Citation: Xinyi Zhang, Kai Ren, Yanning Liu, Zhenyi Gu, Zhixiong Huang, Shuohang Zheng, Xiaotong Wang, Jinzhi Guo, Igor V. Zatovsky, Junming Cao, Xinglong Wu. Progress on Entropy Production Engineering for Electrochemical Catalysis[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230705. doi: 10.3866/PKU.WHXB202307057 shu

Progress on Entropy Production Engineering for Electrochemical Catalysis

  • Corresponding author: Junming Cao, jmcao@nenu.edu.cn Xinglong Wu, xinglong@nenu.edu.cn
  • Received Date: 29 July 2023
    Revised Date: 31 August 2023
    Accepted Date: 3 September 2023
    Available Online: 15 September 2023

    Fund Project: the National Key R&D Program of China 2023YFE0202000the National Natural Science Foundation of China 52302222the Natural Science Foundation of Jilin Province 20230508177RCthe 111 Project B13013the China Postdoctoral Science Foundation 2022M720704the China Postdoctoral Science Foundation 2023T160094the Fundamental Research Funds for the Central Universities 2412022QD038

  • As for the accurate synthesis of high-performance electrochemical catalysts with good robustness, the rational design on atomic level is still a priority. Entropy, as one of the most significant thermodynamic parameters, measure the disorder of a system, which is a significant quantity for materials. The values are primarily determined by the crystal structure, magnetic moments and the atomic and electronic vibrations of the materials. According to the configurational entropy of the system, we usually divide the material into low entropy materials (LEMs) (ΔSmix < 1R), medium entropy materials (MEMs) (1R ≤ ΔSmix ≥ 1.5R) and high entropy materials (HEMs) (ΔSmix > 1.5R), where R is the gas molar constant. HEMs are those that consist of five or more major elements of roughly equal proportion, in a highly uniform, random manner, which typically consist of one or two major elements compared to traditional materials. As the entropy value increases, the intrinsic physical, chemical and structural properties of the material change accordingly, resulting in special physicochemical properties (e.g., strength, electrical conductivity, corrosion resistance, etc.). Moreover, due to its multi-element combination, the HEMs can be precisely regulated by selecting different elements and their ratios according to the needs, which overcomes the limitations of the traditional catalysts in terms of relatively single component, structure and field of application. Importantly, the synergistic high entropy effect and multi-component arrangement at the atomic-level interface produced by the coexistence of different metal elements in HEMs can exert higher catalytic activity, selectivity and stability in different reactions. This has attracted a lot of attention from researchers, especially in the field of electrocatalysis. In this review systematically summarizes the fundamental concepts of high-entropy catalysts (HECs), synthetic approaches ("top-down" and "bottom-up"), and the structure-performance relationships of HEMs in different types of electrocatalytic processes, mainly including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), alcohol oxidation reaction (AOR), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2RR) etc. Thus, the advantages and potential of high-performance electrocatalysts based on entropy increase engineering are illuminate. At the same time, it is summarized and discussed that HECs are currently facing problems and challenges such as complicated material rational design, complex preparation process, the mechanism of electrocatalytic processes in which multiple metal elements interact is ambiguous, and poor stability under extreme reaction conditions. Finally, the main problems and challenges facing the current HECs research. We look forward to the future design ideas, synthesis methods different research areas and industrial applications of HECs based on entropy enhancement engineering.
  • 加载中
    1. [1]

      Wang, X.; Gu, Z.; Edison, H.; Zhao, X.; Wu, X.; Liu, Y. Interdiscip. Mater. 2022, 1, 417. doi: 10.1002/idm2.12041  doi: 10.1002/idm2.12041

    2. [2]

      You, B.; Sun, Y. Acc. Chem. Res. 2018, 51, 1571. doi: 10.1021/acs.accounts.8b00002  doi: 10.1021/acs.accounts.8b00002

    3. [3]

      Bui, T. S.; Lovell, E. C.; Daiyan, R.; Amal, R. Adv. Mater. 2023, 35, e2205814. doi: 10.1002/adma.202205814  doi: 10.1002/adma.202205814

    4. [4]

      Wang, C.; Lv, Z.; Yang, W.; Feng, X.; Wang, B. Chem. Soc. Rev. 2023, 52, 1382. doi: 10.1039/d2cs00843b  doi: 10.1039/d2cs00843b

    5. [5]

      Zhao, C.; Liu, J.; Wang, J.; Ren, D.; Li, B.; Zhang, Q. Chem. Soc. Rev. 2021, 50, 7745. doi: 10.1039/d1cs00135c  doi: 10.1039/d1cs00135c

    6. [6]

      Luo, Y.; Zhang, Z.; Chhowalla, M.; Liu, B. Adv. Mater. 2022, 34, 2108133. doi: 10.1002/adma.202108133  doi: 10.1002/adma.202108133

    7. [7]

      Cao, J.; Zatovsky, I.; Gu, Z.; Yang, J.; Zhao, X.; Guo, J.; Xu, H.; et al. Prog. Mater. Sci. 2023, 135, 101105. doi: 10.1016/j.pmatsci.2023.101105  doi: 10.1016/j.pmatsci.2023.101105

    8. [8]

      Wang, Y.; Wang, S.; Ma, Z.; Yan, L.; Zhao, X.; Xue, Y.; Huo, J.; Yuan, X.; Li, S.; Zhai, Q. Adv. Mater. 2022, 34, e2107488. doi: 10.1002/adma.202107488  doi: 10.1002/adma.202107488

    9. [9]

      Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi: 10.1021/jacs.0c02973  doi: 10.1021/jacs.0c02973

    10. [10]

      Yu, J.; Li, B.; Zhao, C.; Zhang, Q. Energy Environ. Sci. 2020, 13, 3253. doi: 10.1039/D0EE01617A  doi: 10.1039/D0EE01617A

    11. [11]

      Guo, J.; Gu, Z.; Du, M.; Zhao, X.; Wang, X.; Wu, X. Mater. Today 2023, 66, 1369. doi: 10.1016/j.mattod.2023.03.020  doi: 10.1016/j.mattod.2023.03.020

    12. [12]

      Bueno, S.; Ashberry, H.; Shafei, I.; Skrabalak, S. Acc. Chem. Res. 2021, 54, 1662. doi: 10.1021/acs.accounts.0c00655  doi: 10.1021/acs.accounts.0c00655

    13. [13]

      Wang, T.; Chutia, A.; Brett, D.; Shearing, P.; He, G.; Chai, G.; Parkin, I. Energy Environ. Sci. 2021, 14, 2639. doi: 10.1039/D0EE03915B  doi: 10.1039/D0EE03915B

    14. [14]

      Wang, X.; Sokolowski, J.; Liu, H.; Wu, G. Chin. J. Catal. 2020, 41, 739. doi: 10.1016/S1872-2067(19)63407-8  doi: 10.1016/S1872-2067(19)63407-8

    15. [15]

      Zahran, Z.; Mohamed, E.; Tsubonouchi, Y.; Ishizaki, M.; Togashi, T.; Kurihara, M.; Saito, K.; Yuia, T.; Yagi, M. Energy Environ. Sci. 2021, 14, 5358. doi: 10.1039/D1EE00509J  doi: 10.1039/D1EE00509J

    16. [16]

      Wang, M.; Wang, Y.; Mao, S.; Shen, S. Nano Energy 2021, 88, 106216. doi: 10.1016/j.nanoen.2021.106216  doi: 10.1016/j.nanoen.2021.106216

    17. [17]

      Sun, J.; Zhao, Z.; Li, J.; Li, Z.; Meng, X. Rare Metals 2022, 42, 751. doi: 10.1007/s12598-022-02168-x  doi: 10.1007/s12598-022-02168-x

    18. [18]

      Glasscott, M.; Pendergast, A.; Goines, S.; Bishop, A.; Hoang, A.; Renault, C.; Dick, J. Nat. Commun. 2019, 10, 2650. doi: 10.1038/s41467-019-10303-z  doi: 10.1038/s41467-019-10303-z

    19. [19]

      Gludovatz, B.; Hohenwarter, A.; Thurston, K.; Bei, H.; Wu, Z.; George, E.; Ritchie, R. Nat. Commun. 2016, 7, 10602. doi: 10.1038/ncomms10602  doi: 10.1038/ncomms10602

    20. [20]

      Laplanche, G.; Kostka, A.; Reinhart, C.; Hunfeld, J.; Eggeler, G.; George, E. Acta Mater. 2017, 128, 292. doi: 10.1016/j.actamat.2017.02.036  doi: 10.1016/j.actamat.2017.02.036

    21. [21]

      Wu, Z.; Bei, H.; Pharr, G.; George, E. Acta Mater. 2014, 81, 428. doi: 10.1016/j.actamat.2014.08.026  doi: 10.1016/j.actamat.2014.08.026

    22. [22]

      Zhang, Z.; Mao, M.; Wang, J.; Gludovatz, B.; Zhang, Z.; Mao, S. X.; George, E.; Yu, Q.; Ritchie, R. Nat. Commun. 2015, 6, 10143. doi: 10.1038/ncomms10143  doi: 10.1038/ncomms10143

    23. [23]

      George, E.; Raabe, D.; Ritchie, R. Nat. Rev. Mater. 2019, 4, 515. doi: 10.1038/s41578-019-0121-4  doi: 10.1038/s41578-019-0121-4

    24. [24]

      Zou, Y.; Ma, H.; Spolenak, R. Nat. Commun. 2015, 6, 7748. doi: 10.1038/ncomms8748  doi: 10.1038/ncomms8748

    25. [25]

      Chuang, M. H.; Tsai, M. H.; Wang, W. R.; Lin, S. J.; Yeh, J. W. Acta Mater. 2011, 59, 6308. doi: 10.1016/j.actamat.2011.06.041  doi: 10.1016/j.actamat.2011.06.041

    26. [26]

      Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. doi: 10.1002/adem.200300567  doi: 10.1002/adem.200300567

    27. [27]

      Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Mater. SciEng A 2004, 375, 213. doi: 10.1016/j.msea.2003.10.257  doi: 10.1016/j.msea.2003.10.257

    28. [28]

      Tsai, M. H.; Yeh, J. W. Mater. Res. Lett. 2014, 2, 107. doi: 10.1080/21663831.2014.912690  doi: 10.1080/21663831.2014.912690

    29. [29]

      Singh, A. Matter 2021, 4, 23. doi: 10.1016/j.matt.2020.12.021  doi: 10.1016/j.matt.2020.12.021

    30. [30]

      He, Q.; Tang, P.; Chen, H.; Lan, S.; Wang, J.; Luan, J.; Du, M.; Liu, Y.; Liu, C.; Pao, C.; et al. Acta Mater. 2021, 216, 117140. doi: 10.1016/j.actamat.2021.117140  doi: 10.1016/j.actamat.2021.117140

    31. [31]

      Kusada, K.; Mukoyoshi, M.; Wu, D.; Kitagawa, H. Angew. Chem. Int. Ed. 2022, 61, e202209616. doi: 10.1002/anie.202209616  doi: 10.1002/anie.202209616

    32. [32]

      Huang, X.; Yang, G.; Li, S.; Wang, H.; Cao, Y.; Peng, F.; Yu, H. J. Energy Chem. 2022, 68, 721. doi: 10.1016/j.jechem.2021.12.026  doi: 10.1016/j.jechem.2021.12.026

    33. [33]

      Yao, Y.; Liu, Z.; Xie, P.; Huang, Z.; Li, T.; Morris, D.; Finfrock, Z.; Zhou, J.; Jiao, M.; Gao, J.; et al. Sci. Adv. 2020, 6, eaaz0510. doi: 10.1126/sciadv.aaz0510  doi: 10.1126/sciadv.aaz0510

    34. [34]

      Yeh, J. W.; Chang, S. Y.; Hong, Y. D.; Chen, S. K.; Lin, S. J. Mater. Chem. Phys. 2007, 103, 41. doi: 10.1016/j.matchemphys.2007.01.003  doi: 10.1016/j.matchemphys.2007.01.003

    35. [35]

      Huang, K.; Zhang, B.; Wu, J.; Zhang, T.; Peng, D.; Cao, X.; Zhang, Z.; et al. J. Mater. Chem. A 2020, 8, 11938. doi: 10.1039/D0TA02125C  doi: 10.1039/D0TA02125C

    36. [36]

      Tsai, K.; Y.; Tsai; H.; M.; Yeh, J. W. Acta Mater. 2013, 61, 4887. doi: 10.1016/j.actamat.2013.04.058  doi: 10.1016/j.actamat.2013.04.058

    37. [37]

      Ruffa, A. R. Phys. Rev. B 1982, 25, 5895. doi: 10.1103/PhysRevB.25.5895  doi: 10.1103/PhysRevB.25.5895

    38. [38]

      Zhang, W.; Liaw, P.; Zhang, Y. Sci. China Mater. 2018, 61, 2. doi: 10.1007/s40843-017-9195-8  doi: 10.1007/s40843-017-9195-8

    39. [39]

      Chen, H.; Lin, W.; Zhang, Z.; Jie, K.; Mullins, D.; Sang, X.; Yang, S.; Jafta, C.; Bridges, C.; Hu, X.; et al. ACS Mater. Lett. 2019, 1, 83. doi: 10.1021/acsmaterialslett.9b00064  doi: 10.1021/acsmaterialslett.9b00064

    40. [40]

      Yao, Y.; Huang, Z.; Xie, P.; Lacey, SD.; Jacob, R.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Science 2018, 359, 1489. doi: 10.1126/science.aan5412  doi: 10.1126/science.aan5412

    41. [41]

      Miracle, D.; Senkov, O. Acta Mater. 2017, 112, 448. doi: 10.1016/j.actamat.2016.08.081  doi: 10.1016/j.actamat.2016.08.081

    42. [42]

      Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, SA. Scr. Mater. 2017, 138, 22. doi: 10.1016/j.scriptamat.2017.05.022  doi: 10.1016/j.scriptamat.2017.05.022

    43. [43]

      Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Prog. Mater. Sci. 2014, 61, 1. doi: 10.1016/j.pmatsci.2013.10.001  doi: 10.1016/j.pmatsci.2013.10.001

    44. [44]

      Gibbs, J. W. Am. J. Sci. 1878, 16, 441. doi: 10.2475/ajs.s3-16.96.441  doi: 10.2475/ajs.s3-16.96.441

    45. [45]

      Nair, R.; Arora, H.; Grewal, H. Int. J. Miner. Metall. Mater. 2020, 27, 1353. doi: 10.1007/s12613-020-2000-9  doi: 10.1007/s12613-020-2000-9

    46. [46]

      Ranganathan, S. Curr. Sci. 2003, 85, 1404. doi: 10.1038/nature02146  doi: 10.1038/nature02146

    47. [47]

      Pang, J.; Zhang, H.; Zhang, L.; Zhu, Z.; Fu, H.; Li, H.; Wang, A.; Li, Z.; Zhang, H. Mater. Lett. 2021, 290, 129428. doi: 10.1016/j.matlet.2021.129428  doi: 10.1016/j.matlet.2021.129428

    48. [48]

      Chen, J.; Zhang, T.; Gao, Y.; Huang, J.; Qin, H.; Wang, F.; Zhao, K.; Peng, X.; Zhang, C.; Liu, L.; et al. Adv. Mater. 2021, 33, 2101845. doi: 10.1002/adma.202101845  doi: 10.1002/adma.202101845

    49. [49]

      Wang, Y.; Gu, Z.; Wang, D.; Xie, C.; Wang, H.; Huang, G.; Liu, B.; Zou, Y.; Li, T.; Wang, S. Angew. Chem. Int. Ed. 2021, 60, 20253. doi: 10.1002/anie.202107390  doi: 10.1002/anie.202107390

    50. [50]

      Xu, W.; Chen, H.; Jie, K.; Yang, Z.; Li, T.; Dai, S. Angew. Chem. Int. Ed. 2019, 58, 5018. doi: 10.1002/anie.201900787  doi: 10.1002/anie.201900787

    51. [51]

      Fang, G.; Gao, J.; Lv, J.; Jia, H.; Li, H.; Liu, W.; Xie, G.; Chen, Z.; Huang, Y.; Yuan, Q.; et al. Appl. Catal. B 2019, 268, 118431. doi: 10.1016/j.apcatb.2019.118431  doi: 10.1016/j.apcatb.2019.118431

    52. [52]

      Jin, Z.; Lyu, J.; Zhao, Y.; Li, H.; Lin, X.; Xie, G.; Liu, X.; Kai, J.; Qiu, H. ACS Mater. Lett. 2020, 2, 1698. doi: 10.1021/acsmaterialslett.0c00434  doi: 10.1021/acsmaterialslett.0c00434

    53. [53]

      Jia, Z.; Nomoto, K.; Wang, Q.; Kong, C.; Sun, L.; Zhang, L.; Liang, S.; Lu, J.; Kruzic, J. Adv. Funct. Mater. 2021, 32, 2101586. doi: 10.1002/adfm.202101586  doi: 10.1002/adfm.202101586

    54. [54]

      Lacey, S.; Qi, D.; Huang, Z.; Luo, J.; Xie, H.; Lin, Z.; Kirsch, D.; Vattipalli, V.; Povinelli, C.; Fan, W.; et al. Nano Lett. 2019, 19, 5149. doi: 10.1021/acs.nanolett.9b01523  doi: 10.1021/acs.nanolett.9b01523

    55. [55]

      Bueno, SL.; Leonardi, A.; Kar, N.; Chatterjee, K.; Zhan, X.; Chen, C.; Wang, Z.; Engel, M.; Fung, V.; Skrabalak, S. ACS Nano 2022, 16, 18873. doi: 10.1021/acsnano.2c07787  doi: 10.1021/acsnano.2c07787

    56. [56]

      Gao, S.; Hao, S.; Huang, Z.; Yuan, Y.; Han, S.; Lei, L.; Zhang, X.; Shahbazian-Yassar, R.; Lu, J. Nat. Commun. 2020, 11, 2016. doi: 10.1038/s41467-020-15934-1  doi: 10.1038/s41467-020-15934-1

    57. [57]

      Park, C.; Senthil, R. A.; Jeong, G.; Choi, M. Small 2023, 19, e2207820. doi: 10.1002/smll.202207820  doi: 10.1002/smll.202207820

    58. [58]

      Qiao, H.; Saray, M.; Wang, X.; Xu, S.; Chen, G.; Huang, Z.; Chen, C.; Zhong, G.; Dong, Q.; Hong, M.; et al. ACS Nano 2021, 15, 14928. doi: 10.1021/acsnano.1c05113  doi: 10.1021/acsnano.1c05113

    59. [59]

      Li, H.; Pa, Y.; Lai, J.; Wang, L.; Feng, S. Chin. J. Struct. Chem. 2022, 41, 2208003. doi: 10.14102/j.cnki.0254-5861.2022-0125  doi: 10.14102/j.cnki.0254-5861.2022-0125

    60. [60]

      Tao, L.; Sun, M.; Zhou, Y.; Luo, M.; Lv, F.; Li, M.; Zhang, Q.; Gu, L.; Huang, B.; Guo, S. J. Am. Chem. Soc. 2022, 14, 10582. doi: 10.1021/jacs.2c03544  doi: 10.1021/jacs.2c03544

    61. [61]

      Minamihara, H.; Kusada, K.; Wu, D.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kumara, L. S. R.; Ohara, K.; Sakata, O.; Kawaguchi, S.; et al. J. Am. Chem. Soc. 2022, 144, 11525. doi: 10.1021/jacs.2c02755  doi: 10.1021/jacs.2c02755

    62. [62]

      Liu, Y.; Hsieh, C.; Hsu, L.; Lin, K.; Hsiao, Y.; Chi, C.; Lin, J.; Chang, C.; Lin, S.; Wu, C, Y.; et al. Sci. Adv. 2023, 9, eadf9931. doi: 10.1126/sciadv.adf9931  doi: 10.1126/sciadv.adf9931

    63. [63]

      Rao, P.; Deng, Y.; Fan, W.; Luo, J.; Deng, P.; Li, J.; Shen, Y.; Tian, X. Nat. Commun. 2022, 13, 5071. doi: 10.1038/s41467-022-32850-8  doi: 10.1038/s41467-022-32850-8

    64. [64]

      Zhu, H.; Zhu, Z.; Hao, J.; Sun, S.; Lu, S.; Wang, C.; Ma, P.; Dong, W. F.; Du, M. L. Chem. Eng. J. 2022, 431, 133251. doi: 10.1016/j.cej.2021.133251  doi: 10.1016/j.cej.2021.133251

    65. [65]

      Zhu, H.; Sun, S.; Hao, J.; Zhuang, Z.; Zhang, S.; Wang, T.; Kang, Q.; Lu, S.; Wang, X.; Lai, F.; et al. Energy Environ. Sci. 2023, 16, 619. doi: 10.1039/d2ee03185j  doi: 10.1039/d2ee03185j

    66. [66]

      Li, H.; Huang, H.; Chen, Y.; Lai, F.; Fu, H.; Zhang, L.; Zhang, N.; Bai, S.; Liu, T. Adv. Mater. 2022, 35, 2209242. doi: 10.1002/adma.202209242  doi: 10.1002/adma.202209242

    67. [67]

      Du, M.; Geng, P.; Pei, C.; Jiang, X.; Shan, Y.; Hu, W.; Ni, L.; Pang, H. Angew. Chem. Int. Ed. 2022, 61, e202209350. doi: 10.1002/anie.202209350  doi: 10.1002/anie.202209350

    68. [68]

      Kosanović, C.; Bronić, J.; Subotić, B.; Smit, I.; Stubičar, M.; Tonejc, A.; Yamamoto, T. Thermochim. Acta 1993, 276, 91103. doi: 10.1016/0040-6031(95)02792-0  doi: 10.1016/0040-6031(95)02792-0

    69. [69]

      Beldon, P.; Fabian, L.; Stein, R.; Thirumurugan, A.; Cheetham, A.; Friscic, T. Angew. Chem. Int. Ed. 2010, 49, 9640. doi: 10.1002/anie.201005547  doi: 10.1002/anie.201005547

    70. [70]

      Friscic, T. Chem. Soc. Rev. 2012, 41, 3493. doi: 10.1039/c2cs15332g  doi: 10.1039/c2cs15332g

    71. [71]

      James, S.; Adams, C.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K.; Hyett, G.; Jones, W.; et al. Chem. Soc. Rev. 2012, 41, 413. doi: 10.1039/c1cs15171a  doi: 10.1039/c1cs15171a

    72. [72]

      Grätz, S.; Wolfrum, B.; Borchardt, L. Green Chem. 2017, 19, 2973. doi: 10.1039/c7gc00693d  doi: 10.1039/c7gc00693d

    73. [73]

      Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S.; et al. Adv. Energy Mater. 2022, 12, 2103090. doi: 10.1002/aenm.202103090  doi: 10.1002/aenm.202103090

    74. [74]

      Jin, Z.; Lyu, J.; Hu, K.; Chen, Z.; Liu, X.; Lin, X.; Qiu, H. Small 2022, 18, 2107207. doi: 10.1002/smll.202107207  doi: 10.1002/smll.202107207

    75. [75]

      Liao, Y.; Li, Y.; Zhao, R.; Zhang, J.; Zhao, L.; Ji, L.; Zhang, Z.; Liu, X.; Qin, G.; Zhang, X. Nat. Sci. Rev. 2022, 9, nwac041. doi: 10.1093/nsr/nwac041  doi: 10.1093/nsr/nwac041

    76. [76]

      Yang, J.; Dai, B.; Chiang, C.; Chiu, I.; Pao, C.; Lu, S.; Tsao, I.; Lin, S.; Chiu, C.; Yeh, J.; et al. ACS Nano 2021, 15, 12324. doi: 10.1021/acsnano.1c04259  doi: 10.1021/acsnano.1c04259

    77. [77]

      Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S.; et al. Nano Res. 2021, 15, 4807. doi: 10.1007/s12274-021-3804-2  doi: 10.1007/s12274-021-3804-2

    78. [78]

      Cao, G.; Liang, J.; Guo, Z.; Yang, K.; Wang, G.; Wang, H.; Wan, X.; Li, Z.; Bai, Y.; Zhang, Y.; et al. Nature 2023, 619, 73. doi: 10.1038/s41586-023-06082-9  doi: 10.1038/s41586-023-06082-9

    79. [79]

      Li, T.; Yao, Y.; Ko, B. H.; Huang, Z.; Dong, Q.; Gao, J.; Chen, W.; Li, J.; Li, S.; Wang, X.; et al. Adv. Funct. Mater. 2021, 31, 2010561. doi: 10.1002/adfm.202010561  doi: 10.1002/adfm.202010561

    80. [80]

      Ma, M.; Feng, Z.; Zhang, X.; Sun, C.; Wang, H.; Zhou, W.; Liu, H. Acta Phys. -Chim. Sin. 2022, 38, 2106003.  doi: 10.3866/PKU.WHXB202106003

    81. [81]

      Li, X.; Chen, C.; Niu, Q.; Li, N.; Yu, L.; Wang, B. Rare Metals. 2022, 41, 3591. doi: 10.1007/s12598-022-02061-7  doi: 10.1007/s12598-022-02061-7

    82. [82]

      Cui, B.; Shi, Y.; Li, G.; Chen, Y.; Chen, W.; Deng, Y.; Hu, W. Acta Phys. -Chim. Sin. 2022, 38, 2106010.  doi: 10.3866/PKU.WHXB202106010

    83. [83]

      Li, L.; Wang, P.; Qi, S.; Huang, X. Chem. Soc. Rev. 2020, 49, 3072. doi: 10.1039/D0CS00013B  doi: 10.1039/D0CS00013B

    84. [84]

      Zhao, Y.; Tao, L. Chin. Chem. Lett. 2023, 34, 108571. doi: 10.1016/j.cclet.2023.108571  doi: 10.1016/j.cclet.2023.108571

    85. [85]

      Du, M.; Guo, J.; Zheng, S.; Liu, Y.; Yang, J.; Zhang, K.; Gu, Z.; Wang, X.; Wu, X. Chin. Chem. Lett. 2023, 34, 107706. doi: 10.1016/j.cclet.2022.07.049  doi: 10.1016/j.cclet.2022.07.049

    86. [86]

      Lee, S.; Kim, J.; Kwon, K.; Park, S.; Jang, H. Carbon Neutralization 2022, 1, 26. doi: 10.1002/cnl2.9  doi: 10.1002/cnl2.9

    87. [87]

      Huang, Q.; Liu, X.; Zhang, Z.; Wang, L.; Xiao, B.; Ao, Z. Chin. Chem. Lett. 2023, 34, 108046. doi: 10.1016/j.cclet.2022.108046  doi: 10.1016/j.cclet.2022.108046

    88. [88]

      Chen, L.; Hou, C.; Zou, L.; Kitta, M.; Xu, Q. Sci. Bull. 2021, 66, 170. doi: 10.1016/j.scib.2020.06.022  doi: 10.1016/j.scib.2020.06.022

    89. [89]

      Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Chem. Soc. Rev. 2020, 49, 9154. doi: 10.1039/d0cs00575d  doi: 10.1039/d0cs00575d

    90. [90]

      Zhang, X. Y.; Han, Y.; Cai, W. W.; Zhang, D.; Wang, Z. C.; Li, H. D.; Sun, Y. Y.; Zhang, Y. Y.; Lai, J. P.; Wang, L. Adv. Mater. Interfaces 2022, 9, 2102154. doi: 10.1002/admi.202102154  doi: 10.1002/admi.202102154

    91. [91]

      Yuan, C.; Zhao, H.; Huang, S.; Li, J.; Zhang, L.; Zhao, W.; Weng, Y.; Zhang, Y.; Lai, J.; Wang, L. Carbon Neutralization 2023, 2, 467. doi: 10.1002/cnl2.77  doi: 10.1002/cnl2.77

    92. [92]

      Wang, Z.; Zhang, X.; Wu, X.; Pan, Y.; Li, H.; Han, Y.; Xu, G.; Chi, J.; Lai, J.; Wang, L. Chem. Eng. J. 2022, 437, 135375. doi: 10.1016/j.cej.2022.135375  doi: 10.1016/j.cej.2022.135375

    93. [93]

      Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X, Y.; Jiang, Q. Adv. Funct. Mater. 2020, 31, 2009613. doi: 10.1002/adfm.202009613  doi: 10.1002/adfm.202009613

    94. [94]

      Wang, R.; Huang, J.; Zhang, X.; Han, J.; Zhang, Z.; Gao, T.; Xu, L.; Liu, S.; Xu, P.; Song, B. ACS Nano 2022, 16, 3593. doi: 10.1021/acsnano.2c01064  doi: 10.1021/acsnano.2c01064

    95. [95]

      Wei, M.; Sun Yu.; Ai, F.; Xi, S.; Zhang, J.; Wang, J. Appl. Catal. B 2023, 334, 122814. doi: 10.1016/j.apcatb.2023.122814  doi: 10.1016/j.apcatb.2023.122814

    96. [96]

      Fu, X.; Zhang, J.; Zhan, S.; Xia, F.; Wang, C.; Ma, D.; Yue, Q.; Wu, J.; Kang, Y. ACS Catal. 2022, 19, 11955. doi: 10.1021/acscatal.2c02778  doi: 10.1021/acscatal.2c02778

    97. [97]

      Wang, J.; Zhang, J.; Hu, Y.; Jiang, H.; Li, C. Sci. Bull. 2022, 67, 1890. doi: 10.1016/j.scib.2022.08.022  doi: 10.1016/j.scib.2022.08.022

    98. [98]

      Feng, G.; Ning, F.; Song, J.; Shang, H.; Zhang, K.; Ding, Z.; Gao, P.; Chu, W.; Xia, D. J. Am. Chem. Soc. 2021, 143, 17117. doi: 10.1021/jacs.1c07643  doi: 10.1021/jacs.1c07643

    99. [99]

      Kang, Y.; Cretu, O.; Kikkawa, J.; Kimoto, K.; Nara, H.; Nugraha, A. S.; Kawamoto, H.; Eguchi, M.; Liao, T.; Sun, Z.; et al. Nat. Commun. 2023, 14, 4182. doi: 10.1038/s41467-023-39157-2  doi: 10.1038/s41467-023-39157-2

    100. [100]

      Zhang, L.; Cai, W.; Bao, N.; Yang, H. Adv. Mater. 2022, 34, 2110511. doi: 10.1002/adma.202110511  doi: 10.1002/adma.202110511

    101. [101]

      Zhang, L.; Cai, W.; Bao, N. Adv. Mater. 2021, 33, e2100745. doi: 10.1002/adma.202100745  doi: 10.1002/adma.202100745

    102. [102]

      Abdelhafiz, A.; Wang, B.; Harutyunyan, A. R.; Li, J. Adv. Energy Mater. 2022, 12, 2200742. doi: 10.1002/aenm.202200742  doi: 10.1002/aenm.202200742

    103. [103]

      Yi, L.; Xiao, S.; Wei, Y.; Li, D.; Wang, R.; Guo, S.; Hu, W. Chem. Eng. J. 2023, 469, 144015. doi: 10.1016/j.cej.2023.144015  doi: 10.1016/j.cej.2023.144015

    104. [104]

      Nguyen, T.; Su, Y.; Lin, C.; Ting, J. Adv. Funct. Mater. 2021, 31, 2106229. doi: 10.1002/adfm.202106229  doi: 10.1002/adfm.202106229

    105. [105]

      Maulana, A.; Chen, P.; Shi, Z.; Yang, Y.; Lizandara, C.; Seeler, F.; Abruna, H.; Muller.; D. Schierle-Arndt, K.; Yang, P. Nano Lett. 2023, 23, 6637. doi: 10.1021/acs.nanolett.3c01831  doi: 10.1021/acs.nanolett.3c01831

    106. [106]

      Hao, J.; Zhuang, Z.; Cao, K.; Gao, G.; Wang, C.; Lai, F.; Lu, S. Ma, P.; Dong, W.; Liu, T.; et al. Nat. Commun. 2022, 13, 2662. doi: 10.1038/s41467-022-30379-4  doi: 10.1038/s41467-022-30379-4

    107. [107]

      Jo, S.; Kim, MC.; Lee, K.; Choi, H.; Zhang, L.; Sohn, J. Adv. Energy Mater. 2023, 2301420. doi: 10.1002/aenm.202301420  doi: 10.1002/aenm.202301420

    108. [108]

      Wang, T.; Chen, H.; Yang, Z.; Liang, J.; Dai, S. J. Am. Chem. Soc. 2020, 142, 4550. doi: 10.1021/jacs.9b12377  doi: 10.1021/jacs.9b12377

    109. [109]

      Zhang, W.; Feng, X.; Mao, Z. X.; Li, J.; Wei, Z. Adv. Funct. Mater. 2022, 32, 2204110. doi: 10.1002/adfm.202204110  doi: 10.1002/adfm.202204110

    110. [110]

      Zhu, G.; Jiang, Y.; Yang, H.; Wang, H.; Fang, Y.; Wang, L.; Xie, M. Qiu, P.; Luo, W. Adv. Mater. 2022, 34, e2110128. doi: 10.1002/adma.202110128  doi: 10.1002/adma.202110128

    111. [111]

      Zeng, K.; Zhang, J.; Gao, W.; Wu, L.; Liu, H.; Gao, J.; Li, Z.; Zhou, J.; Li, T.; Liang, Z.; et al. Adv. Funct. Mater. 2022, 32, 2204643. doi: 10.1002/adfm.202204643  doi: 10.1002/adfm.202204643

    112. [112]

      Wu, D.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kubota, Y.; Kitagawa, H. J. Am. Chem. Soc. 2020, 142, 13833. doi: 10.1021/jacs.0c04807  doi: 10.1021/jacs.0c04807

    113. [113]

      Chen, W.; Luo, S.; Sun, M.; Wu, X.; Zhou, Y.; Liao, Y.; Tang, M.; Fan, X.; Huang, B.; Quan, Z. Adv. Mater. 2022, 34, 2206276. doi: 10.1002/adma.202206276  doi: 10.1002/adma.202206276

    114. [114]

      Zhan, C.; Bu, L.; Sun, H.; Huang, X.; Zhu, Z.; Yang, T.; Ma, H.; Li, L.; Wang, Y.; Geng, H.; et al. Angew. Chem. Int. Ed. 2022, 62, e202213783. doi: 10.1002/anie.202213783  doi: 10.1002/anie.202213783

    115. [115]

      Sun, Y.; Yu, L.; Xu, S.; Xie, S.; Jiang, L.; Duan, J.; Zhu, J.; Chen, S. Small 2022, 18, e2106358. doi: 10.1002/smll.202106358  doi: 10.1002/smll.202106358

    116. [116]

      Zhang, D.; Zhao, H.; Wu, X.; Deng, Y.; Wang, Z.; Han, Y.; Li, H.; Shi, Y.; Chen, X.; Li, S.; et al. Adv. Funct. Mater. 2020, 31, 2006939. doi: 10.1002/adfm.202006939  doi: 10.1002/adfm.202006939

    117. [117]

      John, C.; Alireza, A.; Leily, M.; Arashdeep, S.; Saurabhm, N. M.; Aditya, P.; Zahra, H.; Sina, R.; Andrew, B.; Meenesh, R. S.; et al. Adv. Mater. 2021, 33, 2100347. doi: 10.1002/adma.202100347  doi: 10.1002/adma.202100347

    118. [118]

      Ma, Q.; Mu, S. Interdiscip. Mater. 2022, 2, 53. doi: 10.1002/idm2.12059  doi: 10.1002/idm2.12059

    119. [119]

      Shi, P.; Si, D.; Yao, M.; Liu, T.; Huang, Y.; Zhang, T.; Cao, R. Sci. China Mater. 2022, 65, 1531. doi: 10.1007/s40843-021-1919-5  doi: 10.1007/s40843-021-1919-5

    120. [120]

      Wang, X.; Ma, R.; Li, S.; Xu, M.; Liu, L.; Feng, Y.; Thomas, T.; Yang, M.; Wang, J. Adv. Energy Mater. 2023, 13, 2300765. doi: 10.1002/aenm.202300765  doi: 10.1002/aenm.202300765

    121. [121]

      Choi, M.; Wang, L.; Stoerzinger, K.; Chung, S.; Chambers, S.; Du, Y. Adv. Energy Mater. 2023, 13, 2300239. doi: 10.1002/aenm.202300239  doi: 10.1002/aenm.202300239

    122. [122]

      Chen, C.; Sun, M.; Zhang, F.; Li, H.; Sun, M.; Fang, P.; Song, T.; Chen, P.; Chen, W.; Dong, J.; et al. Energy Environ. Sci. 2023, 16, 1685. doi: 10.1039/D2EE03930C  doi: 10.1039/D2EE03930C

    123. [123]

      Wang, N.; Ou, P.; Miao, R.; Chang, Y.; Wang, Z.; Hung, S.; Abed, J.; Ozden, A.; Chen, H.; Wu, H.; et al. J. Am. Chem. Soc. 2023, 145, 7829. doi: 10.1021/jacs.2c12431  doi: 10.1021/jacs.2c12431

    124. [124]

      Iqbal, S.; Safdar, B.; Hussain, I.; Zhang, K.; Chatzichristodoulou, C. Adv. Energy Mater. 2023, 13, 2203913. doi: 10.1002/aenm.202203913  doi: 10.1002/aenm.202203913

    125. [125]

      Cavin, J.; Ahmadiparidari, A.; Majidi, L.; Thind, A. S.; Misal, S. N.; Prajapati, A.; Hemmat, Z.; Rastegar, S.; Beukelman, A.; Singh, M. R.; et al. Adv. Mater. 2021, 33, 2100347. doi: 10.1002/adma.202100347  doi: 10.1002/adma.202100347

    126. [126]

      Shi, Z.; Li, J.; Wang, Y.; Liu, S.; Zhu, J.; Yang, J.; Wang, X.; Wu, Z.; Bao, X. Nat. Commun. 2023, 14, 843. doi: 10.1038/s41467-023-36380-9  doi: 10.1038/s41467-023-36380-9

    127. [127]

      Li, Y.; Ding, Y.; Zhang, B.; Huang, Y.; Qi, H.; Das, P.; Zhang, L.; Wang, X.; Wu, Z.; Bao, X. Energy Environ. Sci. 2023, 16, 2629. doi: 10.1039/D3EE00747B  doi: 10.1039/D3EE00747B

    128. [128]

      Liu, Q.; Wang, L.; Fu, H. J. Mater. Chem. A. 2023, 11, 4400. doi: 10.1039/D2TA09626A  doi: 10.1039/D2TA09626A

    129. [129]

      Cui, P.; Zhao, L.; Long, Y.; Dai, L.; Hu, C. Angew. Chem. Int. Ed. 2023, 62, e202218269. doi: 10.1002/anie.202218269  doi: 10.1002/anie.202218269

    130. [130]

      Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D.; Wegener, E.; Kropf, A.; Martinez, U.; Cheng, Y.; Engelhard, M.; et al. Nat. Catal. 2020, 3, 1044. doi: 10.1038/s41929-020-00546-1  doi: 10.1038/s41929-020-00546-1

    131. [131]

      Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Nat. Nanotechnol. 2021, 16, 140. doi: 10.1038/s41565-020-00824-w  doi: 10.1038/s41565-020-00824-w

    132. [132]

      Jin, H.; Xu, Z.; Hu, Z. Y.; Yin, Z.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S.; Dong, S.; Liu, J.; et al. Nat. Commun. 2023, 14, 1518. doi: 10.1038/s41467-023-37268-4  doi: 10.1038/s41467-023-37268-4

    133. [133]

      Chi, B.; Zhang, L.; Yang, X.; Zeng, Y.; Deng, Y.; Liu, M.; Huo, J.; Li, C.; Zhang, X.; Shi, X.; et al. ACS Catal. 2023, 13, 4221. doi: 10.1021/acscatal.2c06118  doi: 10.1021/acscatal.2c06118

    134. [134]

      Chen, X.; Huang, S.; Zhang, H. J. Alloys Compd. 2021, 894, 162508. doi: 10.1016/j.jallcom.2021.162508  doi: 10.1016/j.jallcom.2021.162508

    135. [135]

      Chang, J.; Wang, G.; Chang, X.; Yang, Z.; Wang, H.; Li, B.; Zhang, W.; Kovarik, L.; Du, Y.; Orlovskaya, N.; et al. Nat. Commun. 2023, 14, 1346. doi: 10.1038/s41467-023-37011-z  doi: 10.1038/s41467-023-37011-z

    136. [136]

      Wang, J.; Zhang, B.; Guo, W.; Wang, L.; Chen, J.; Pan, H.; Sun, W. Adv. Mater. 2023, 35, e2211099. doi: 10.1002/adma.202211099  doi: 10.1002/adma.202211099

    137. [137]

      Bai, S.; Xu, Y.; Cao, K.; Huang, X. Adv. Mater. 2020, 33, 2005767. doi: 10.1002/adma.202005767  doi: 10.1002/adma.202005767

    138. [138]

      Qin, Y.; Huang, H.; Yu, W.; Zhang, H.; Li, Z.; Wang, Z.; Lai, J.; Wang, L.; Feng, S. Adv. Sci. 2022, 9, e2103722. doi: 10.1002/advs.202103722  doi: 10.1002/advs.202103722

    139. [139]

      Han, A.; Zhang, Z.; Yang, J.; Wang, D.; Li, Y. Small 2021, 17, e2004500. doi: 10.1002/smll.202004500  doi: 10.1002/smll.202004500

    140. [140]

      Zhang, X.; Hu, J. P.; Fu, N.; Zhou, W. B.; Liu, B.; Deng, Q.; Wu, X. W. Infomat 2022, 4, e12306. doi: 10.1002/inf2.12306  doi: 10.1002/inf2.12306

    141. [141]

      Wang, W.; Zhang, X.; Zhang, Y.; Chen, X.; Ye, J.; Chen, J.; Lyu, Z.; Chen, X.; Kuang, Q.; Xie, S.; et al. Nano Lett. 2020, 20, 5458. doi: 10.1021/acs.nanolett.0c01908  doi: 10.1021/acs.nanolett.0c01908

    142. [142]

      Shi, Q.; Zhu, C.; Tian, M.; Su, D.; Fu, M.; Engelhard, M.; Chowdhury, I.; Feng, S.; Dua, D.; Lin, Y. Nano Energy 2018, 53, 206. doi: 10.1016/j.nanoen.2018.08.047  doi: 10.1016/j.nanoen.2018.08.047

    143. [143]

      Li, S.; Wang, J.; Lin, X.; Xie, G.; Huang, Y.; Liu, X.; Qiu, H. J. Adv. Funct. Mater. 2020, 31, 2007129. doi: 10.1002/adfm.202007129  doi: 10.1002/adfm.202007129

    144. [144]

      Feng, D.; Dong, Y.; Zhang, L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. Angew. Chem. Int. Ed. 2020, 59, 19503. doi: 10.1002/anie.202004892  doi: 10.1002/anie.202004892

    145. [145]

      Tang, C.; Qiao, S. Z. Chem. Soc. Rev. 2019, 48, 3166. doi: 10.1039/c9cs00280d  doi: 10.1039/c9cs00280d

    146. [146]

      Zhao, S.; Lu, X.; Wang, L.; Gale, J.; Amal, R. Adv. Mater. 2019, 31, e1805367. doi: 10.1002/adma.201805367  doi: 10.1002/adma.201805367

    147. [147]

      Chu, K.; Qin, J.; Zhu, H.; De Ras, M.; Wang, C.; Xiong, L.; Zhang, L.; Zhang, N.; Martens, J, A.; Hofkens, J.; et al. Sci. China Mater. 2022, 65, 2711. doi: 10.1007/s40843-022-2021-y  doi: 10.1007/s40843-022-2021-y

    148. [148]

      Chen, J.; Crooks, R.; Seefeldt, L.; Bren, K.; Bullock, R.; Darensbourg, M.; Holland, P.; Hoffman.; Janik, M.; Jones, A.; et al. Science 2018, 360, eaar6611. doi: 10.1126/science.aar6611  doi: 10.1126/science.aar6611

    149. [149]

      Shia, L.; Yina, Y.; Wang, S.; Xua, X.; Wua, H.; Zhang, J.; Wang, S.; Suna, H. Appl. Catal. B 2020, 27, 69. doi: 10.1016/j.apcatb.2020.119325  doi: 10.1016/j.apcatb.2020.119325

    150. [150]

      Van der Ham, C.; Koper, M.; Hetterscheid, D. Chem. Soc. Rev. 2014, 43, 5183. doi: 10.1039/c4cs00085d  doi: 10.1039/c4cs00085d

    151. [151]

      Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Adv. Mater. 2018, 30, e1800191. doi: 10.1002/adma.201800191  doi: 10.1002/adma.201800191

    152. [152]

      Han, Y.; Cai, W.; Wu, X.; Qi, W.; Li, B.; Li, H.; Zhang, D.; Pan, Y.; Wang, Z.; Lai, J.; et al. Cell Rep. Phys. Sci. 2020, 1, 100232. doi: 10.1016/j.xcrp.2020.100232  doi: 10.1016/j.xcrp.2020.100232

    153. [153]

      Zhao, H.; Zhang, D.; Li, H.; Qi, W.; Wu, X.; Han, Y.; Cai, W.; Wang, Z.; Lai, J.; Wang, L. Adv. Energy Mater. 2020, 10, 2002131. doi: 10.1002/aenm.202002131  doi: 10.1002/aenm.202002131

    154. [154]

      Li, X.; Wang, S.; Li, L.; Zu, X.; Sun, Y.; Xie, Y. Acc. Chem. Res. 2020, 53, 2964. doi: 10.1021/acs.accounts.0c00626  doi: 10.1021/acs.accounts.0c00626

    155. [155]

      Wang, Q.; Li, J.; Jin, H.; Xin, S.; Gao, H. Infomat 2022, 4, e12311. doi: 10.1002/inf2.12311  doi: 10.1002/inf2.12311

    156. [156]

      Wu, Z.; Gao, F.; Gao, M. Energy Environ. Sci. 2021, 14, 1121. doi: 10.1039/D0EE02747B  doi: 10.1039/D0EE02747B

    157. [157]

      Yin, J.; Jin, J.; Yin, Z.; Zhu, L.; Du, X.; Peng, Y.; Xi, P.; Yan, C.; Sun, S. Nat. Commun. 2023, 14, 1724. doi: 10.1038/s41467-023-37360-9  doi: 10.1038/s41467-023-37360-9

    158. [158]

      Han, N.; Sun, M.; Zhou, Y.; Xu, J.; Cheng, C.; Zhou, R.; Zhang, L.; Luo, J.; Huang, B.; Li, Y. Adv. Mater. 2021, 33, e2005821. doi: 10.1002/adma.202005821  doi: 10.1002/adma.202005821

    159. [159]

      Wang, X.; Wang, Z.; Arquer, F.; Dinh, C.; Ozden, A.; Li, Y.; Nam, D.; Li, J.; Liu, Y.; Wicks, J.; et al. Nat. Energy 2020, 5, 78. doi: 10.1038/s41560-020-0607-8  doi: 10.1038/s41560-020-0607-8

    160. [160]

      Bi, J.; Li, P.; Liu, J.; Jia, S.; Wang, Y.; Zhu, Q.; Liu, Z.; Han, B. Nat. Commun. 2023, 14, 2823. doi: 10.1038/s41467-023-38524-3  doi: 10.1038/s41467-023-38524-3

    161. [161]

      Wang, X.; Wang, Z.; Zhuang, T.; Dinh, C.; Li, J.; Nam, D.; Li, F.; Huang, C.; Tan, C.; Chen, Z.; et al. Nat. Commun. 2019, 10, 5186. doi: 10.1038/s41467-019-13190-6  doi: 10.1038/s41467-019-13190-6

    162. [162]

      Chen, Y.; Chen, C.; Cao, X.; Wang, Z.; Zhang, N.; Liu, T. Acta Phys. -Chim. Sin. 2023, 39, 2210053.  doi: 10.3866/PKU.WHXB202212053

    163. [163]

      Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Yamashita, H. Nat. Commun. 2021, 12, 3884. doi: 10.1038/s41467-021-24228-z  doi: 10.1038/s41467-021-24228-z

  • 加载中
    1. [1]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    2. [2]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    7. [7]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    13. [13]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    16. [16]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    17. [17]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

Metrics
  • PDF Downloads(4)
  • Abstract views(410)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return