Citation: Chunchun Wang, Changjun You, Ke Rong, Chuqi Shen, Fang Yang, Shijie Li. An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ)[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230704. doi: 10.3866/PKU.WHXB202307045 shu

An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ)

  • Corresponding author: Shijie Li, lishijie@zjou.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 23 July 2023
    Revised Date: 25 August 2023
    Accepted Date: 25 August 2023
    Available Online: 6 September 2023

    Fund Project: National Natural Science Foundation of China U1809214National Natural Science Foundation of China 51708504the Natural Science Foundation of Zhejiang Province of China LY20E080014the Science and Technology Project of Zhoushan of China 2022C41011

  • Hexavalent chromium (Cr(Ⅵ)) may be a hazardous and non-biodegradable waste matter which will cause substantial environmental damage. Fabricating powerful photosystems to achieve efficacious elimination of Cr(Ⅵ) holds eminent promise in solving environmental issues. Thanks to their outstanding photo/electrical properties, large surface area, and customizable structure, metal-organic framework (MOF) catalysts have attracted widespread attention within the field of pollutant degradation and reduction. Nevertheless, due to the recombination of photo-generated charge carriers, pristine semiconductor MOFs' photocatalytic performance is inadequate. To overcome this challenge, one of the most typical and effective strategies is to create heterojunctions by combining MOFs with another semiconductor. Among these strategies, the innovative step-scheme (S-scheme) heterojunction has gained increasing prominence. Unlike traditional type Ⅱ and Z-scheme heterojunctions, the built-in electric field at the S-scheme heterojunction boundary enhances spatial charge separation and boosts redox capacity, thereby improving photocatalytic performance. In this study, a creative MOF-based S-scheme architecture with oxygen vacancies (OV) was built via in situ growth of MIL-101(Fe) crystals on the surface of OV-rich BiOCl microspheres. The optimized MIL-101(Fe)/BiOCl heterojunction exhibited exceptional photocatalytic performance in photo-reducing high concentrations of Cr(Ⅵ) and 88.5% of Cr(Ⅵ) solution (10 mg∙L-1], 100 mL) can be removed within 60 min, which is about 4.4 and 9.0 times that of BiOCl and MIL-101(Fe). Besides, the MIL-101(Fe)/BiOCl manifests impressive practical implementation prospect due to its high anti-interference property, robustness and reusability. Photoelectron spectroscopy results validated that built-in electric field, bending band, and Coulomb attraction facilitated the transition of photoelectrons from the conduction band (CB) of BiOCl to the valence band (VB) of MIL-101(Fe), where they recombined with the photo-created holes. This suggests an S-scheme interfacial photo-carrier detachment mechanism at the MIL-101(Fe)/BiOCl interface. In addition, BET measurements indicated a notable increase in surface area with the introduction of MIL-101(Fe). The OV-rich S-scheme MIL-101(Fe)/BiOCl heterostructure boasts more reactive sites, enhanced interfacial charge separation, and optimal redox ability of photo-carriers, leading to enhanced photocatalytic properties. Measurements of active radical scavenging and electron spin resonance (ESR) confirm that e- and ∙O2- are the primary active species during photocatalysis. These discoveries would open up new avenues for developing defective semiconductor/MOF S-scheme photocatalyst for environmental purification.
  • 加载中
    1. [1]

      Li, X.; He, F.; Wang, Z.; Xing, B. Eco-Environ. Health 2022, 1, 181. doi: 10.1016/j.eehl.2022.10.001  doi: 10.1016/j.eehl.2022.10.001

    2. [2]

      Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J. H. Nat. Sustain. 2022, 5, 801. doi: 10.1038/s41893-022-00915-7  doi: 10.1038/s41893-022-00915-7

    3. [3]

      Deng, H.; Tu, Y.; Wang, H.; Wang, Z.; Li, Y.; Chai, L.; Zhang, W.; Lin, Z. Eco-Environ. Health 2022, 1, 229. doi: 10.1016/j.eehl.2022.11.003  doi: 10.1016/j.eehl.2022.11.003

    4. [4]

      Mallik, A. K.; Moktadir, M. A.; Rahman, M. A.; Shahruzzaman, M.; Rahman, M. M. J. Hazard. Mater. 2022, 423, 127041. doi: 10.1016/j.jhazmat.2021.127041  doi: 10.1016/j.jhazmat.2021.127041

    5. [5]

      Cong, Y.; Shen, L.; Wang, B.; Cao, J.; Pan, Z.; Wang, Z.; Wang, K.; Li, Q.; Li, X. Water Res. 2022, 222, 118919. doi: 10.1016/j.watres.2022.118919  doi: 10.1016/j.watres.2022.118919

    6. [6]

      Pavithra, K.G.; Jaikumar, V.; Kumar, P. S.; Rajan, P. S. S. J. Clean. Prod. 2019, 228, 580. doi: 10.1016/j.jclepro.2019.04.117  doi: 10.1016/j.jclepro.2019.04.117

    7. [7]

      Stern, C. M.; Jegede, T. O.; Hulse, V. A.; Elgrishi, N. Chem. Soc. Rev. 2021, 50, 1642. doi: 10.1039/D0CS01165G  doi: 10.1039/D0CS01165G

    8. [8]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi: 10.1038/nature06599  doi: 10.1038/nature06599

    9. [9]

      Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi: 10.1007/s42765-022-00253-5  doi: 10.1007/s42765-022-00253-5

    10. [10]

      Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi: 10.1016/j.esci.2023.100095  doi: 10.1016/j.esci.2023.100095

    11. [11]

      Zou, Z.; Zhang, H.; Lan, J.; Luo, J.; Xie, Y.; Li, Y.; Lü, J.; Cao, R. Nano Mater. Sci. 2023, in press. doi: 10.1016/j.nanoms.2022.11.001

    12. [12]

      Wageh, S.; Al-Ghamdi, A. A.; Xu, Q.; Acta Phys. -Chim. Sin. 2022, 38, 2202001. doi: 10.3866/PKU.WHXB202202001  doi: 10.3866/PKU.WHXB202202001

    13. [13]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2112037. doi: 10.3866/PKU.WHXB202112037  doi: 10.3866/PKU.WHXB202112037

    14. [14]

      Zhou, D.; Luo, H.; Zhang, F.; Wu, J.; Yang, J.; Wang, H. Adv. Fiber Mater. 2022, 4, 1094. doi: 10.1007/s42765-022-00149-4  doi: 10.1007/s42765-022-00149-4

    15. [15]

      Wang, C.; Liu, K.; Wang, D.; Wang, G.; Chu, P. K.; Meng, Z.; Wang, X. Adv. Fiber Mater. 2022, 4, 1069. doi: 10.1007/s42765-022-00142-x  doi: 10.1007/s42765-022-00142-x

    16. [16]

      Luan, P.; Zhao, X.; Copenhaver, K.; Ozcan, S.; Zhu, H. Adv. Fiber Mater. 2022, 4, 736. doi: 10.1007/s42765-022-00151-w  doi: 10.1007/s42765-022-00151-w

    17. [17]

      Sun, J.; Guo, N.; Song, T.; Hao, Y. R.; Sun, J.; Xue, H.; Wang, Q. Adv. Powder Mater. 2022, 1, 100023. doi: 10.1016/j.apmate.2021.11.009  doi: 10.1016/j.apmate.2021.11.009

    18. [18]

      Li, M.; Sun, J.; Chen, G.; Wang, S.; Yao, S. Adv. Powder Mater. 2022, 1, 100032. doi: 10.1016/j.apmate.2022.01.005  doi: 10.1016/j.apmate.2022.01.005

    19. [19]

      Zhang, F.; Li, X.; Dong, X.; Hao, H.; Lang, X.; Chin. J. Catal. 2022, 43, 2395. doi: doi:10.1016/S1872-2067[22]64127-5

    20. [20]

      Fu, J.; Li, P.; Lin, Y.; Du, H.; Liu, H.; Zhu, W.; Ren, H. Eco-Environ. Health 2022, 1, 259. doi: 10.1016/j.eehl.2022.11.005  doi: 10.1016/j.eehl.2022.11.005

    21. [21]

      Hou, H.; Shao, G.; Yang, W. J. Mater. Chem. A 2021, 9, 13722. doi: 10.1039/D1TA02527A  doi: 10.1039/D1TA02527A

    22. [22]

      Swift, E. Science 2019, 365, 320. doi: 10.1126/science.aax8940  doi: 10.1126/science.aax8940

    23. [23]

      Zhou, P.; Luo, M.; Guo, S. Nat. Rev. Chem. 2022, 6, 823. doi: 10.1038/s41570-022-00434-1  doi: 10.1038/s41570-022-00434-1

    24. [24]

      Xu, H.; Shi, J.; Lyu, S.; Lang, X. Chin. J. Catal. 2020, 41, 1468. doi: 10.1016/S1872-2067[20]63640-3  doi: 10.1016/S1872-2067[20]63640-3

    25. [25]

      Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi: 10.1016/j.nanoms.2022.03.001  doi: 10.1016/j.nanoms.2022.03.001

    26. [26]

      Chen, Z.; Wei, W.; Chen, H.; Ni, B. Eco-Environ. Health 2022, 1, 86. doi: 10.1016/j.eehl.2022.05.001  doi: 10.1016/j.eehl.2022.05.001

    27. [27]

      Nishioka, S.; Hojo, K.; Xiao, L.; Gao, T.; Miseki, Y.; Yasuda, S.; Yokoi, T.; Sayama, K.; Mallouk, T. E.; Maeda, K. Sci. Adv. 2022, 8, eadc9115. doi: 10.1126/sciadv.adc9115  doi: 10.1126/sciadv.adc9115

    28. [28]

      Shiraishi, Y.; Hashimoto, M.; Chishiro, K.; Moriyama, K.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2020, 142, 7574. doi: 10.1021/jacs.0c01683  doi: 10.1021/jacs.0c01683

    29. [29]

      Li, M.; Yu, S.; Huang, H.; Li, X.; Feng, Y.; Wang, C.; Wang, Y.; Ma, T.; Guo, L.; Zhang, Y. Angew. Chem. Int. Ed. 2019, 58, 9517. doi: 10.1002/ange.201904921  doi: 10.1002/ange.201904921

    30. [30]

      Yan, X.; Zhao, H.; Li, T.; Zhang, W.; Liu, Q.; Yuan, Y.; Huang, L.; Yao, L.; Yao, J.; Su, H.; et al. Nanoscale 2019, 11, 10203. doi: 10.1039/C9NR02304F  doi: 10.1039/C9NR02304F

    31. [31]

      Wu, S.; Sun, W.; Sun, J.; Hood, Z. D.; Yang, S.; Sun, L.; Kent, P. R. C.; Chisholm, M. F. Chem. Mater. 2018, 30, 5128. doi: 10.1021/acs.chemmater.8b01629  doi: 10.1021/acs.chemmater.8b01629

    32. [32]

      Shi, Y.; Li, J.; Mao, C.; Liu, S.; Wang, X.; Liu, X.; Zhao, S.; Liu, X.; Huang, Y.; Zhang, L. Nat. Commun. 2021, 12, 5923. doi: 10.1038/s41467-021-26219-6  doi: 10.1038/s41467-021-26219-6

    33. [33]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    34. [34]

      Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009  doi: 10.1016/j.jmst.2023.05.009

    35. [35]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/S1872-2067[22]64106-8  doi: 10.1016/S1872-2067[22]64106-8

    36. [36]

      Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    37. [37]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2022, 43, 1657. doi: 10.1016/S1872-2067[21]64010-X  doi: 10.1016/S1872-2067[21]64010-X

    38. [38]

      Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150  doi: 10.14102/j.cnki.0254-5861.2022-0150

    39. [39]

      Yue, X.; Cheng, L.; Fan, J.; Xiang, Q. Appl. Catal. B 2022, 304, 120979. doi: 10.1016/j.apcatb.2021.120979  doi: 10.1016/j.apcatb.2021.120979

    40. [40]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    41. [41]

      Jabbar, Z. H.; Graimed, B. H.; Okab, A. A.; Alsunbuli, M. M.; Al-husseiny, R. A. J. Photochem. Photobiol. A Chem. 2023, 441, 114734. doi: 10.1016/j.jphotochem.2023.114734  doi: 10.1016/j.jphotochem.2023.114734

    42. [42]

      Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. Matter 2023, 5, 4187. doi: 10.1016/j.matt.2022.09.009  doi: 10.1016/j.matt.2022.09.009

    43. [43]

      Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016  doi: 10.1016/j.jmst.2022.02.016

    44. [44]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    45. [45]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    46. [46]

      Alkanad, K.; Hezam, A.; Drmosh, Q.; Chandrashekar, S. S. G.; AlObaid, A. A.; Warad, I.; Bajiri, M. A.; Krishnappagowda, L. N. Sol. RRL 2021, 5, 2100501. doi: 10.1002/solr.202100501  doi: 10.1002/solr.202100501

    47. [47]

      Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

    48. [48]

      Ma, L. J.; Wu, H. Q.; Chen, B. Y.; Wang, G.; Lei, B. X.; Zhang, D.; Kuang, D. B. Adv. Mater. Interfaces 2022, 9, 2102522. doi: 10.1002/admi.202102522  doi: 10.1002/admi.202102522

    49. [49]

      Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi: 10.1016/j.jmst.2022.02.012  doi: 10.1016/j.jmst.2022.02.012

    50. [50]

      Zhang, Z.; Guo, R.; Tang, J.; Miao, Y.; Gu, J.; Pan, W. J. CO2 Util. 2021, 45, 101453. doi: 10.1016/j.jcou.2021.101453  doi: 10.1016/j.jcou.2021.101453

    51. [51]

      Zhou, P.; Shen, Y.; Zhao, S.; Li, G.; Cui, B.; Wei, D.; Shen, Y. Chem. Eng. J. 2022, 407, 126697. doi: 10.1016/j.cej.2020.126697  doi: 10.1016/j.cej.2020.126697

    52. [52]

      Jafarzadeh, M. ACS Appl. Mater. Interfaces 2022, 14, 24993. doi: 10.1021/acsami.2c03946  doi: 10.1021/acsami.2c03946

    53. [53]

      Liu, X.; Zhang, Y.; Guo, X.; Pang, H.; Adv. Fiber Mater. 2022, 4, 1463. doi: 10.1007/s42765-022-00214-y  doi: 10.1007/s42765-022-00214-y

    54. [54]

      Peng, S.; Li, R.; Rao, Y.; Huang, Y.; Zhao, Y.; Xiong, M.; Cao, J.; Lee, S. Appl. Catal. B 2022, 316, 121693. doi: 10.1016/j.apcatb.2022.121693  doi: 10.1016/j.apcatb.2022.121693

    55. [55]

      Bao, C.; Zhao, J.; Sun, Y.; Zhao, X.; Zhang, X.; Zhu, Y.; She, X.; Yang, D.; Xing, B. Environ. Sci. Nano 2021, 8, 2347. doi: 10.1039/d1en00250c  doi: 10.1039/d1en00250c

    56. [56]

      Jiang, Z.; Xu, X.; Ma, Y.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Nature 2020, 586, 549. doi: 10.1038/s41586-020-2738-2  doi: 10.1038/s41586-020-2738-2

    57. [57]

      Fakhria, H.; Farzadkia, M.; Boukherroub, R.; Srivastava, V.; Sillanpää, M. Sol. Energy 2020, 208, 990. doi: 10.1016/j.solener.2020.08.050  doi: 10.1016/j.solener.2020.08.050

    58. [58]

      Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Nat. Chem. 2022, 14, 1342. doi: 10.1038/s41557-022-01093-x  doi: 10.1038/s41557-022-01093-x

    59. [59]

      Navalón, S.; Dhakshinamoorthy, A.; ólvaro, M.; Ferrer, B.; García, H. Chem. Rev. 2023, 123, 445. doi: 10.1021/acs.chemrev.2c00460  doi: 10.1021/acs.chemrev.2c00460

    60. [60]

      Daliran, S.; Oveisi, A. R.; Peng, Y.; López-Magano, A.; Khajeh, M.; Mas-Ballesté, R. N.; Alemán, J.; Luque, R.; Garcia, H. Chem. Soc. Rev. 2022, 51, 7810. doi: 10.1039/d1cs00976a  doi: 10.1039/d1cs00976a

    61. [61]

      Liao, X.; Wang, F.; Wang, F.; Cai, Y.; Yao, Y.; Teng, B. T.; Hao, Q.; Lu, S. Appl. Catal. B 2019, 259, 118064. doi: 10.1016/j.apcatb.2019.118064  doi: 10.1016/j.apcatb.2019.118064

    62. [62]

      Wang, Y.; Zhong, Z.; Muhammad, Y.; He, H.; Zhao, Z.; Nie, S.; Zhao, Z. Chem. Eng. J. 2020, 398, 125684. doi: 10.1016/j.cej.2020.125684  doi: 10.1016/j.cej.2020.125684

    63. [63]

      Li, B.; Zhao, J.; Lin, X.; Tu, D.; Meng, Y.; Li, Y.; Huang, P.; Zhang, H. J. Clean. Prod. 2022, 355, 131812. doi: 10.1016/j.jclepro.2022.131812  doi: 10.1016/j.jclepro.2022.131812

    64. [64]

      Liang, R.; He, Z.; Lu, Y.; Yan, G.; Wu, L. Sep. Purif. Technol. 2021, 277, 119442. doi: 10.1016/j.seppur.2021.119442  doi: 10.1016/j.seppur.2021.119442

    65. [65]

      Doan, V. D.; Huynh, B. A.; Pham, H. A. L.; Vasseghian, Y.; Le, V. T. Environ. Res. 2021, 201, 111593. doi: 10.1016/j.envres.2021.111593  doi: 10.1016/j.envres.2021.111593

    66. [66]

      Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067[23]64479-1  doi: 10.1016/S1872-2067[23]64479-1

    67. [67]

      Zuo, S.; Ding, Y.; Wu, L.; Yang, F.; Guan, Z.; Ding, S.; Xia, D.; Li, X.; Li, D. Water Res. 2023, 231, 119631. doi: 10.1016/j.watres.2023.119631  doi: 10.1016/j.watres.2023.119631

    68. [68]

      Jia, Z.; Li, T.; Zheng, Z.; Zhang, J.; Liu, J.; Li, R.; Wang, Y.; Zhang, X.; Wang, Y.; Fan, C. Chem. Eng. J. 2020, 380, 122422. doi: 10.1016/j.cej.2019.122422  doi: 10.1016/j.cej.2019.122422

    69. [69]

      Hajiali, M.; Farhadian, M.; Tangestaninejad, S. Appl. Surf. Sci. 2022, 602, 154389. doi: 10.1016/j.apsusc.2022.154389  doi: 10.1016/j.apsusc.2022.154389

    70. [70]

      Lu, C.; Yang, D.; Wang, L.; Wen, S.; Cao, D.; Tu, C.; Gao, L.; Li, Y.; Zhou, Y.; Huang, W. J. Alloy. Compd. 2022, 904, 164046. doi: 10.1016/j.jallcom.2022.164046  doi: 10.1016/j.jallcom.2022.164046

    71. [71]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    72. [72]

      Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Chin. Chem. Lett. 2022, 33, 5200. doi: 10.1016/j.cclet.2022.01.058  doi: 10.1016/j.cclet.2022.01.058

    73. [73]

      Huang, B.; Fu, X.; Wang, K.; Wang, L.; Zhang, H.; Liu, Z.; Liu, B.; Li, J. Adv. Powder Mater. 2024, 100140. doi: 10.1016/j.apmate.2023.100140  doi: 10.1016/j.apmate.2023.100140

    74. [74]

      Ning, R.; Pang, H.; Yan, Z.; Lu, Z.; Wang, Q.; Wu, Z.; Dai, W.; Liu, L.; Li, Z.; Fan, G.; et al. J. Hazard. Mater. 2022, 435, 129061. doi: 10.1016/j.jhazmat.2022.129061  doi: 10.1016/j.jhazmat.2022.129061

    75. [75]

      Wang, W.; Wang, Z.; Hu, Y.; Liu, Y.; Chen, S. eScience 2022, 2, 438. doi: 10.1016/j.esci.2022.04.004  doi: 10.1016/j.esci.2022.04.004

    76. [76]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067[23]64420-1  doi: 10.1016/S1872-2067[23]64420-1

    77. [77]

      Hua, J.; Wang, Z.; Zhan, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003  doi: 10.1016/j.jmst.2023.03.003

    78. [78]

      Li, S.; Liang, J.; Wei, P.; Liu, Q.; Xie, L.; Luo, Y.; Sun, X. eScience 2022, 2, 382. doi: 10.1016/j.esci.2022.04.008  doi: 10.1016/j.esci.2022.04.008

    79. [79]

      Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034. doi: 10.14102/j.cnki.0254-5861.2021-0046  doi: 10.14102/j.cnki.0254-5861.2021-0046

    80. [80]

      Gómez-Avilés, A.; Solís, R. R.; García-Frutos, E. M.; Bedia, J.; Belver, C. Chem. Eng. J. 2023, 461, 141889. doi: 10.1016/j.cej.2023.141889  doi: 10.1016/j.cej.2023.141889

    81. [81]

      Li, X.; Hu, Y.; Dong, F.; Huang, J.; Han, L.; Deng, F.; Luo, Y.; Xie, Y.; He, C.; Feng, Z.; et al. Appl. Catal. B 2023, 325, 122341. doi: 10.1016/j.apcatb.2022.122341  doi: 10.1016/j.apcatb.2022.122341

    82. [82]

      Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S. K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530  doi: 10.1016/j.cej.2021.129530

    83. [83]

      Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi: 10.1007/s42765-022-00189-w  doi: 10.1007/s42765-022-00189-w

    84. [84]

      Feng, X.; Sun, L.; Wang, W.; Zhao, Y.; Shi, J. Sep. Purif. Technol. 2023, 324, 124520. doi: 10.1016/j.seppur.2023.124520  doi: 10.1016/j.seppur.2023.124520

    85. [85]

      Sun, G.; Xiao, B.; Zheng, H.; Shi, J. W.; Mao, S.; He, C.; Li, Z.; Cheng, Y. J. Mater. Chem. A 2021, 9, 9735. doi: 10.1039/D1TA01089A  doi: 10.1039/D1TA01089A

    86. [86]

      Xiong, X.; Yang, H.; Zhang, J.; Lin, J.; Yang, S.; Chen, C.; Xi, J.; Kong, Z.; Song, L.; Zeng, J. J. Alloy. Compd. 2023, 933, 167784. doi: 10.1016/j.jallcom.2022.167784  doi: 10.1016/j.jallcom.2022.167784

    87. [87]

      Sun, K.; Zhao, Y.; Yin, J.; Jin, J.; Liu, H.; Xi, P. Acta Phys. -Chim. Sin. 2022, 38, 2107005. doi: 10.3866/PKU.WHXB202107005  doi: 10.3866/PKU.WHXB202107005

    88. [88]

      Li, S.; Shao, L.; Yang, Z.; Cheng, S.; Yang, C.; Liu, Y.; Xia, X. Green Energy Environ. 2022, 7, 246. doi: 10.1016/j.gee.2020.09.005  doi: 10.1016/j.gee.2020.09.005

    89. [89]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    90. [90]

      Bhosale, A. H.; Narra, S.; Bhosale, S. S.; Diau, E. W. -G. J. Phys. Chem. Lett. 2022, 13, 7987. doi: 10.1021/acs.jpclett.2c02153  doi: 10.1021/acs.jpclett.2c02153

    91. [91]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi:10.1002/adma.202100317  doi: 10.1002/adma.202100317

  • 加载中
    1. [1]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    3. [3]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    5. [5]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    6. [6]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    7. [7]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    8. [8]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    9. [9]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    10. [10]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    12. [12]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    13. [13]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    14. [14]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    15. [15]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(1)
  • Abstract views(208)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return