Citation: Shijie Ren, Mingze Gao, Rui-Ting Gao, Lei Wang. Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230704. doi: 10.3866/PKU.WHXB202307040 shu

Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting

  • Corresponding author: Rui-Ting Gao, gao-ruiting@imu.edu.cn Lei Wang, wanglei@imu.edu.cn
  • These authors contributed equally to this paper.
  • Received Date: 20 July 2023
    Revised Date: 11 August 2023
    Accepted Date: 11 August 2023
    Available Online: 31 August 2023

    Fund Project: the National Key Research and Development Program of China 2022YFA1205200the National Natural Science Foundation of China 21965024the National Natural Science Foundation of China 22269016

  • Metal-organic frameworks (MOFs) as efficient electrocatalysts can be employed as the promising cocatalysts in photoelectrochemistry. Herein, a strategy is developed to metal-organic frameworks as oxygen evolution cocatalyst (OEC) combined with semiconductor for improving the charge transport and reducing the bulk/surface carrier recombination. This advanced CoFe MOF/BiVO4 photoanode exhibits a photocurrent density of 4.5 mA·cm-2 at 1.23 V (vs. RHE) under AM 1.5G illumination, achieving outstanding long-term photostability. Remarkably, with the reconstruction of MOF in the long-term water oxidation reaction, more stable metal oxyhydroxides are formed on the surface of BiVO4 and the photocurrent density of the photoelectrode is further enhanced to 5 mA·cm-2. From density functional theory calculations, the enhanced photoelectrochemical (PEC) performance can be attributed to the coupling effect between Co and Fe decreasing the free energy barriers and accelerating the reaction kinetics. This work focuses on the reconfiguration of CoFe MOF catalyst to bimetallic hydroxide during long-term water oxidation. This work enables us to develop an effective pathway to design and fabricate efficient and stable photoanodes through MOFs catalysts for feasible PEC water splitting.
  • 加载中
    1. [1]

      Landman, A.; Dotan, H.; Shter, G. E.; Wullenkord, M.; Houaijia, A.; Maljusch, A.; Grader, G. S.; Rothschild, A. Nat. Mater. 2017, 16, 646. doi: 10.1038/NMAT4876  doi: 10.1038/NMAT4876

    2. [2]

      Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B.; et al. Angew. Chem. Int. Ed. 2019, 58, 9155. doi: 10.1002/ange.201903936  doi: 10.1002/ange.201903936

    3. [3]

      Jorge, A. B.; Jervis, R.; Periasamy, A. P.; Qiao, M.; Feng, J. Y.; Tran, L. N.; Titirici, M. -M. Adv. Energy Mater. 2020, 10, 1902494. doi: 10.1002/aenm.201902494  doi: 10.1002/aenm.201902494

    4. [4]

      Li, G.; Wang, X. L.; Seo, M. H.; Hemmati, S.; Yu, A. P.; Chen, Z. W. J. Mater. Chem. A 2017, 5, 10895. doi: 10.1039/C7TA02745A  doi: 10.1039/C7TA02745A

    5. [5]

      Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. Nano Energy 2019, 63, 103880. doi: 10.1016/j.nanoen.2019.103880  doi: 10.1016/j.nanoen.2019.103880

    6. [6]

      Jin, L.; AlOtaibi, B.; Benetti, D.; Li, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. Adv. Sci. 2016, 3, 1500345. doi: 10.1002/advs.201500345  doi: 10.1002/advs.201500345

    7. [7]

      Samuel, E.; Joshi, B.; Kim, M. -W.; Swihart, M. T.; Yoon, S. S. Nano Energy 2020, 72, 104648. doi: 10.1016/j.nanoen.2020.104648  doi: 10.1016/j.nanoen.2020.104648

    8. [8]

      Lin, X.; Guo, X. Y.; Wang, Q. W.; Chang, L. M.; Zhai, H. J. Acta Phys. -Chim. Sin. 2014, 30, 2113. doi: 10.3866/PKU.WHXB201409052  doi: 10.3866/PKU.WHXB201409052

    9. [9]

      Zhang, A. P.; Zhang, J. Z. Acta Phys. -Chim. Sin. 2010, 26, 1337. doi: 10.3866/PKU.WHXB20100533  doi: 10.3866/PKU.WHXB20100533

    10. [10]

      Lin, X.; Yu, L. L.; Yan, L. N.; Guan, Q. F.; Yan, Y. S.; Zhao, H. Acta Phys. -Chim. Sin. 2013, 29, 1771. doi: 10.3866/PKU.WHXB201305131  doi: 10.3866/PKU.WHXB201305131

    11. [11]

      Li, Y.; Hu, X. S.; Huang, J. W.; Wang, L.; She, H. D.; Wang Q. Z. Acta Phys. -Chim. Sin. 2021, 37, 2009022. doi: 10.3866/PKU.WHXB202009022  doi: 10.3866/PKU.WHXB202009022

    12. [12]

      Kuang, P. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Appl. Catal. B-Environ. 2017, 218, 570. doi: 10.1016/j.apcatb.2017.07.002  doi: 10.1016/j.apcatb.2017.07.002

    13. [13]

      Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1910034. doi: 10.3866/PKU.WHXB201910034  doi: 10.3866/PKU.WHXB201910034

    14. [14]

      Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2013, 135, 11389. doi: 10.1021/ja405550k  doi: 10.1021/ja405550k

    15. [15]

      Lu, H.; Andrei, V.; Jenkinson, K. J.; Regoutz, A.; Li, N.; Creissen, C. E.; Wheatley, A. E. H.; Hao, H.; Reisner, E.; Wright, D. S.; et al. Adv. Mater. 2018, 30, 1804033. doi: 10.1002/adma.201804033  doi: 10.1002/adma.201804033

    16. [16]

      Grigioni, I.; Ganzer, L.; Camargo, V. A.; Bozzini, F. B.; Cerullo, G.; Selli, E. ACS Energy Lett. 2019, 4, 2213. doi: 10.1021/acsenergylett.9b01150  doi: 10.1021/acsenergylett.9b01150

    17. [17]

      Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M. Adv. Funct. Mater. 2015, 25, 3074. doi: 10.1002/adfm.201500521  doi: 10.1002/adfm.201500521

    18. [18]

      Gao, R. -T.; He, D.; Wu, L.; Hu, K.; Liu, X. H.; Su, Y. G.; Wang, L. Angew. Chem. Int. Ed. 2020, 59, 6213. doi: 10.1002/anie.201915671  doi: 10.1002/anie.201915671

    19. [19]

      Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. -Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L.; et al. Angew. Chem. Int. Ed. 2021, 60, 1433. doi: 10.1002/anie.202012550  doi: 10.1002/anie.202012550

    20. [20]

      Zhou, S. Q.; Chen, K. Y.; Huang, J. W.; Wang, L.; Zhang, M. Y.; Bai, B.; Liu, H.; Wang, Q. Z. Appl. Catal. B-Environ. 2020, 266, 118513. doi: 10.1016/j.apcatb.2019.118513  doi: 10.1016/j.apcatb.2019.118513

    21. [21]

      Tian, W. J.; Zhang, H. Y.; Sibbons, J.; Sun, H. Q.; Wang, H.; Wang, S. B. Adv. Energy Mater. 2021, 2100911. doi: 10.1002/aenm.202100911  doi: 10.1002/aenm.202100911

    22. [22]

      Hou, X. A.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M. A.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Chem. Eng. J. 2021, 418, 129330. doi: 10.1016/j.cej.2021.129330  doi: 10.1016/j.cej.2021.129330

    23. [23]

      Ling, X. T.; Du, F.; Zhang, Y. T.; Shen, Y.; Gao, W.; Zhou, B.; Wang, Z. Y.; Li, G. L.; Li, T.; Shen, Q.; et al. J. Mater. Chem. A 2021, 9, 13271. doi: 10.1039/d1ta90130c  doi: 10.1039/d1ta90130c

    24. [24]

      Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J.; et al. Nano Energy 2021, 81, 105606. doi: 10.1016/j.nanoen.2020.105606  doi: 10.1016/j.nanoen.2020.105606

    25. [25]

      Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W.; et al. Angew. Chem. Int. Ed. 2021, 60, 12097. doi: 10.1002/anie.202102632  doi: 10.1002/anie.202102632

    26. [26]

      He, W. H.; Wang, R. R.; Zhang, L.; Zhu, J.; Xiang, X.; Li, F. J. Mater. Chem. A 2015, 3, 17977. doi: 10.1039/c5ta04105h  doi: 10.1039/c5ta04105h

    27. [27]

      Nishimoto, M.; Kitano, S.; Kowalski, D.; Aoki, Y.; Habazaki, H. ACS Sustain. Chem. Eng. 2021, 9, 9465. doi: 10.1021/acssuschemeng.1c03116  doi: 10.1021/acssuschemeng.1c03116

    28. [28]

      Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. -T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J.; et al. Nat. Energy 2016, 1, 16184. doi: 10.1038/NENERGY.2016.184  doi: 10.1038/NENERGY.2016.184

    29. [29]

      Chen, J. Y. C.; Dang, L. N.; Liang, H. F.; Bi, W. L.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 15090. doi: 10.1021/jacs.5b10699  doi: 10.1021/jacs.5b10699

    30. [30]

      Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X.; Zhu, K.; Jiao, F. J. J. Am. Chem. Soc. 2015, 137, 4223. doi: 10.1021/jacs.5b01006  doi: 10.1021/jacs.5b01006

    31. [31]

      Zhuang, L.; Ge, L.; Liu, H.; Jiang, Z.; Jia, Y.; Li, Z.; Yang, D.; Hocking, R. K.; Li, M.; Zhang, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 13565. doi: 10.1002/anie.201907600  doi: 10.1002/anie.201907600

    32. [32]

      Zhang, M.; Zhang, A. M.; Wang, X. X.; Huang, Q.; Zhu, X.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. J. Mater. Chem. A 2018, 6, 8735. doi:10.1039/c8ta01062e  doi: 10.1039/c8ta01062e

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    4. [4]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    6. [6]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    7. [7]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    8. [8]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    9. [9]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    10. [10]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    11. [11]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    12. [12]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    17. [17]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    18. [18]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    19. [19]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    20. [20]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

Metrics
  • PDF Downloads(2)
  • Abstract views(242)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return