Citation: Yajin Li, Huimin Liu, Lan Ma, Jiaxiong Liu, Dehua He. Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230800. doi: 10.3866/PKU.WHXB202308005 shu

Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst

  • Corresponding author: Huimin Liu, liuhuimin08@tsinghua.org.cn Dehua He, hedeh@mail.tsinghua.edu.cn
  • Received Date: 3 August 2023
    Revised Date: 6 October 2023
    Accepted Date: 10 October 2023
    Available Online: 16 October 2023

    Fund Project: the National Natural Science Foundation of China 21573120Education Department of Liaoning Province JQL202015401

  • Glycerol carbonylation with CO2 to synthesize glycerol carbonate is a promising approach for CO2 utilization. This reaction can be achieved through a thermally-driven catalytic pathway, but it is constrained by thermodynamic equilibrium. In the present study, we introduced solar energy into the reaction system to enable a photo-thermal synergistic catalytic reaction, breaking through the thermodynamic limitations. We developed a series of xAu/20Co3O4-ZnO catalysts, where Co3O4-ZnO, a composite of p-type semi-conductor Co3O4 and n-type semi-conductor ZnO, exhibited a heterojunction structure, and Au nanoparticles loaded onto the surface of Co3O4-ZnO revealed the localized surface plasmon resonance (LSPR). We investigated the ability of xAu/Co3O4-ZnO to absorb visible light absorption, the efficiency of separating photo-generated hole-electron pairs, and the impact of Au on the photothermal synergistic catalytic performances of Au/Co3O4-ZnO catalysts. We also examined the effects of Au doping on the bulk and surface properties, including crystalline structures, morphologies, specific surface areas and pore structures, the binding energies of the elements, surface acid-base sites, and reduction behaviors of xAu/Co3O4-ZnO. Our findings revealed that the heterojunction structure of Au/20Co3O4-ZnO facilitated visible light absorption and hole-electron pair separation. The size of Au nano-particles (NPs) loaded on Co3O4-ZnO surface was approximately 50 nm. The loading of Au altered the electron density of Co and Zn, improved the reducibility of Co species, and enhanced the presence of oxygen vacancies on Co3O4-ZnO surface. The LSPR of Au NPs further enhanced the visible light absorption capacity of Au/20Co3O4-ZnO, and improved the separating of photogenerated hole-electron pairs, thus enhancing the photothermal catalytic performances. With the optimizing conditions (150 ℃, 5 MPa, 6 h, and 225 W visible light irradiation), the 2%Au/20Co3O4-ZnO catalyst demonstrated excellent performances, yielding a glycerol carbonate yield of 6.5%. This study is expected to serve as a reference for the rational design of improved photothermal catalysts for glycerol carbonylation with CO2 to produce glycerol carbonate in the future.
  • 加载中
    1. [1]

      Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575 (7781), 87. doi: 10.1038/s41586-019-1681-6  doi: 10.1038/s41586-019-1681-6

    2. [2]

      Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. G. Chem. Rev. 2020, 120 (15), 7984. doi: 10.1021/acs.chemrev.9b00723  doi: 10.1021/acs.chemrev.9b00723

    3. [3]

      Huo, Y.; Zhang, J. F.; Dai, K.; Li, Q.; Lv, J. L.; Zhu, G. P.; Liang, C. H. Appl. Catal. B-Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073  doi: 10.1016/j.apcatb.2018.09.073

    4. [4]

      Chen, Y. L.; Wang, Z.; Zhong, Z. Q. Renew. Energy 2019, 131, 208. doi: 10.1016/j.renene.2018.07.047  doi: 10.1016/j.renene.2018.07.047

    5. [5]

      Bekun, F. V.; Alola, A. A.; Sarkodie, S. A. Sci. Total Environ. 2019, 657, 1023. doi: 10.1016/j.scitotenv.2018.12.104  doi: 10.1016/j.scitotenv.2018.12.104

    6. [6]

      Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166  doi: 10.1002/adma.201807166

    7. [7]

      Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Chem. Soc. Rev. 2019, 48 (7), 1972. doi: 10.1039/c8cs00607e  doi: 10.1039/c8cs00607e

    8. [8]

      Aitbekova, A.; Wu, L. H.; Wrasman, C. J.; Boubnov, A.; Hoffman, A. S.; Goodman, E. D.; Bare, S. R.; Cargnello, M. J. Am. Chem. Soc. 2018, 140 (42), 13736. doi: 10.1021/jacs.8b07615  doi: 10.1021/jacs.8b07615

    9. [9]

      Frei, M. S.; Capdevila-Cortada, M.; Garcia-Muelas, R.; Mondelli, C.; Lopez, N.; Stewart, J. A.; Ferre, D. C.; Perez-Ramirez, J. J. Catal. 2018, 361, 313. doi: 10.1016/j.jcat.2018.03.014  doi: 10.1016/j.jcat.2018.03.014

    10. [10]

      Ma, Z. Q.; Porosoff, M. D. ACS Catal. 2019, 9 (3), 2639. doi: 10.1021/acscatal.8b05060  doi: 10.1021/acscatal.8b05060

    11. [11]

      Nie, X. W.; Jiang, X.; Wang, H. Z.; Luo, W. J.; Janik, M. J.; Chen, Y. G.; Guo, X. W.; Song, C. S. ACS Catal. 2018, 8 (6), 4873. doi: 10.1021/acscatal.7b04150  doi: 10.1021/acscatal.7b04150

    12. [12]

      Yang, W. W.; Liu, H. M.; Li, Y. M.; Zhang, J.; Wu, H.; He, D. H. Catal. Today 2016, 259, 438. doi: 10.1016/j.cattod.2015.04.012  doi: 10.1016/j.cattod.2015.04.012

    13. [13]

      Liu, H. M.; Li, Y. J.; He, D. H. Energy Technol. 2020, 8 (8), 1900493. doi: 10.1002/ente.201900493  doi: 10.1002/ente.201900493

    14. [14]

      Chang, T.; Tamura, M.; Nakagawa, Y.; Fukaya, N.; Choi, J. C.; Mishima, T.; Matsumoto, S.; Hamura, S.; Tomishige, K. Green Chem. 2020, 22 (21), 7321. doi: 10.1039/d0gc02717k  doi: 10.1039/d0gc02717k

    15. [15]

      Truong, C. C.; Mishra, D. K. J. CO2 Util. 2020, 41, 101252. doi: 10.1016/j.jcou.2020.101252  doi: 10.1016/j.jcou.2020.101252

    16. [16]

      Liu, J. X.; Li, Y. M.; Zhang, J.; He, D. H. Appl. Catal. A-Gen. 2016, 513, 9. doi: 10.1016/j.apcata.2015.12.030  doi: 10.1016/j.apcata.2015.12.030

    17. [17]

      Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Catal. Sci. Technol. 2015, 5 (2), 989. doi: 10.1039/c4cy01237b  doi: 10.1039/c4cy01237b

    18. [18]

      Su, X. L. N.; Lin, W. W.; Cheng, H. Y.; Zhang, C.; Wang, Y.; Yu, X. J.; Wu, Z. J.; Zhao, F. Y. Green Chem. 2017, 19 (7), 1775. doi: 10.1039/c7gc00260b  doi: 10.1039/c7gc00260b

    19. [19]

      Zhang, J.; He, D. H. J. Colloid Interface Sci. 2014, 419, 31. doi: 10.1016/j.jcis.2013.12.049  doi: 10.1016/j.jcis.2013.12.049

    20. [20]

      Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Nat. Nanotechnol. 2011, 6 (1), 28. doi: 10.1038/nnano.2010.235  doi: 10.1038/nnano.2010.235

    21. [21]

      Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. Adv. Mater. 2017, 29 (3), 1603730. doi: 10.1002/adma.201603730  doi: 10.1002/adma.201603730

    22. [22]

      Reithofer, M. R.; Sum, Y. N.; Zhang, Y. G. Green Chem. 2013, 15 (8), 2086. doi: 10.1039/c3gc40790j  doi: 10.1039/c3gc40790j

    23. [23]

      Park, C. Y.; Huy, N. P.; Shin, E. W. Mol. Catal. 2017, 435, 99. doi: 10.1016/j.mcat.2017.03.025  doi: 10.1016/j.mcat.2017.03.025

    24. [24]

      Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Catal. Sci. Technol. 2021, 11 (3), 1007. doi: 10.1039/d0cy01821j  doi: 10.1039/d0cy01821j

    25. [25]

      Liu, H. M.; Li, Y. J.; Ma, L.; Liu, J. X.; He, D. H. Fuel 2022, 315, 123294. doi: 10.1016/j.fuel.2022.123294  doi: 10.1016/j.fuel.2022.123294

    26. [26]

      Gelle, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Chem. Rev. 2020, 120 (2), 986. doi: 10.1021/acs.chemrev.9b00187  doi: 10.1021/acs.chemrev.9b00187

    27. [27]

      Xu, Y.; Bai, P.; Zhou, X. D.; Akimov, Y.; Png, C. E.; Ang, L. K.; Knoll, W.; Wu, L. Adv. Opt. Mater. 2019, 7 (9), 1801433. doi: 10.1002/adom.201801433  doi: 10.1002/adom.201801433

    28. [28]

      Kim, M.; Lee, J. H.; Nam, J. M. Adv. Sci. 2019, 6 (17), 1900471. doi: 10.1002/advs.201900471  doi: 10.1002/advs.201900471

    29. [29]

      Madhumitha, G.; Fowsiya, J.; Gupta, N.; Kumar, A.; Singh, M. J. Phys. Chem. Solids 2019, 127, 43. doi: 10.1016/j.jpcs.2018.12.005  doi: 10.1016/j.jpcs.2018.12.005

    30. [30]

      Reddy, K.; Reddy, A. J.; Krishna, R. H.; Nagabhushana, B. M.; Gopal, R. J. Asian Ceram. Soc. 2017, 5 (3), 350. doi: 10.1016/j.jascer.2017.06.008  doi: 10.1016/j.jascer.2017.06.008

    31. [31]

      Karimi-Maleh, H.; Yola, M. L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P. S.; Rouhi, J.; Baghayeri, M. J. Colloid Interface Sci. 2021, 592, 174. doi: 10.1016/j.jcis.2021.02.066  doi: 10.1016/j.jcis.2021.02.066

    32. [32]

      Lukashuk, L.; Yigit, N.; Rameshan, R.; Kolar, E.; Teschner, D.; Havecker, M.; Knop-Gericke, A.; Schlogl, R.; Fottinger, K.; Rupprechter, G. ACS Catal. 2018, 8 (9), 8630. doi: 10.1021/acscatal.8b01237  doi: 10.1021/acscatal.8b01237

    33. [33]

      Aparna, T. K.; Sivasubramanian, R.; Dar, M. A. J. Alloy. Compd. 2018, 741, 1130. doi: 10.1016/j.jallcom.2018.01.205  doi: 10.1016/j.jallcom.2018.01.205

    34. [34]

      Yang, Y. T.; Jiang, K. D.; Guo, J.; Li, J.; Peng, X. L.; Hong, B.; Wang, X. Q.; Ge, H. L. Chem. Eng. J. 2020, 381, 122596. doi: 10.1016/j.cej.2019.122596  doi: 10.1016/j.cej.2019.122596

    35. [35]

      Wang, C.; Lin, G.; Zhao, J. L.; Wang, S. X.; Zhang, L. B.; Xi, Y. H.; Li, X. T.; Ying, Y. Chem. Eng. J. 2020, 380, 122511. doi: 10.1016/j.cej.2019.122511  doi: 10.1016/j.cej.2019.122511

    36. [36]

      Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. ACS Appl. Mater. Interfaces 2012, 4 (8), 4024. doi: 10.1021/am300835p  doi: 10.1021/am300835p

    37. [37]

      Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. J. Phys. Chem. C 2008, 112 (29), 10773. doi: 10.1021/jp8027275  doi: 10.1021/jp8027275

    38. [38]

      Lin, X. T.; Li, S. J.; He, H.; Wu, Z.; Wu, J. L.; Chen, L. M.; Ye, D. Q.; Fu, M. L. Appl. Catal. B-Environ. 2018, 223, 91. doi: 10.1016/j.apcatb.2017.06.071  doi: 10.1016/j.apcatb.2017.06.071

    39. [39]

      Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Chem. Eng. J. 2018, 334, 273. doi: 10.1016/j.cej.2017.10.040  doi: 10.1016/j.cej.2017.10.040

    40. [40]

      Gomes, J. R. B.; Ramalho, J. P. P.; Illas, F. Surf. Sci. 2010, 604 (3–4), 428. doi: 10.1016/j.susc.2009.12.009  doi: 10.1016/j.susc.2009.12.009

    41. [41]

      Liu, H. M.; Meng, X. G.; Dao, T. D.; Zhang, H. B.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. H. Angew. Chem. Int. Ed. 2015, 54 (39), 11545. doi: 10.1002/anie.201504933  doi: 10.1002/anie.201504933

    42. [42]

      Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Nano Energy 2016, 26, 398. doi: 10.1016/j.nanoen.2016.05.045  doi: 10.1016/j.nanoen.2016.05.045

    43. [43]

      Ashokkumar, M.; Muthukumaran, S. J. Magn. Magn. Mater. 2015, 374, 61. doi: 10.1016/j.jmmm.2014.08.023  doi: 10.1016/j.jmmm.2014.08.023

    44. [44]

      Kulal, N.; Vetrivel, R.; Krishna, N. S. G.; Shanbhag, G. V. ACS Appl. Nano Mater. 2021, 4 (5), 4388. doi: 10.1021/acsanm.0c03166  doi: 10.1021/acsanm.0c03166

    45. [45]

      Hu, C. C.; Chang, C. W.; Yoshida, M.; Wang, K. H. J. Mater. Chem. A 2021, 9 (11), 7048. doi: 10.1039/d0ta12413c  doi: 10.1039/d0ta12413c

    46. [46]

      Zhang, J.; He, D. H. J. Chem. Technol. Biotechnol. 2015, 90 (6), 1077. doi: 10.1002/jctb.4414  doi: 10.1002/jctb.4414

    47. [47]

      Li, H. G.; Xin, C. L.; Jiao, X.; Zhao, N.; Xiao, F. K.; Li, L.; Wei, W.; Sun, Y. H. J. Mol. Catal. A-Chem. 2015, 402, 71. doi: 10.1016/j.molcata.2015.03.012  doi: 10.1016/j.molcata.2015.03.012

    48. [48]

      Liu, J. X.; Li, Y. J.; Liu, H. M.; He, D. H. Appl. Catal. B-Environ. 2019, 244, 836. doi: 10.1016/j.apcatb.2018.12.018  doi: 10.1016/j.apcatb.2018.12.018

    49. [49]

      Ingram, D. B.; Christopher, P.; Bauer, J. L.; Linic, S. ACS Catal. 2011, 1 (10), 1441. doi: 10.1021/cs200320h  doi: 10.1021/cs200320h

    50. [50]

      Aguado, E. R.; Cecilia, J. A.; Infantes-Molina, A.; Talon, A.; Storaro, L.; Moretti, E.; Rodriguez-Castellon, E. Dalton Trans. 2020, 49 (13), 3946. doi: 10.1039/c9dt04243a  doi: 10.1039/c9dt04243a

    51. [51]

      Du, H.; Williams, C. T.; Ebner, A. D.; Ritter, J. A. Chem. Mater. 2010, 22 (11), 3519. doi: 10.1021/cm100703e  doi: 10.1021/cm100703e

    52. [52]

      Stevens, R. W.; Siriwardane, R. V.; Logan, J. Energy Fuels 2008, 22 (5), 3070. doi: 10.1021/ef800209a  doi: 10.1021/ef800209a

    53. [53]

      Reinoso, D. M.; Damiani, D. E.; Tonetto, G. M. Appl. Catal. B- Environ. 2014, 144, 308. doi: 10.1016/j.apcatb.2013.07.026  doi: 10.1016/j.apcatb.2013.07.026

    54. [54]

      Rakibuddin, M.; Ananthakrishnan, R. RSC Adv. 2015, 5 (83), 68117. doi: 10.1039/c5ra07799k  doi: 10.1039/c5ra07799k

  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    5. [5]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    6. [6]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    9. [9]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    14. [14]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    17. [17]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(0)
  • Abstract views(937)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return