Citation: Ruonan Li, Shijie Liang, Yunhua Xu, Cuifen Zhang, Zheng Tang, Baiqiao Liu, Weiwei Li. Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230703. doi: 10.3866/PKU.WHXB202307037 shu

Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells

  • Corresponding author: Yunhua Xu, yhxu@bjtu.edu.cn Baiqiao Liu, liubaiqiao@bjtu.edu.cn Weiwei Li, liweiwei@iccas.ac.cn
  • Received Date: 20 July 2023
    Revised Date: 17 September 2023
    Accepted Date: 20 September 2023
    Available Online: 25 September 2023

    Fund Project: the National Natural Science Foundation of China 52073016the National Natural Science Foundation of China 22105180

  • Single-component organic solar cells (SCOSCs) have emerged as promising candidates for renewable energy applications due to their simplified film fabrication process and well-controlled morphology. High-performance SCOSCs typically employ active layer materials comprising block copolymers and double-cable conjugated polymers. Among these, double-cable conjugated polymers have attracted a lot of interest in SCOSCs due to their precisely defined structure and easily controllable microphase morphology. In the early stages of double-cable conjugated polymers, most of them contain the polythiophene backbone and fullerene side units, severely limiting the development of SCOSCs. Fortunately, the emergence of novel materials has progressively led to the development of new types of double-cable conjugated polymers. Double-cable conjugated polymers based on acylimide compound have exhibited device performances exceeding 8%. Nevertheless, acylimide-type electron acceptors exhibit a limited photo-response range, resulting in lower photocurrents in SCOSCs. The utilization of A-D-A-type electron acceptors (where D represents electron-donating groups and A represents electron-withdrawing groups) have effectively broadened the absorption spectra of materials due to induced intramolecular charge transfer. Double-cable polymers using A-D-A-type electron acceptors as the side units have achieved efficiencies exceeding 10%. However, significant voltage losses have hampered further improvements in their performance. Chlorine atoms play a crucial role in organic solar cells due to enhanced crystallinity in both chlorine-substituted donor polymers and acceptor molecules, and they can also adjust material energy levels and optimize film morphology. Nevertheless, their role in SCOSCs has been scarcely explored. This limitation arises from the increased complexity of morphology control in double-cable conjugated polymers, where the donor and acceptor segments are covalently linked in one molecule making their crystalline behavior more complicated on account of their mutual restraint. In this study, we have designed and synthesized chlorine-substituted double-cable conjugated polymers, denoted as as-DCPIC-Cl and as-DCPIC-2Cl. The results indicate that the introduction of chlorine atoms into the conjugated backbone reduces energy losses in the devices, resulting in an enhancement of open-circuit voltage (VOC). However, the introduction of chlorine atoms also leads to unbalanced charge transport and increased trap-assisted charge recombination, causing a decrease in the fill factor (FF) and short-circuit current density (JSC). Meanwhile, Grazing-incidence wide-angle X-ray scattering (GIWAXS) tests demonstrate that the introduction of chlorine atoms does not affect the aggregation/crystallization behavior of acceptor units. SCOSCs based on as-DCPIC-Cl achieved a power conversion efficiency (PCE) of 10.14%, which is among the best PCEs reported for SCOSCs based on non-fused electron acceptors.
  • 加载中
    1. [1]

      Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11  doi: 10.1038/nphoton.2012.11

    2. [2]

      Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245. doi: 10.1039/C2CS15313K  doi: 10.1039/C2CS15313K

    3. [3]

      Roncali, J.; Grosu, I. Adv. Sci. 2019, 6, 1801026. doi: 10.1002/advs.201801026  doi: 10.1002/advs.201801026

    4. [4]

      He, Y.; Wang, B.; Lüer, L.; Feng, G.; Osvet, A.; Heumüller, T.; Liu, C.; Li, W.; Guldi, D. M.; Li, N.; et al. Adv. Energy Mater. 2021, 12, 2103406. doi: 10.1002/aenm.202103406  doi: 10.1002/aenm.202103406

    5. [5]

      Xia, D.; Li, C.; Li, W. Chem. Rec. 2019, 19, 962. doi: 10.1002/tcr.201800131  doi: 10.1002/tcr.201800131

    6. [6]

      Roncali, J. Chem. Soc. Rev. 2005, 34, 483. doi: 10.1039/b415941c  doi: 10.1039/b415941c

    7. [7]

      He, Y.; Li, N.; Heumüller, T.; Wortmann, J.; Hanisch, B.; Aubele, A.; Lucas, S.; Feng, G.; Jiang, X.; Li, W.; et al. Joule 2022, 6, 1160. doi: 10.1016/j.joule.2022.05.008  doi: 10.1016/j.joule.2022.05.008

    8. [8]

      He, Y.; Li, N.; Brabec, C. J. Org. Mater. 2021, 3, 228. doi: 10.1055/s-0041-1727234  doi: 10.1055/s-0041-1727234

    9. [9]

      He, Y.; Heumüller, T.; Lai, W.; Feng, G.; Classen, A.; Du, X.; Liu, C.; Li, W.; Li, N.; Brabec, C. J. Adv. Energy Mater. 2019, 9, 1900409. doi: 10.1002/aenm.201900409  doi: 10.1002/aenm.201900409

    10. [10]

      Liu, B.; Xu, Y.; Xia, D.; Xiao, C.; Yang, Z.; Li, W. Acta Phys. -Chim. Sin. 2021, 37, 2009056.  doi: 10.3866/PKU.WHXB202009056

    11. [11]

      Wu, Y.; Fan, Q.; Fan, B.; Qi, F.; Wu, Z.; Lin, F. R.; Li, Y.; Lee, C.-S.; Woo, H. Y.; Yip, H.-L.; et al. ACS Energy Lett. 2022, 7, 2196. doi: 10.1021/acsenergylett.2c01082  doi: 10.1021/acsenergylett.2c01082

    12. [12]

      Li, S.; Yuan, X.; Zhang, Q.; Li, B.; Li, Y.; Sun, J.; Feng, Y.; Zhang, X.; Wu, Z.; Wei, H.; et al. Adv. Mater. 2021, 33, e2101295. doi: 10.1002/adma.202101295  doi: 10.1002/adma.202101295

    13. [13]

      Hu, H.; Mu, X.; Li, B.; Gui, R.; Shi, R.; Chen, T.; Liu, J.; Yuan, J.; Ma, J.; Gao, K.; et al. Adv. Sci. 2023, 10, 2205040. doi: 10.1002/advs.202205040  doi: 10.1002/advs.202205040

    14. [14]

      Wu, Y.; Guo, J.; Wang, W.; Chen, Z.; Chen, Z.; Sun, R.; Wu, Q.; Wang, T.; Hao, X.; Zhu, H.; et al. Joule 2021, 5, 1800. doi: 10.1016/j.joule.2021.05.002  doi: 10.1016/j.joule.2021.05.002

    15. [15]

      Li, S.; Li, B.; Yang, X.; Wei, H.; Wu, Z.; Li, Y.; Hu, Y.; Woo, H. Y.; Yuan, J. J. Mater. Chem. A 2022, 10, 12997. doi: 10.1039/d2ta02307e  doi: 10.1039/d2ta02307e

    16. [16]

      Kwon, N. Y.; Park, S. H.; Cho, S.; Lee, D. W.; Harit, A. K.; Woo, H. Y.; Cho, M. J.; Choi, D. H. Polym. Chem. 2022, 13, 3335. doi: 10.1039/d2py00413e  doi: 10.1039/d2py00413e

    17. [17]

      Guo, J.; Wu, Y.; Wang, W.; Wang, T.; Min, J. Sol. RRL 2022, 6, 2101024. doi: 10.1002/solr.202101024  doi: 10.1002/solr.202101024

    18. [18]

      Liang, S.; Jiang, X.; Xiao, C.; Li, C.; Chen, Q.; Li, W. Acc. Chem. Res. 2021, 54, 2227. doi: 10.1021/acs.accounts.1c00070  doi: 10.1021/acs.accounts.1c00070

    19. [19]

      Cravino, A.; Zerza, G.; Maggini, M.; Bucella, S.; Svensson, M.; Andersson, M. R.; Neugebauer, H.; Sariciftci, N. S. Chem. Commun. 2000, No. 24, 2487. doi: 10.1039/B008072L  doi: 10.1039/B008072L

    20. [20]

      Cravino, A.; Zerza, G.; Neugebauer, H.; Maggini, M.; Bucella, S.; Menna, E.; Svensson, M.; Andersson, M. R.; Brabec, C. J.; Sariciftci, N. S. J. Phys. Chem. B 2002, 106, 70. doi: 10.1021/jp013077y  doi: 10.1021/jp013077y

    21. [21]

      Jousselme, B.; Blanchard, P.; Levillain, E.; de Bettignies, R.; Roncali, J. Macromolecules 2003, 36, 3020. doi: 10.1021/ma034047r  doi: 10.1021/ma034047r

    22. [22]

      Ramos, A. M.; Rispens, M. T.; van Duren, J. K. J.; Hummelen, J. C.; Janssen, R. A. J. J. Am. Chem. Soc. 2001, 123, 6714. doi: 10.1021/ja015614y  doi: 10.1021/ja015614y

    23. [23]

      Zhang, F.; Svensson, M.; Andersson, M. R.; Maggini, M.; Bucella, S.; Menna, E.; Inganäs, O. Adv. Mater. 2001, 13, 1871. doi: 10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3  doi: 10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3

    24. [24]

      Pierini, F.; Lanzi, M.; Nakielski, P.; Pawłowska, S.; Urbanek, O.; Zembrzycki, K.; Kowalewski, T. A. Macromolecules 2017, 50, 4972. doi: 10.1021/acs.macromol.7b00857  doi: 10.1021/acs.macromol.7b00857

    25. [25]

      Miyanishi, S.; Zhang, Y.; Hashimoto, K.; Tajima, K. Macromolecules 2012, 45, 6424. doi: 10.1021/ma300376m  doi: 10.1021/ma300376m

    26. [26]

      Miyanishi, S.; Zhang, Y.; Tajima, K.; Hashimoto, K. Chem. Commun. 2010, 46, 6723. doi: 10.1039/c0cc01819h  doi: 10.1039/c0cc01819h

    27. [27]

      Liu, B.; Xu, Y. .; Liu, F.; Xie, C.; Liang, S.; Chen, Q.; Li, W. Chin. J. Polym. Sci. 2022, 40, 898. doi: 10.1007/s10118-022-2732-2  doi: 10.1007/s10118-022-2732-2

    28. [28]

      Wang, R.; Xia, D.; Jiang, X.; Zhao, C.; Zhou, S.; Fang, H.; Wang, J.; Tang, Z.; Xiao, C.; Li, W. ACS Appl. Mater. Interfaces 2022, 14, 47952. doi: 10.1021/acsami.2c10466  doi: 10.1021/acsami.2c10466

    29. [29]

      Li, C.; Wu, X.; Sui, X.; Wu, H.; Wang, C.; Feng, G.; Wu, Y.; Liu, F.; Liu, X.; Tang, Z.; et al. Angew. Chem. Int. Ed. 2019, 58, 15532. doi: 10.1002/anie.201910489  doi: 10.1002/anie.201910489

    30. [30]

      Lai, W.; Li, C.; Zhang, J.; Yang, F.; Colberts, F. J. M.; Guo, B.; Wang, Q. M.; Li, M.; Zhang, A.; Janssen, R. A. J.; et al. Chem. Mater. 2017, 29, 7073. doi: 10.1021/acs.chemmater.7b02534  doi: 10.1021/acs.chemmater.7b02534

    31. [31]

      Wang, D.; Yang, Z.; Liu, F.; Xiao, C.; Wu, Y.; Li, W. Chin. Chem. Lett. 2022, 33, 466. doi: 10.1016/j.cclet.2021.06.042  doi: 10.1016/j.cclet.2021.06.042

    32. [32]

      Fang, H.; Xia, D.; Zhao, C.; Zhou, S.; Wang, R.; Zang, Y.; Xiao, C.; Li, W. Dyes Pigm. 2022, 203, 110355. doi: 10.1016/j.dyepig.2022.110355  doi: 10.1016/j.dyepig.2022.110355

    33. [33]

      Jiang, X.; Xue, W.; Lai, W.; Xia, D.; Chen, Q.; Ma, W.; Li, W. J. Mater. Chem. C 2021, 9, 16240. doi: 10.1039/d1tc01195b  doi: 10.1039/d1tc01195b

    34. [34]

      Yu, P.; Feng, G.; Li, J.; Li, C.; Xu, Y.; Xiao, C.; Li, W. J. Mater. Chem. C 2020, 8, 2790. doi: 10.1039/c9tc06667e  doi: 10.1039/c9tc06667e

    35. [35]

      Liang, S.; Wang, J.; Ouyang, Y.; Tan, W. L.; McNeill, C. R.; Chen, Q.; Tang, Z.; Li, W. Macromolecules 2022, 55, 2517. doi: 10.1021/acs.macromol.1c02593  doi: 10.1021/acs.macromol.1c02593

    36. [36]

      Xie, C.; Xiao, C.; Jiang, X.; Liang, S.; Liu, C.; Zhang, Z.; Chen, Q.; Li, W. Macromolecules 2021, 55, 322. doi: 10.1021/acs.macromol.1c02111  doi: 10.1021/acs.macromol.1c02111

    37. [37]

      Yang, F.; Li, J.; Li, C.; Li, W. Macromolecules 2019, 52, 3689. doi: 10.1021/acs.macromol.9b00495  doi: 10.1021/acs.macromol.9b00495

    38. [38]

      Liang, S.; Xu, Y.; Li, C.; Li, J.; Wang, D.; Li, W. Polym. Chem. 2019, 10, 4584. doi: 10.1039/c9py00765b  doi: 10.1039/c9py00765b

    39. [39]

      Yang, Z.; Liang, S.; Liu, B.; Wang, J.; Yang, F.; Chen, Q.; Xiao, C.; Tang, Z.; Li, W. Polym. Chem. 2021, 12, 6865. doi: 10.1039/D1PY01188J  doi: 10.1039/D1PY01188J

    40. [40]

      Yang, F.; Wang, X.; Feng, G.; Ma, J.; Li, C.; Li, J.; Ma, W.; Li, W. Sci. China Chem. 2018, 61, 824. doi: 10.1007/s11426-018-9241-0  doi: 10.1007/s11426-018-9241-0

    41. [41]

      Xia, D.; Zhou, S.; Tan, W. L.; Karuthedath, S.; Xiao, C.; Zhao, C.; Laquai, F.; McNeill, C. R.; Li, W. Aggregate 2023, 4, e279. doi: 10.1002/agt2.279  doi: 10.1002/agt2.279

    42. [42]

      Feng, G.; Tan, W.; Karuthedath, S.; Li, C.; Jiao, X.; Liu, A. C. Y.; Venugopal, H.; Tang, Z.; Ye, L.; Laquai, F.; et al. Angew. Chem. Int. Ed. 2021, 60, 25499. doi: 10.1002/anie.202111192  doi: 10.1002/anie.202111192

    43. [43]

      Jiang, X.; Yang, J.; Karuthedath, S.; Li, J.; Lai, W.; Li, C.; Xiao, C.; Ye, L.; Ma, Z.; Tang, Z.; et al. Angew. Chem. Int. Ed. 2020, 59, 21683. doi: 10.1002/anie.202009272  doi: 10.1002/anie.202009272

    44. [44]

      Feng, G.; Li, J.; Colberts, F. J. M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R. A. J.; Li, C.; et al. J. Am. Chem. Soc. 2017, 139, 18647. doi: 10.1021/jacs.7b10499  doi: 10.1021/jacs.7b10499

    45. [45]

      Feng, G.; Li, J.; He, Y.; Zheng, W.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; et al. Joule 2019, 3, 1765. doi: 10.1016/j.joule.2019.05.008  doi: 10.1016/j.joule.2019.05.008

    46. [46]

      Hu, Z.; Xiao, C.; Tan, W. L.; Liu, B.; Liang, S.; Jiang, X.; McNeil, C. R.; Li, W. Macromolecules 2022, 55, 5188. doi: 10.1021/acs.macromol.2c00444  doi: 10.1021/acs.macromol.2c00444

    47. [47]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    48. [48]

      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3, 1140. doi: 10.1016/j.joule.2019.01.004  doi: 10.1016/j.joule.2019.01.004

    49. [49]

      Liang, S.; Liu, B.; Karuthedath, S.; Wang, J.; He, Y.; Tan, W. L.; Li, H.; Xu, Y.; Li, N.; Hou, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209316. doi: 10.1002/anie.202209316  doi: 10.1002/anie.202209316

    50. [50]

      Liang, S.; Xiao, C.; Xie, C.; Liu, B.; Fang, H.; Li, W. Adv. Mater. 2023, 35, 2300629. doi: 10.1002/adma.202300629  doi: 10.1002/adma.202300629

    51. [51]

      Liu, B.; Liang, S.; Karuthedath, S.; Xiao, C.; Wang, J.; Tan, W. L.; Li, R.; Li, H.; Hou, J.; Tang, Z.; et al. J. Mater. Chem. A 2023, 11, 12236. doi: 10.1039/d3ta01501g  doi: 10.1039/d3ta01501g

    52. [52]

      Zhang, Z.; Wang, J.; Hu, Z.; Xiao, C.; Chen, Q.; Tang, Z.; Li, W. Chin. Chem. Lett. 2023, 34, 108527. doi: 10.1016/j.cclet.2023.108527  doi: 10.1016/j.cclet.2023.108527

    53. [53]

      Liu, B.; Liang, S.; Karuthedath, S.; He, Y.; Wang, J.; Tan, W. L.; Li, H.; Xu, Y.; Laquai, F.; Brabec, C. J.; et al. Macromolecules 2023, 56, 1154. doi: 10.1021/acs.macromol.2c02184  doi: 10.1021/acs.macromol.2c02184

    54. [54]

      Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. Macromolecules 2012, 45, 9611. doi: 10.1021/ma301900h  doi: 10.1021/ma301900h

    55. [55]

      Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Adv. Mater. 2018, 30, 1800868. doi: 10.1002/adma.201800868  doi: 10.1002/adma.201800868

    56. [56]

      Li, W.; Hendriks, K. H.; Furlan, A.; Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 2015, 137, 2231. doi: 10.1021/ja5131897  doi: 10.1021/ja5131897

    57. [57]

      Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Phys. Rev. B 2010, 81, 125204. doi: 10.1103/PhysRevB.81.125204  doi: 10.1103/PhysRevB.81.125204

  • 加载中
    1. [1]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    2. [2]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    3. [3]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    4. [4]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    5. [5]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    9. [9]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    10. [10]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    11. [11]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    12. [12]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    13. [13]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    15. [15]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    16. [16]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

Metrics
  • PDF Downloads(0)
  • Abstract views(227)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return