.; Liu, S.; Wang, J.; Zou, Y.; Xiang, K.; Zhang, H.; Zhu, G.; Zhang, Y.; et al. Sci. China Mater. 2022, 65, 2895. doi: 10.1007/s40843-022-2186-0  doi: 10.1007/s40843-022-2186-0

    22. [22]

      Li, N.; Peng, J.; Ong, W. -J.; Ma, T.; Arramel, Zhang, P.; Jiang, J.; Yuan, X.; Zhang, C. Matter 2021, 4, 377. doi: 10.1016/j.matt.2020.10.024  doi: 10.1016/j.matt.2020.10.024

    23. [23]

      Zeng, Z.; Chen, X.; Weng, K.; Wu, Y.; Zhang, P.; Jiang, J.; Li, N. npj Comput. Mater. 2021, 7, 80. doi: 10.1038/s41524-021-00550-4  doi: 10.1038/s41524-021-00550-4

    24. [24]

      Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.; Palisaitis, J.; Persson, P. O. Å.; Eklund, P.; et al. Science 2023, 379, 1130. doi: 10.1126/science.add5901  doi: 10.1126/science.add5901

    25. [25]

      Wang, D.; Zhou, C.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M.; Vaikuntanathan, S.; Liu, C.; Klie, R. F.; Talapin, D. V. Science 2023, 379, 1242. doi: 10.1126/science.add9204  doi: 10.1126/science.add9204

    26. [26]

      Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. ACS Energy Lett. 2016, 1, 589. doi: 10.1021/acsenergylett.6b00247  doi: 10.1021/acsenergylett.6b00247

    27. [27]

      Shinde, P. V.; Mane, P.; Chakraborty, B.; Rout, C. S. J. Colloid Interface Sci. 2021, 602, 232. doi: 10.1016/j.jcis.2021.06.007  doi: 10.1016/j.jcis.2021.06.007

    28. [28]

      Li, S.; Que, X.; Chen, X.; Lin, T.; Sheng, L.; Peng, J.; Li, J.; Zhai, M. ACS Appl. Energy Mater. 2020, 3, 10882. doi: 10.1021/acsaem.0c01900  doi: 10.1021/acsaem.0c01900

    29. [29]

      Zou, J.; Wu, J.; Wang, Y.; Deng, F.; Jiang, J.; Zhang, Y.; Liu, S.; Li, N.; Zhang, H.; Yu, J.; et al. Chem. Soc. Rev. 2022, 51, 2972. doi: 10.1039/D0CS01487G  doi: 10.1039/D0CS01487G

    30. [30]

      Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; She, Z. W. ACS Nano 2020, 14, 16140. doi: 10.1021/acsnano.0c08671  doi: 10.1021/acsnano.0c08671

    31. [31]

      Huang, H.; Xue, Y.; Xie, Y.; Yang, Y.; Yang, L.; He, H.; Jiang, Q.; Ying, G. Inorg. Chem. Front. 2022, 9, 1171. doi: 10.1039/D1QI01528A  doi: 10.1039/D1QI01528A

    32. [32]

      Li, G.; Sun, T.; Niu, H. -J.; Yan, Y.; Liu, T.; Jiang, S.; Yang, Q.; Zhou, W.; Guo, L. Adv. Funct. Mater. 2023, 33, 2212514. doi: 10.1002/adfm.202212514  doi: 10.1002/adfm.202212514

    33. [33]

      Gong, S.; Liu, H.; Zhao, F.; Zhang, Y.; Xu, H.; Li, M.; Qi, J.; Wang, H.; Li, C.; Peng, W.; et al ACS Nano 2023, 17, 4843. doi: 10.1021/acsnano.2c11430  doi: 10.1021/acsnano.2c11430

    34. [34]

      Huang, K.; Lv, C.; Li, C.; Bai, H.; Meng, X. J. Colloid Interface Sci. 2023, 636, 21. doi: 10.1016/j.jcis.2022.12.169  doi: 10.1016/j.jcis.2022.12.169

    35. [35]

      Guo, Y.; Du, Z.; Cao, Z.; Li, B.; Yang, S. Small Methods 2023, 7, 2201559. doi: 10.1002/smtd.202201559  doi: 10.1002/smtd.202201559

    36. [36]

      Zheng, X.; Yuan, M.; Huang, X.; Li, H.; Sun, G. Chin. Chem. Lett. 2023, 34, 107152. doi: 10.1016/j.cclet.2022.01.045  doi: 10.1016/j.cclet.2022.01.045

    37. [37]

      Zhao, J.; Luo, S.; Chen, Y.; Zhu, R.; Liang, J.; Wang, F.; Fu, X.; Wu, C. ChemistrySelect 2022, 7, e202200254. doi: 10.1002/slct.202200254  doi: 10.1002/slct.202200254

    38. [38]

      Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256(96)00008-0

    39. [39]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169  doi: 10.1103/PhysRevB.54.11169

    40. [40]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    41. [41]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758  doi: 10.1103/PhysRevB.59.1758

    42. [42]

      Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953  doi: 10.1103/PhysRevB.50.17953

    43. [43]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344  doi: 10.1063/1.3382344

    44. [44]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j  doi: 10.1021/jp047349j

    45. [45]

      Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.; Tang, D.; Cao, X.; Liu, C.; et al. Nat. Commun. 2018, 9, 2120. doi: 10.1038/s41467-018-04501-4  doi: 10.1038/s41467-018-04501-4

    46. [46]

      Ma, X.; Tu, X.; Gao, F.; Xie, Y.; Huang, X.; Fernandez, C.; Qu, F.; Liu, G.; Lu, L.; Yu, Y. Sens. Actuators B: Chem. 2020, 309, 127815. doi: 10.1016/j.snb.2020.127815  doi: 10.1016/j.snb.2020.127815

    47. [47]

      Yang, D.; Zhu, J.; Rui, X.; Tan, H.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. ACS Appl. Mater. Interfaces 2013, 5, 1093. doi: 10.1021/am302877q  doi: 10.1021/am302877q

    48. [48]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306  doi: 10.1002/adma.201102306

    49. [49]

      Du, C. -F.; Dinh, K. N.; Liang, Q.; Zheng, Y.; Luo, Y.; Zhang, J.; Yan, Q. Adv. Energy Mater. 2018, 8, 1801127. doi: 10.1002/aenm.201801127  doi: 10.1002/aenm.201801127

    50. [50]

      Li, X.; Lv, X.; Sun, X.; Yang, C.; Zheng, Y. -Z.; Yang, L.; Li, S.; Tao, X. Appl. Catal. B: Environ. 2021, 284, 119708. doi: 10.1016/j.apcatb.2020.119708  doi: 10.1016/j.apcatb.2020.119708

    51. [51]

      Han, M.; Yang, J.; Jiang, J.; Jing, R.; Ren, S.; Yan, C. J. Colloid. Interface Sci. 2021, 582, 1099. doi: 10.1016/j.jcis.2020.09.001  doi: 10.1016/j.jcis.2020.09.001

    52. [52]

      Li, H.; Han, Y.; Zhao, H.; Qi, W.; Zhang, D.; Yu, Y.; Cai, W.; Li, S.; Lai, J.; Huang, B.; Wang, L. Nat. Commun. 2020, 11, 5437. doi: 10.1038/s41467-020-19277-9  doi: 10.1038/s41467-020-19277-9

    53. [53]

      Peng, S.; Gong, F.; Li, L.; Yu, D.; Ji, D.; Zhang, T.; Hu, Z.; Zhang, Z.; Chou, S.; Du, Y.; Ramakrishna, S. J. Am. Chem. Soc. 2018, 140, 13644. doi: 10.1021/jacs.8b05134  doi: 10.1021/jacs.8b05134

  • 加载中
    1. [1]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    2. [2]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    9. [9]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Xinlin ZhangCheng TangHaitao LiJie SunAijun DuMinghong WuHaijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    16. [16]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    18. [18]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    19. [19]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    20. [20]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

Metrics
  • PDF Downloads(0)
  • Abstract views(229)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return