Citation: Wentao Xu, Xuyan Mo, Yang Zhou, Zuxian Weng, Kunling Mo, Yanhua Wu, Xinlin Jiang, Dan Li, Tangqi Lan, Huan Wen, Fuqin Zheng, Youjun Fan, Wei Chen. Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230800. doi: 10.3866/PKU.WHXB202308003 shu

Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability

  • Corresponding author: Fuqin Zheng, fqzheng@mailbox.gxnu.edu.cn Youjun Fan, youjunfan@mailbox.gxnu.edu.cn Wei Chen, weichen@gxnu.edu.cn
  • Received Date: 1 August 2023
    Revised Date: 22 September 2023
    Accepted Date: 22 September 2023
    Available Online: 9 October 2023

    Fund Project: the Natural Science Foundation of Guangxi, China 2019GXNSFGA245003the Natural Science Foundation of Guangxi, China 2021GXNSFBA220058the National Natural Science Foundation of China 22002026the National Natural Science Foundation of China 22272036the Guangxi Technology Base and Talent Subject, China GUIKE AD23026272the Guangxi Normal University Research Grant, China 2022TD

  • Surface reconstruction inevitably occurs during pre-catalysis for the oxygen evolution reaction (OER); however, obtaining OER electrocatalysts with high performance and stability remains a challenge. In this study, we have developed a bimetallic leaching-induced surface reconstruction strategy to fabricate efficient electrocatalysts for water oxidation. Microcolumn arrays consisting of α-CoMoO4, K2Co2(MoO4)3, Co3O4, and CoFe2O4 four-phase oxides were integrated as pre-catalyst by a hydrothermal, ion-exchange, and subsequent annealing process. In situ Raman spectroelectrochemical and ex situ X-ray diffraction (XRD) studies revealed that the rapid dissolution of the unstable component K2Co2(MoO4)3 triggered the adaptive leaching of Mo and K, which accelerated the transformation of the surface-enriched α-Co(OH)2 to the active phase of CoOOH at low voltage. Furthermore, the stable CoFe2O4 component couples the reconfigured new phase CoO with the amorphous layer CoOOH to form a compact hierarchical structure of CoFe2O4@CoO@CoOOH, which plays the role of a nanofence and effectively prevents the catalyst from over-reconstruction, thus achieving excellent catalytic stability. This work provides a novel idea for designing OER catalysts with excellent activity and stability at high current densities.
  • 加载中
    1. [1]

      Jia, Y.; Zhang, L.; Zhuang, L.; Liu, H.; Yan, X.; Wang, X.; Liu, J.; Wang, J.; Zheng, Y.; Xiao, Z.; et al. Nat. Catal. 2019, 2, 688. doi: 10.1038/s41929-019-0297-4  doi: 10.1038/s41929-019-0297-4

    2. [2]

      Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Resour. Conserv. Recycl. 2022, 176, 105959. doi: 10.1016/j.resconrec.2021.105959  doi: 10.1016/j.resconrec.2021.105959

    3. [3]

      Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332. doi: 10.1038/35104599  doi: 10.1038/35104599

    4. [4]

      Su, Z.; Huang, Q.; Guo, Q.; Hoseini, S.; Zheng, F.; Chen, W. Nano Res. Energy 2023, 2, e9120078. doi: 10.26599/NRE.2023.9120078  doi: 10.26599/NRE.2023.9120078

    5. [5]

      Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y. -L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Nat. Chem. 2017, 9, 457. doi: 10.1038/nchem.2695  doi: 10.1038/nchem.2695

    6. [6]

      McCoy, D. E.; Feo, T.; Harvey, T. A.; Prum, R. O. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-017-02088-w  doi: 10.1038/s41467-017-02088-w

    7. [7]

      Xu, W.; Wu, K.; Wu, Y.; Guo, Q.; Fan, F.; Li, A.; Yang, L.; Zheng, F.; Fan, Y.; Chen, W. Electrochim. Acta 2023, 439, 141712. doi: 10.1016/j.electacta.2022.141712  doi: 10.1016/j.electacta.2022.141712

    8. [8]

      Fan, F.; Huang, Q.; Devasenathipathy, R.; Peng, X.; Yang, F.; Liu, X.; Wang, L.; Chen, D.; Fan, Y.; Chen, W. Electrochim. Acta 2023, 437, 141514. doi: 10.1016/j.electacta.2022.141514  doi: 10.1016/j.electacta.2022.141514

    9. [9]

      Guo, Y.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. Adv. Mater. 2019, 31, 1807134. doi: 10.1002/adma.201807134  doi: 10.1002/adma.201807134

    10. [10]

      Fan, F.; Hui, Y.; Devasenathipathy, R.; Peng, X.; Huang, Q.; Xu, W.; Yang, F.; Liu, X.; Wang, L.; Fan, Y.; et al. J. Colloid Interface Sci. 2023, 636, 450. doi: 10.1016/j.jcis.2023.01.039  doi: 10.1016/j.jcis.2023.01.039

    11. [11]

      Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; et al. Science 2016, 352, 333. doi: 10.1126/science.aaf1525  doi: 10.1126/science.aaf1525

    12. [12]

      Zhu, X.; Dou, X.; Dai, J.; An, X.; Guo, Y.; Zhang, L.; Tao, S.; Zhao, J.; Chu, W.; Zeng, X. C.; et al. Angew. Chem. Int. Ed. 2016, 55, 12465. doi: 10.1002/anie.201606313  doi: 10.1002/anie.201606313

    13. [13]

      Zhao, Y.; Jia, X.; Chen, G.; Shang, L.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; O'Hare, D.; Zhang, T. J. Am. Chem. Soc. 2016, 138, 6517. doi: 10.1021/jacs.6b01606  doi: 10.1021/jacs.6b01606

    14. [14]

      Xu, Q.; Jiang, H.; Duan, X.; Jiang, Z.; Hu, Y.; Boettcher, S. W.; Zhang, W.; Guo, S.; Li, C. Nano Lett. 2021, 21, 492. doi: 10.1021/acs.nanolett.0c03950  doi: 10.1021/acs.nanolett.0c03950

    15. [15]

      Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. -J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. Nat. Mater. 2017, 16, 925. doi: 10.1038/nmat4938  doi: 10.1038/nmat4938

    16. [16]

      Ren, X.; Wei, C.; Sun, Y.; Liu, X.; Meng, F.; Meng, X.; Sun, S.; Xi, S.; Du, Y.; Bi, Z.; et al. Adv. Mater. 2020, 32, 2001292. doi: 10.1002/adma.202001292  doi: 10.1002/adma.202001292

    17. [17]

      Bai, J.; Mei, J.; Liao, T.; Sun, Q.; Chen, Z. -G.; Sun, Z. Adv. Energy Mater. 2022, 12, 2103247. doi: 10.1002/aenm.202103247  doi: 10.1002/aenm.202103247

    18. [18]

      Xiong, L.; Qiu, Y.; Peng, X.; Liu, Z.; Chu, P. K. Nano Energy 2022, 104, 107882. doi: 10.1016/j.nanoen.2022.107882  doi: 10.1016/j.nanoen.2022.107882

    19. [19]

      Guo, Y.; Tang, J.; Wang, Z.; Sugahara, Y.; Yamauchi, Y. Small 2018, 14, 1802442. doi: 10.1002/smll.201802442  doi: 10.1002/smll.201802442

    20. [20]

      Lai, C.; Li, H.; Sheng, Y.; Zhou, M.; Wang, W.; Gong, M.; Wang, K.; Jiang, K. Adv. Sci. 2022, 9, 2105925. doi: 10.1002/advs.202105925  doi: 10.1002/advs.202105925

    21. [21]

      Lei, S.; Li, Q. -H.; Kang, Y.; Gu, Z. -G.; Zhang, J. Appl. Catal. B 2019, 245, 1. doi: 10.1016/j.apcatb.2018.12.036  doi: 10.1016/j.apcatb.2018.12.036

    22. [22]

      Yang, Z.; Yang, H.; Shang, L.; Zhang, T. Angew. Chem. Int. Ed. 2022, 61, e202113278. doi: 10.1002/anie.202113278  doi: 10.1002/anie.202113278

    23. [23]

      Zhao, J.; Ren, X.; Han, Q.; Fan, D.; Sun, X.; Kuang, X.; Wei, Q.; Wu, D. Chem. Commun. 2018, 54, 4987. doi: 10.1039/C8CC01002A  doi: 10.1039/C8CC01002A

    24. [24]

      Zhao, Y.; Wen, Q.; Huang, D.; Jiao, C.; Liu, Y.; Liu, Y.; Fang, J.; Sun, M.; Yu, L. Adv. Energy Mater. 2023, 13, 2203595. doi: 10.1002/aenm.202203595  doi: 10.1002/aenm.202203595

    25. [25]

      Zheng, W.; Liu, M.; Lee, L. Y. S. ACS Catal. 2020, 10, 81. doi: 10.1021/acscatal.9b03790  doi: 10.1021/acscatal.9b03790

    26. [26]

      Costa, R. K. S.; Teles, S. C.; Siqueira, K. P. F. Chem. Pap. 2021, 75, 237. doi: 10.1007/s11696-020-01294-z  doi: 10.1007/s11696-020-01294-z

    27. [27]

      Kim, H. -J.; Kim, D.; Jung, S.; Bae, M. -H.; Yun, Y. J.; Yi, S. N.; Yu, J. -S.; Kim, J. -H.; Ha, D. H. J. Raman Spectrosc. 2018, 49, 1938. doi: 10.1002/jrs.5476  doi: 10.1002/jrs.5476

    28. [28]

      Cai, M.; Zhu, Q.; Wang, X.; Shao, Z.; Yao, L.; Zeng, H.; Wu, X.; Chen, J.; Huang, K.; Feng, S. Adv. Mater. 2023, 35, 2209338. doi: 10.1002/adma.202209338  doi: 10.1002/adma.202209338

    29. [29]

      Chen, M.; Kitiphatpiboon, N.; Feng, C.; Zhao, Q.; Abudula, A.; Ma, Y.; Yan, K.; Guan, G. Appl. Catal. B 2023, 330, 122577. doi: 10.1016/j.apcatb.2023.122577  doi: 10.1016/j.apcatb.2023.122577

    30. [30]

      Fettkenhauer, C.; Wang, X.; Kailasam, K.; Antonietti, M.; Dontsova, D. J. Mater. Chem. A 2015, 3, 21227. doi: 10.1039/C5TA06304C  doi: 10.1039/C5TA06304C

    31. [31]

      Fan, K.; Zou, H.; Lu, Y.; Chen, H.; Li, F.; Liu, J.; Sun, L.; Tong, L.; Toney, M. F.; Sui, M.; et al. ACS Nano 2018, 12, 12369. doi: 10.1021/acsnano.8b06312  doi: 10.1021/acsnano.8b06312

    32. [32]

      Morozan, A.; Jégou, P.; Jousselme, B.; Palacin, S. Phys. Chem. Chem. Phys. 2011, 13, 21600. doi: 10.1039/C1CP23199E  doi: 10.1039/C1CP23199E

    33. [33]

      Tachikawa, T.; Beniya, A.; Shigetoh, K.; Higashi, S. Catal. Lett. 2020, 150, 1976. doi: 10.1007/s10562-020-03105-2  doi: 10.1007/s10562-020-03105-2

    34. [34]

      Tao, H. B.; Xu, Y.; Huang, X.; Chen, J.; Pei, L.; Zhang, J.; Chen, J. G.; Liu, B. Joule 2019, 3, 1498. doi: 10.1016/j.joule.2019.03.012  doi: 10.1016/j.joule.2019.03.012

    35. [35]

      Parsons, R. Trans. Faraday Soc. 1958, 54, 1053. doi: 10.1039/TF9585401053  doi: 10.1039/TF9585401053

    36. [36]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    37. [37]

      Luan, R. -N.; Lv, Q. -X.; Li, Y. -Y.; Xie, J. -Y.; Li, W. -J.; Liu, H. -J.; Lv, R. -Q.; Chai, Y. -M.; Dong, B. Int. J. Hydrog. Energy 2023, 48, 25730. doi: 10.1016/j.ijhydene.2023.03.010  doi: 10.1016/j.ijhydene.2023.03.010

    38. [38]

      Wang, Y.; Jiao, Y.; Yan, H.; Yang, G.; Tian, C.; Wu, A.; Liu, Y.; Fu, H. Angew. Chem. Int. Ed. 2022, 61, e202116233. doi: 10.1002/anie.202116233  doi: 10.1002/anie.202116233

    39. [39]

      Liu, D.; Ai, H.; Li, J.; Fang, M.; Chen, M.; Liu, D.; Du, X.; Zhou, P.; Li, F.; Lo, K. H.; et al. Adv. Energy Mater. 2020, 10, 2002464. doi: 10.1002/aenm.202002464  doi: 10.1002/aenm.202002464

    40. [40]

      Zheng, L.; Ye, W.; Zhao, Y.; Lv, Z.; Shi, X.; Wu, Q.; Fang, X.; Zheng, H. Small 2023, 19, 2205092. doi: 10.1002/smll.202205092  doi: 10.1002/smll.202205092

    41. [41]

      Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A.; et al. Energy Environ. Sci. 2018, 11, 2521. doi: 10.1039/C8EE01415A  doi: 10.1039/C8EE01415A

    42. [42]

      Choi, J.; Kim, D.; Hong, S. J.; Zhang, X.; Hong, H.; Chun, H.; Han, B.; Lee, L. Y. S.; Piao, Y. Appl. Catal. B 2022, 315, 121504. doi: 10.1016/j.apcatb.2022.121504  doi: 10.1016/j.apcatb.2022.121504

    43. [43]

      Liu, X.; Meng, J.; Ni, K.; Guo, R.; Xia, F.; Xie, J.; Li, X.; Wen, B.; Wu, P.; Li, M.; et al. Cell Rep. Phys. Sci. 2020, 1, 100241. doi: 10.1016/j.xcrp.2020.100241  doi: 10.1016/j.xcrp.2020.100241

    44. [44]

      Wang, Y.; Ma, J.; Wang, J.; Chen, S.; Wang, H.; Zhang, J. Adv. Energy Mater. 2019, 9, 1802939. doi: 10.1002/aenm.201802939  doi: 10.1002/aenm.201802939

    45. [45]

      Yang, X.; Zhang, H.; Yu, B.; Liu, Y.; Xu, W.; Wu, Z. Energy Technol. 2022, 10, 2101010. doi: 10.1002/ente.202101010  doi: 10.1002/ente.202101010

    46. [46]

      Himeno, S.; Niiya, H.; Ueda, T. Bull. Chem. Soc. Jpn. 1997, 70, 631. doi: 10.1246/bcsj.70.631  doi: 10.1246/bcsj.70.631

    47. [47]

      Nasri, R.; Larbi, T.; Amlouk, M.; Zid, M. F. J. Mater. Sci. Mater. Electron. 2018, 29, 18372. doi: 10.1007/s10854-018-9951-x  doi: 10.1007/s10854-018-9951-x

    48. [48]

      Yu, X.; Araujo, R. B.; Qiu, Z.; Campos dos Santos, E.; Anil, A.; Cornell, A.; Pettersson, L. G. M.; Johnsson, M. Adv. Energy Mater. 2022, 12, 2103750. doi: 10.1002/aenm.202103750  doi: 10.1002/aenm.202103750

  • 加载中
    1. [1]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    2. [2]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    3. [3]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    4. [4]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    9. [9]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

Metrics
  • PDF Downloads(3)
  • Abstract views(391)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return