Citation: Yan Kong, Wei Wei, Lekai Xu, Chen Chen. Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230704. doi: 10.3866/PKU.WHXB202307049 shu

Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction

  • Corresponding author: Chen Chen, cchen@mail.tsinghua.edu.cn
  • These authors contribute equally to this work.
  • Received Date: 26 July 2023
    Revised Date: 9 September 2023
    Accepted Date: 11 September 2023
    Available Online: 19 September 2023

    Fund Project: the National Key R&D Program of China 2021YFF0500503National Natural Science Foundation of China 21925202National Natural Science Foundation of China 21872076

  • The social development model relying on coal, oil, natural gas, and other fossil fuels as the primary energy sources has not only hastened the depletion of non-renewable resources but also led to a continuous increase in atmospheric CO2 concentration. As human society's understanding of energy structures deepens and environmental consciousness grows, the pursuit of effective clean CO2 capture and catalytic conversion technologies has become a research priority. This is essential for promoting adjustments to the energy mix and achieving global carbon neutrality through artificial carbon cycling. Among the various CO2 capture and catalytic conversion technologies, electrochemical catalytic CO2 reduction (CO2RR) at ambient temperature and pressure holds promise for advancing artificial carbon cycling, carbon storage, and mitigating environmental degradation. This technology can be driven by intermittent renewable energy sources such as solar energy, wind energy, tidal power, geothermal energy, etc. Furthermore, using water as a clean proton source, a wide array of chemicals can be synthesized. While recent studies have made significant progress in CO2RR within aqueous solutions, there remains untapped potential in generating other important small organic molecules like urea, amides, amines, derivatives, and even amino acids. These compounds are of great interest due to their widespread applications in fertilizers, chemical synthesis, pharmaceuticals, and the aerospace industry. The electrocatalytic synthesis of organonitrogen compounds through N-integrated CO2RR (NCR) is considered crucial for improving the practical applications and offering a reference for biological small molecules. However, NCR involves multi-step electron and proton transfer processes, leading to current challenges, including slow kinetics and a complex reaction mechanism. In this review, we delve into the detailed reaction pathways and the rational design of catalysts for different NCR products, which are vital for developing highly efficient electrocatalysts. Although some progress has been made through various strategies, there are still challenges to overcome, limiting their large-scale practical applications. The discussion concludes by addressing these existing limitations and outlining potential avenues for future improvements. We hope that this feature article will be instrumental in the development of novel electrocatalysts for NCR.
  • 加载中
    1. [1]

      Mongo, M.; Belaid, F.; Ramdani, B. Environ. Sci. Policy 2021, 118, 1. doi: 10.1016/j.envsci.2020.12.004  doi: 10.1016/j.envsci.2020.12.004

    2. [2]

      Wang, H.; Zhang, R. Sustain. Prod. Consump. 2022, 29, 259. doi: 10.1016/j.spc.2021.10.016  doi: 10.1016/j.spc.2021.10.016

    3. [3]

      Li, W.; Yin, Z.; Gao, Z.; Wang, G.; Li, Z.; Wei, F.; Wei, X.; Peng, H.; Hu, X.; Xiao, L.; et al. Nat. Energy 2022, 7, 835. doi: 10.1038/s41560-022-01092-9  doi: 10.1038/s41560-022-01092-9

    4. [4]

      Li, S.; Chen, W.; Dong, X.; Zhu, C.; Chen, A.; Song, Y.; Li, G.; Wei, W.; Sun, Y. Nat. Commun. 2022, 13, 3080. doi: 10.1038/s41467-022-30733-6  doi: 10.1038/s41467-022-30733-6

    5. [5]

      Wang, X.; Jiang, Y.; Mao, K.; Gong, W.; Duan, D.; Ma, J.; Zhong, Y.; Li, J.; Liu, H.; Long, R.; et al. J. Am. Chem. Soc. 2022, 144, 22759. doi: 10.1021/jacs.2c11109  doi: 10.1021/jacs.2c11109

    6. [6]

      Ma, W. C.; He, X. Y.; Wang, W.; Xie, S. J.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2021, 50, 12897. doi: 10.1039/D1CS00535A  doi: 10.1039/D1CS00535A

    7. [7]

      Birdja, Y. Y.; Perez-Gallent, E.; Figueiredo, M. C.; Gottle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Nat. Energy 2019, 4, 732. doi: 10.1038/s41560-019-0450-y  doi: 10.1038/s41560-019-0450-y

    8. [8]

      Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y; Wen, Z. H.; Dai, L. M. Chem. Soc. Rev. 2021, 50, 4993. doi: 10.1039/D0CS00071J  doi: 10.1039/D0CS00071J

    9. [9]

      Pan, F.; Yang, Y. Energy Environ. Sci. 2020, 13, 2275. doi: 10.1039/D0EE00900H  doi: 10.1039/D0EE00900H

    10. [10]

      Ting, L. R. L.; Garcia-Muelas, R.; Martin, A. J.; Veenstra, F. L. P.; Chen, S. T.; Peng, Y.; Per, E. Y. X.; Pablo-Garcia, S.; Lopez, N.; Perez-Ramirez, J.; et al. Angew. Chem. Int. Ed. 2020, 59, 21072. doi: 10.1002/anie.202008289  doi: 10.1002/anie.202008289

    11. [11]

      Chang, X.; Malkani, A.; Yang, X.; Xu, B. J. Am. Chem. Soc. 2020, 142, 2975. doi: 10.1021/jacs.9b11817  doi: 10.1021/jacs.9b11817

    12. [12]

      Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem., Int. Ed. 2021, 60, 19572. doi: 10.1002/anie.202101522  doi: 10.1002/anie.202101522

    13. [13]

      Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Nat. Catal. 2019, 2, 290. doi: 10.1038/s41929-019-0252-4  doi: 10.1038/s41929-019-0252-4

    14. [14]

      Chen, G.; Yuan, Y. F.; Jiang, H.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Nat. Energy 2020, 5, 605. doi: 10.1038/s41560-020-0654-1  doi: 10.1038/s41560-020-0654-1

    15. [15]

      Peter, A. A.; Norskov, J. L. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461P  doi: 10.1021/jz201461P

    16. [16]

      Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.; Cheng, J.; Wang, Y. Nat. Catal. 2020, 3, 478. doi: 10.1038/s41929-020-0450-0  doi: 10.1038/s41929-020-0450-0

    17. [17]

      Li, L.; Ozden, A.; Guo, S.; de Arquer, F. P. G.; Wang, C.; Zhang, M.; Zhang, J.; Jiang, H.; Wang, W.; Dong, H.; et al. Nat. Commun. 2021, 12, 5223. doi: 10.1038/s41467-021-25573-9  doi: 10.1038/s41467-021-25573-9

    18. [18]

      Zheng, T.; Liu, C.; Guo, C.; Zhang, M.; Li, X.; Jiang, Q.; Xue, W.; Li, H.; Li, A.; Pao, C.-W.; et al. Nat. Nanotechnol. 2021, 16, 1386. doi: 10.1038/s41565-021-00974-5  doi: 10.1038/s41565-021-00974-5

    19. [19]

      Jiang, M. M.; Zhu, M. F.; Wang, M. J.; He, Y.; Luo, X. J.; Wu, C. J.; Zhang, L. Y.; Jin, Z. ACS Nano 2023, 17, 3209. doi: 10.1021/acsnano.2c11046  doi: 10.1021/acsnano.2c11046

    20. [20]

      Li, J. N.; Zhang, Y. X.; Kuruvinashetti, K.; Kornienko, N. Nat. Rev. Chem. 2022, 6, 303. doi: 10.1038/s41570-022-00379-5  doi: 10.1038/s41570-022-00379-5

    21. [21]

      Bogdanov, D.; Ram, M.; Aghahosseini, A; Gulagi, A.; Oyewo A.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Barbosa. L.; et al. Energy 2021, 227, 120467. doi: 10.1016/j.energy.2021.120467  doi: 10.1016/j.energy.2021.120467

    22. [22]

      Lagadec, M. F.; Grimaud, A. Nat. Mater. 2020, 19, 1140. doi: 10.1038/s41563-020-0788-3  doi: 10.1038/s41563-020-0788-3

    23. [23]

      Shin, H.; Hansen, K. U.; Jiao, F. Nat. Sustain. 2021, 4, 911. doi: 10.1038/s41893-021-00739-x  doi: 10.1038/s41893-021-00739-x

    24. [24]

      De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.; Jaramillo, T.; Sargent E. Science 2019, 364, eaav3506. doi: 10.1126/science.aav3506  doi: 10.1126/science.aav3506

    25. [25]

      Li, J.; Kornienko, N. Chem. Sci. 2022, 13, 3957. doi: 10.1039/d1sc06590d  doi: 10.1039/d1sc06590d

    26. [26]

      Eller, K.; Henkes, E.; Rossbacher, R.; Hoke, H. Amines, Aliphatic. Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany; 2000, 2, 647. doi: 10.1002/14356007.a02_001

    27. [27]

      Vogt, P. F.; Gerulis, J. Amines, Aromatic. Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany; 2000, 2, 699. doi: 10.1002/14356007.a02_037

    28. [28]

      Rothgery, E. F. Kirk-Othmer Encyclopedia of Chemical Technology Wiley-VCH, Hoboken, USA; 2004, 13, 562. doi: 10.1002/0471238961.0825041819030809.a01.pub2

    29. [29]

      Booth, G. Nitro Compounds, Aromatic, Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH, New York, NY, USA; 2000, 24, 301. doi: 10.1002/14356007.a17_411

    30. [30]

      McIsaac, G. F.; David, M. B.; Gertner, G. Z.; Goolsby, D. A. Nature 2001, 414, 166. doi: 10.1038/35102672  doi: 10.1038/35102672

    31. [31]

      Boyer, E. W.; Alexander, R. B.; Parton, W. J.; Li, C.; Butterbach-Bahl, K.; Donner, S. D.; Skaggs, R. W.; Grosso, S. J. D. Ecol. Appl. 2006, 16, 2123. doi: 10.1890/1051-0761(2006)016[2123:MDITAA]2.0.CO;2  doi: 10.1890/1051-0761(2006)016[2123:MDITAA]2.0.CO;2

    32. [32]

      Kayan, D. B.; Koleli, F. Appl. Catal. B: Environ. 2016, 181, 88. doi: 10.1016/j.apcatb.2015.07.045  doi: 10.1016/j.apcatb.2015.07.045

    33. [33]

      Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; et al. Nat. Chem. 2020, 12, 717. doi: 10.1038/s41557-020-0481-9  doi: 10.1038/s41557-020-0481-9

    34. [34]

      Yuan, M.; Chen, J.; Bai, Y.; Liu, Z.; Zhang, J.; Zhao, T.; Wang, Q.; Li, S.; He, H.; Zhang, G. Angew. Chem. Int. Ed. 2021, 60, 10910. doi: 10.1002/ange.202101275  doi: 10.1002/ange.202101275

    35. [35]

      Wu, Y.; Jiang, Z.; Lin, Z.; Liang, Y.; Wang, H. Nat. Sustain. 2021, 4, 725. doi: 10.1038/s41893-021-00705-7  doi: 10.1038/s41893-021-00705-7

    36. [36]

      Shibata, M.; Yoshida, K.; Furuya, N. J. Electroanal. Chem. 1995, 387, 143. doi: 10.1016/0022-0728(95)03992-P  doi: 10.1016/0022-0728(95)03992-P

    37. [37]

      Xian, J.; Li, S.; Su, H.; Liao, P.; Wang, S.; Zhang, Y.; Yang, W.; Yang, J.; Sun, Y.; Jia, Y.; et al. Angew. Chem. Int. Ed. 2023, 62, e202304007. doi: 10.1002/anie.202304007  doi: 10.1002/anie.202304007

    38. [38]

      Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. J. Am. Chem. Soc. 2021, 143, 19630. doi: 10.1021/jacs.1c10714  doi: 10.1021/jacs.1c10714

    39. [39]

      Lv, C.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.; Lee, C.; Liu, D.; Li, S.; et al. Nat. Sustain. 2021, 4, 868. doi: 10.1038/s41893-021-00741-3  doi: 10.1038/s41893-021-00741-3

    40. [40]

      Wei, X.; Wen, X.; Liu, Y.; Chen, C.; Xie, C.; Wang, D.; Qiu, M.; He, N.; Zhou, P.; Chen, W.; et al. J. Am. Chem. Soc. 2022, 144, 11530. doi: 10.1021/jacs.2c03452  doi: 10.1021/jacs.2c03452

    41. [41]

      Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He, N.; Xie, C.; Chen, W.; Zheng, J.; et al. Nat. Commun. 2022, 13, 5337. doi: 10.21203/rs.3.rs-1588933/v1  doi: 10.21203/rs.3.rs-1588933/v1

    42. [42]

      Meng, N.; Huang, Y.; Liu, Y.; Yu, Y.; Zhang, B. Cell Rep. Phys. Sci. 2021, 2, 100378. doi: 10.1016/j.xcrp.2021.100378  doi: 10.1016/j.xcrp.2021.100378

    43. [43]

      Guo, C.; Zhou, W.; Lan, X.; Wang, Y.; Li, T.; Han, S.; Yu, Y.; Zhang, B. J. Am. Chem. Soc. 2022, 144, 16006. doi: 10.1021/jacs.2c05660  doi: 10.1021/jacs.2c05660

    44. [44]

      Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard, W. A.; Jiao, F. Nat. Chem. 2019, 11, 846. doi: 10.1038/s41557-019-0312-z  doi: 10.1038/s41557-019-0312-z

    45. [45]

      Chernyshova, I.; Somasundaran, P.; Ponnurangam, S. Proc. Natl. Acad. Sci. U. S. A., 2018, 115, E9261. doi: 10.1073/pnas.1802256115  doi: 10.1073/pnas.1802256115

    46. [46]

      Tao, Z. X.; Wu, Y. S.; Wu, Z. S.; Shang, B.; Rooney, B.; Wang, H. L. J. Energy Chem. 2022, 65, 367. doi: 10.1016/j.jechem.2021.06.007  doi: 10.1016/j.jechem.2021.06.007

    47. [47]

      Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides, M. Joule 2020, 4, 142. doi: 10.1016/j.joule.2019.10.006  doi: 10.1016/j.joule.2019.10.006

    48. [48]

      Wu, Y.; Chen, C.; Yan, X.; Sun, X.; Zhu, Q.; Li, P.; Li, Y.; Liu, S.; Ma, J.; Huang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 20803. doi: 10.1002/anie.202105263  doi: 10.1002/anie.202105263

    49. [49]

      Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Chem 2019, 5, 263. doi: 10.1016/j.chempr.2018.10.010  doi: 10.1016/j.chempr.2018.10.010

    50. [50]

      Smith, C.; Hill, A. K.; Torrente-Murciano, L. Energy Environ. Sci. 2020, 13, 331. doi: 10.1039/c9ee02873k  doi: 10.1039/c9ee02873k

    51. [51]

      Peng, J.; Wang, X.; Wang, Z.; Liu, B.; Zhang, P.; Li, X.; Li, N. Chin. J. Struc. Chem. 2022, 41, 2209094. doi: 10.14102/j.cnki.0254-5861.2022-0100  doi: 10.14102/j.cnki.0254-5861.2022-0100

    52. [52]

      Wang, J.; Yao, Z.; Hao, L.; Sun, Z. Curr. Opin. Green Sust. 2022, 37, 100648. doi: 10.1016/j.cogsc.2022.100648  doi: 10.1016/j.cogsc.2022.100648

    53. [53]

      Feng, Y.; Yang, H.; Zhang, Y.; Huang, X.; Li, L.; Cheng, T.; Shao, Q. Nano Lett. 2020, 20, 8282. doi: 10.1021/acs.nanolett.0c03400  doi: 10.1021/acs.nanolett.0c03400

    54. [54]

      Zhu, X.; Zhou, X.; Jing, Y.; Li, Y. Nat. Commun. 2021, 12, 4080. doi: 10.1038/s41467-021-24400-5  doi: 10.1038/s41467-021-24400-5

    55. [55]

      Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W.-C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140, 4218. doi: 10.1021/jacs.8b00814  doi: 10.1021/jacs.8b00814

    56. [56]

      Leverett, J.; Tran-Phu, T.; Yuwono, J, A.; Kumar, P.; Kim, C.; Zhai, Q.; Han, C.; Qu, J.; Cainey, J.; Simonov, A. N.; et al. Adv. Energy Mater. 2022, 12, 2201500. doi: 10.1002/aenm.202201500  doi: 10.1002/aenm.202201500

    57. [57]

      Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He, N.; Chen, W.; Zheng, J.; Chen, P.; et al. Nat. Commun. 2022, 13, 5337. doi: 10.1038/s41467-022-33066-6  doi: 10.1038/s41467-022-33066-6

    58. [58]

      Hadjiivanov, K.; Ivanova, E.; Daturi, M.; Saussey, J.; Lavalley, J. C. Chem. Phys. Lett. 2003, 370, 712. doi: 10.1016/s0009-2614(03)00173-8  doi: 10.1016/s0009-2614(03)00173-8

    59. [59]

      Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. J. Hazard. Mater. 2012, 215, 272. doi: 10.1016/j.jhazmat.2012.02.068  doi: 10.1016/j.jhazmat.2012.02.068

    60. [60]

      Kong, L.; Jiao, D.; Wang, Z.; Liu, Y.; Shang, Y.; Yin, L.; Cai, Q.; Zhao, J. Chem. Eng. J. 2023, 451, 138885. doi: 10.1016/j.cej.2022.138885  doi: 10.1016/j.cej.2022.138885

    61. [61]

      Geng, J.; Ji. S.; Jin, M.; Zhang, C.; Xu, M.; Wang, G.; Liang, C.; Zhang, H. Angew. Chem. Int. Ed. 2022, 62, e202210958. doi: 10.1002/anie.202210958  doi: 10.1002/anie.202210958

    62. [62]

      Hu, C.; Dai, L. Adv. Mater. 2019, 31, 1804672. doi: 10.1002/adma.201804672  doi: 10.1002/adma.201804672

    63. [63]

      Liu, X.; Kumar, P.; Chen, Q.; Zhao, L.; Ye, F.; Ma, X.; Liu, D.; Chen, X.; Dai, L.; Hu, C. Appl. Catal. B. Environ. 2022, 316, 121618. doi: 10.1016/j.apcatb.2022.121618  doi: 10.1016/j.apcatb.2022.121618

    64. [64]

      Roy, P.; Pramanik, A.; Sarkar, P. J. Phys. Chem. Lett. 2021, 12, 10837. doi: 10.1021/acs.jpclett.1c03242  doi: 10.1021/acs.jpclett.1c03242

    65. [65]

      Meng, N.; Ma, X.; Wang, C.; Wang, Y.; Yang, R.; Shao, J.; Huang, Y.; Xu, Y.; Zhang, B.; Yu, Y. ACS Nano 2022, 16, 9095. doi: 10.1021/acsnano.2c01177  doi: 10.1021/acsnano.2c01177

    66. [66]

      Xiong, Z.; Xiao, Y.; Shen, C. Chem. Mater. 2022, 34, 9402. doi: 10.1021/acs.chemmater.2c01572  doi: 10.1021/acs.chemmater.2c01572

    67. [67]

      Zhang, D.; Xue, Y.; Zheng, X.; Zhang, C.; Li, Y. Natl. Sci. Rev. 2023, 10, nwac209. doi: 10.1093/nsr/nwac209  doi: 10.1093/nsr/nwac209

    68. [68]

      Yuan, M.; Chen, J.; Zhang, H.; Li, Q.; Zhou, L.; Yang, C.; Liu, R.; Liu, Z.; Zhang, S.; Zhang, G. Energy. Environ. Sci. 2022, 15, 2084. doi: 10.1039/d1ee03918k  doi: 10.1039/d1ee03918k

    69. [69]

      Zhao, D.; Yu, K.; Song, P.; Feng, W.; Hu, B.; Cheong, W.-C.; Zhuang, Z.; Liu, S.; Sun, K.; et al. Energy Environ. Sci. 2022, 15, 3795. doi: 10.1039/D2EE00878E  doi: 10.1039/D2EE00878E

    70. [70]

      Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Nat. Commun. 2022, 13, 5471. doi: 10.1038/s41467-022-33258-0  doi: 10.1038/s41467-022-33258-0

    71. [71]

      Yang, G.; Hsieh, C.; Ho, Y.; Kuo, T.; Kwon, Y.; Lu, Q.; Cheng, M. ACS Catal. 2022, 12, 11494. doi: 10.1021/acscatal.2c02346  doi: 10.1021/acscatal.2c02346

    72. [72]

      Liu, S.; Yin, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Cell Rep. Phys. Sci. 2022, 3: 100869. doi: 10.1016/j.xcrp.2022.100869  doi: 10.1016/j.xcrp.2022.100869

    73. [73]

      Huang, Y.; Yang, R.; Wang, C.; Meng, N.; Shi, Y.; Yu, Y.; Zhang, B. ACS Energy Lett. 2022, 7, 284. doi: 10.1021/acsenergylett.1c02471  doi: 10.1021/acsenergylett.1c02471

    74. [74]

      Krzywda, P.; Paradelo Rodríguez A.; Benes, N.; Mei, B.; Mul, G. Appl. Catal. B Environ. 2022, 316, 121512. doi: 10.1016/j.apcatb.2022.121512  doi: 10.1016/j.apcatb.2022.121512

    75. [75]

      Wu, W.; Yang, Y.; Wang, Y.; Lu, T.; Dong, Q.; Zhao, J.; Niu, J.; Liu, Q.; Hao, Z.; Song, S. Chem. Catal. 2022, 2, 3225. doi: 10.1016/j.checat.2022.09.012  doi: 10.1016/j.checat.2022.09.012

    76. [76]

      Zhang, Y.; Jiao, L.; Yang, W.; Xie, C.; Jiang, H.-L. Angew. Chem. Int. Ed. 2021, 60, 7607. doi: 10.1002/anie.202016219  doi: 10.1002/anie.202016219

    77. [77]

      Yuan, M.; Zhang, H.; Xu, Y.; Liu, R.; Wang, R.; Zhao, T.; Zhang, J.; Liu, Z.; He, H.; Yang, C.; Zhang, S.; Zhang, G. Chem Catal. 2022, 2, 309. doi: 10.1016/j.checat.2021.11.009  doi: 10.1016/j.checat.2021.11.009

    78. [78]

      Yang, S.; Zhang, W.; Pan, G.; Chen, J.; Deng, J.; Chen, K.; Xie, X.; Han, D.; Dai, M.; Niu, L. Angew. Chem. Int. Ed. 2023, 62, e202312076. doi: 10.1002/anie.202312076  doi: 10.1002/anie.202312076

    79. [79]

      Yang, C. H.; Gao, Z. Q.; Wang, D. J.; Li, S. Y.; Li, J. J.; Zhu, Y. T.; Wang, H. Q.; Yang, W. J.; Gao, X. J.; Zhang, Z. C.; et al. Sci. China Mater. 2022, 65, 155. doi: 10.1007/s40843-021-1749-5  doi: 10.1007/s40843-021-1749-5

    80. [80]

      Wang, R.; Wang, X. Y.; Weng, W. J.; Yao, Y.; Kidkhunthod, P.; Wang, C. C.; Hou, Y.; Guo, J. Angew. Chem. Int. Ed. 2021, 61, e202115503. doi: 10.1002/anie.202115503  doi: 10.1002/anie.202115503

    81. [81]

      Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Nature 2019, 575, 639. doi: 10.1038/s41586-019-1760-8  doi: 10.1038/s41586-019-1760-8

    82. [82]

      Chen, C.; He, N. H.; Wang, S. Y. Small Sci. 2021, 1, 2100070. doi: 10.1002/smsc.202100070  doi: 10.1002/smsc.202100070

    83. [83]

      Cao, N.; Quan, Y. L.; Guan, A. X.; Yang, C.; Ji, Y. L.; Zheng, G. F. J. Colloid Interface Sci. 2020, 577, 109. doi: 10.1016/j.jcis.2020.05.014  doi: 10.1016/j.jcis.2020.05.014

    84. [84]

      Li, Y.; Chen, C.; Cao, R.; Pan, Z.; He, H.; Zhou, K. Appl. Catal. B 2020, 268, 118747. doi: 10.1016/j.apcatb.2020.118747  doi: 10.1016/j.apcatb.2020.118747

    85. [85]

      Jiao, J.; Lin, R.; Liu, S.; Cheong, W.-C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S.-F.; et al. Nat. Chem. 2019, 11, 222. doi: 10.1038/s41557-018-0201-x  doi: 10.1038/s41557-018-0201-x

    86. [86]

      Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 893. doi: 10.1039/C7EE03245E  doi: 10.1039/C7EE03245E

    87. [87]

      Yuan, M. L.; Chen, J. W.; Bai, Y. L.; Liu, Z. J.; Zhang, J. X.; Zhao, T. K.; Shi, Q. N.; Li, S. W.; Wang, X.; Zhang, G. J. Chem. Sci. 2021, 12, 6048. doi: 10.1039/D1SC01467F  doi: 10.1039/D1SC01467F

    88. [88]

      Fang, Y. X.; Liu, X.; Liu, Z. P.; Han, L.; Ai, J.; Zhao, G.; Terasaki, O.; Cui, C. H.; Yang, J. Z.; Liu, C. Y.; et al. Chem 2023, 9, 460. doi: 10.1016/j.chempr.2022.10.017  doi: 10.1016/j.chempr.2022.10.017

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    4. [4]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    7. [7]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    11. [11]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    12. [12]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    13. [13]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    14. [14]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    15. [15]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    16. [16]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    19. [19]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    20. [20]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

Metrics
  • PDF Downloads(1)
  • Abstract views(246)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return