Citation: Da Wang, Xiaobin Yin, Jianfang Wu, Yaqiao Luo, Siqi Shi. All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230702. doi: 10.3866/PKU.WHXB202307029 shu

All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation

  • Corresponding author: Siqi Shi, sqshi@shu.edu.cn
  • Received Date: 15 July 2023
    Revised Date: 21 August 2023
    Accepted Date: 28 August 2023
    Available Online: 8 September 2023

    Fund Project: the National Key Research and Development Program of China 2021YFB3802104the National Natural Science Foundation of China 52372208the National Natural Science Foundation of China U2030206the National Natural Science Foundation of China 11874254Innovation Laboratory, Contemporary Amperex Technology Ltd. 21C-OP-202205

  • All-solid-state batteries (ASSBs) using inorganic solid electrolytes (SEs) have emerged as crucial components in energy storage applications due to their superior safety and cycle life. In recent years, due to the extensive developments of SEs with high room temperature ionic conductivity (> 10−3 S·cm−1), the sluggish diffusion kinetics of lithium ions in SEs are no longer the primary bottleneck impeding the enhancement of ASSBs. On the contrary, the notable resistance at the cathode/SE interface has emerged as a pressing issue demanding immediate resolution. The interfacial resistances arising from various factors, including the formation of the space-charge layer, interfacial chemical reactions, and lack of intimate contact, stand as fundamental reasons for a range of performance deteriorations, such as short cycling life, low coulombic efficiency, and poor power performance. These interconnected aspects further result in differences in the orders of magnitude of the reported interfacial resistances at different fabrication temperatures and/or routes, even within the same material system. Among these factors, the solid-solid contact or chemical reaction degree is closely related to the structural and electronic properties of the selected cathode and SE materials. The observed space-charge layer effect is universal and independent of the specific components or types of ion-conductive materials. Thus, obtaining a comprehensive understanding of the physics governing the space-charge layer at the interfaces of ASSBs is pivotal for researchers to fundamentally address the high interfacial resistance stemming from it. This forms the foundation for incorporating other mechanisms (such as interfacial reactions) to more accurately quantify interfacial resistance and expedite interface research in ASSBs. In this review, we strictly derive the theoretical model of the formation of the space-charge layer caused by the inherent chemical potential difference between the cathode and SE from fundamental concepts of (electro)chemical potential and electric potential, and reveal the physical picture of its influence on interfacial resistance. Subsequently, the most recent experimental characterizations and theoretical calculations of the space-charge layer at the cathode/SE interface are comprehensively discussed. While the existence of the space-charge layer is observable through experimentation, its characterization is complicated by factors like loss of interfacial contact and interfacial reactions. Therefore, it becomes imperative to further quantify the concentration of lithium ions in the space-charge layer and its impact on interfacial resistance through theoretical calculations. However, when combining the space-charge layer model with numerical and first-principles calculations to quantitatively study interfacial resistance, accurately determining the interfacial electric potential difference at the cathode/SE interface remains challenging, resulting in several orders of magnitude difference between predicted results and experimental measurements. Consequently, grounded in the foundational physical framework of the interfacial electric potential difference, the intricate connections between this potential difference and the electronic structure of the cathode/SE interface are explored. As a result, a strategy is proposed to ascertain the interfacial electric potential difference by directly calculating the Fermi level of the cathode and SE under real bonding conditions. This endeavor is anticipated to broaden the utility of the space-charge layer model in quantitatively calculating cathode/SE interfacial resistance, offering valuable insights for optimizing the cathode/SE interface and enhancing the overall performance of ASSBs.
  • 加载中
    1. [1]

      Zhang, S.; Ma, J.; Dong, S.; Cui, G. Electrochem. Energy Rev. 2023, 6 (1), 4. doi: 10.1007/s41918-022-00143-9  doi: 10.1007/s41918-022-00143-9

    2. [2]

      Huo, S.; Sheng, L.; Xue, W.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M.; He, X. Adv. Energy Mater. 2023, 13 (15), 2204343. doi: 10.1002/aenm.202204343  doi: 10.1002/aenm.202204343

    3. [3]

      Janek, J.; Zeier, W. G. Nat. Energy 2023, 8 (3), 230. doi: 10.1038/s41560-023-01208-9  doi: 10.1038/s41560-023-01208-9

    4. [4]

      Bates, A. M.; Preger, Y.; Torres-Castro, L.; Harrison, K. L.; Harris, S. J.; Hewson, J. Joule 2022, 6 (4), 742. doi: 10.1016/j.joule.2022.02.007  doi: 10.1016/j.joule.2022.02.007

    5. [5]

      Rettenwander, D.; Redhammer, G.; Preishuber-Pflügl, F.; Cheng, L.; Miara, L.; Wagner, R.; Welzl, A.; Suard, E.; Doeff, M. M.; Wilkening, M.; et al. Chem. Mater. 2016, 28 (7), 2384. doi: 10.1021/acs.chemmater.6b00579  doi: 10.1021/acs.chemmater.6b00579

    6. [6]

      Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K. R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; et al. Chem. Mater. 2020, 32 (6), 2664. doi: 10.1021/acs.chemmater.9b04764  doi: 10.1021/acs.chemmater.9b04764

    7. [7]

      Xu, G.; Luo, L.; Liang, J.; Zhao, S.; Yang, R.; Wang, C.; Yu, T.; Wang, L.; Xiao, W.; Wang, J.; et al. Nano Energy 2022, 92, 106674. doi: 10.1016/j.nanoen.2021.106674  doi: 10.1016/j.nanoen.2021.106674

    8. [8]

      Zou, Z.; Li, Y.; Lu, Z.; Wang, D.; Cui, Y.; Guo, B.; Li, Y.; Liang, X.; Feng, J.; Li, H.; et al. Chem. Rev. 2020, 120 (9), 4169. doi: 10.1021/acs.chemrev.9b00760  doi: 10.1021/acs.chemrev.9b00760

    9. [9]

      Jiang, Y.; Lai, A.; Ma, J.; Yu, K.; Zeng, H.; Zhang, G.; Huang, W.; Wang, C.; Chi, S.; Wang, J.; et al. ChemSusChem 2023, 16 (9), e202202156. doi: 10.1002/cssc.202202156  doi: 10.1002/cssc.202202156

    10. [10]

      Gandi, S.; Chidambara Swamy Vaddadi, V. S.; Sripada Panda, S. S.; Goona, N. K.; Parne, S. R.; Lakavat, M.; Bhaumik, A. J. Power Sources 2022, 521, 230930. doi: 10.1016/j.jpowsour.2021.230930  doi: 10.1016/j.jpowsour.2021.230930

    11. [11]

      Deng, Z.; Kumar, V.; Bölle, F. T.; Caro, F.; Franco, A. A.; Castelli, I. E.; Canepa, P.; Seh, Z. W. Energy Environ. Sci. 2022, 15 (2), 579. doi: 10.1039/D1EE02324A  doi: 10.1039/D1EE02324A

    12. [12]

      Wang, L.; Xie, R.; Chen, B.; Yu, X.; Ma, J.; Li, C.; Hu, Z.; Sun, X.; Xu, C.; Dong, S.; et al. Nat. Commun. 2020, 11 (1), 5889. doi: 10.1038/s41467-020-19726-5  doi: 10.1038/s41467-020-19726-5

    13. [13]

      Yi, J.; He, P.; Liu, H.; Ni, H.; Bai, Z.; Fan, L.-Z. J. Energy Chem. 2021, 52, 202. doi: 10.1016/j.jechem.2020.03.057  doi: 10.1016/j.jechem.2020.03.057

    14. [14]

      Park, B. K.; Kim, H.; Kim, K. S.; Kim, H.; Han, S. H.; Yu, J.; Hah, H. J.; Moon, J.; Cho, W.; Kim, K. J. Adv. Energy Mater. 2022, 12 (37), 2201208. doi: 10.1002/aenm.202201208  doi: 10.1002/aenm.202201208

    15. [15]

      Tian, H.-K.; Qi, Y. J. Electrochem. Soc. 2017, 164 (11), E3512. doi: 10.1149/2.0481711jes  doi: 10.1149/2.0481711jes

    16. [16]

      Lewis, J. A.; Tippens, J.; Cortes, F. J. Q.; McDowell, M. T. Trends Chem. 2019, 1 (9), 845. doi: 10.1016/j.trechm.2019.06.013  doi: 10.1016/j.trechm.2019.06.013

    17. [17]

      Kim, J.; Kim, M. J.; Kim, J.; Lee, J. W.; Park, J.; Wang, S. E.; Lee, S.; Kang, Y. C.; Paik, U.; Jung, D. S.; et al. Adv. Funct. Mater. 2023, 33 (12), 2211355. doi: 10.1002/adfm.202211355  doi: 10.1002/adfm.202211355

    18. [18]

      Jung, S.-K.; Gwon, H.; Lee, S.-S.; Kim, H.; Lee, J. C.; Chung, J. G.; Park, S. Y.; Aihara, Y.; Im, D. J. Mater. Chem. A 2019, 7 (40), 22967. doi: 10.1039/C9TA08517C  doi: 10.1039/C9TA08517C

    19. [19]

      Gao, B.; Jalem, R.; Tateyama, Y. ACS Appl. Mater. Interfaces 2021, 13 (10), 11765. doi: 10.1021/acsami.0c19091  doi: 10.1021/acsami.0c19091

    20. [20]

      Ren, F.; Liang, Z.; Zhao, W.; Zuo, W.; Lin, M.; Wu, Y.; Yang, X.; Gong, Z.; Yang, Y. Energy Environ. Sci. 2023, 16 (6), 2579. doi: 10.1039/D3EE00870C  doi: 10.1039/D3EE00870C

    21. [21]

      Swift, M. W.; Jagad, H.; Park, J.; Qie, Y.; Wu, Y.; Qi, Y. Curr. Opin. Solid State Mater. Sci. 2022, 26 (3), 100990. doi: 10.1016/j.cossms.2022.100990  doi: 10.1016/j.cossms.2022.100990

    22. [22]

      Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1984, 88 (11), 1057. doi: 10.1002/bbpc.198400007  doi: 10.1002/bbpc.198400007

    23. [23]

      Maier, J. Prog. Solid State Chem. 1995, 23 (3), 171. doi: 10.1016/0079-6786(95)00004-E  doi: 10.1016/0079-6786(95)00004-E

    24. [24]

      Wu, J.-F.; Guo, X. Phys. Chem. Chem. Phys. 2017, 19 (8), 5880. doi: 10.1039/C6CP07757A  doi: 10.1039/C6CP07757A

    25. [25]

      Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1946.

    26. [26]

      Lehovec, K. J. Chem. Phys. 1953, 21 (7), 1123. doi: 10.1063/1.1699148  doi: 10.1063/1.1699148

    27. [27]

      Kliewer, K. L.; Koehler, J. S. Phys. Rev. 1965, 140 (4A), A1226. doi: 10.1103/PhysRev.140.A1226  doi: 10.1103/PhysRev.140.A1226

    28. [28]

      Liang, C. C. J. Electrochem. Soc. 1973, 120 (10), 1289. doi: 10.1149/1.2403248  doi: 10.1149/1.2403248

    29. [29]

      Dudney, N. J. J. Am. Ceram. Soc. 1985, 68 (10), 538. doi: 10.1111/j.1151-2916.1985.tb11520.x  doi: 10.1111/j.1151-2916.1985.tb11520.x

    30. [30]

      Maier, J. J. Phys. Chem. Solids 1985, 46 (3), 309. doi: 10.1016/0022-3697(85)90172-6  doi: 10.1016/0022-3697(85)90172-6

    31. [31]

      Jow, T.; Wagner, J. B. J. Electrochem. Soc. 1979, 126 (11), 1963. doi: 10.1149/1.2128835  doi: 10.1149/1.2128835

    32. [32]

      Nakamura, O.; Goodenough, J. B. Solid State Ion. 1982, 7 (2), 119. doi: 10.1016/0167-2738(82)90004-2  doi: 10.1016/0167-2738(82)90004-2

    33. [33]

      Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1985, 89 (4), 355. doi: 10.1002/bbpc.19850890402  doi: 10.1002/bbpc.19850890402

    34. [34]

      Modine, F. A.; Lubben, D.; Bates, J. B. J. Appl. Phys. 1993, 74 (4), 2658. doi: 10.1063/1.354657  doi: 10.1063/1.354657

    35. [35]

      Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1986, 90 (1), 26. doi: 10.1002/bbpc.19860900105  doi: 10.1002/bbpc.19860900105

    36. [36]

      Maier, J.; Lauer, U. Ber. Bunsen-Ges. Phys. Chem. 1990, 94 (9), 973. doi: 10.1002/bbpc.19900940918  doi: 10.1002/bbpc.19900940918

    37. [37]

      Guo, X.; Vasco, E.; Mi, S.; Szot, K.; Wachsman, E.; Waser, R. Acta Mater. 2005, 53 (19), 5161. doi: 10.1016/j.actamat.2005.07.033  doi: 10.1016/j.actamat.2005.07.033

    38. [38]

      Guo, X.; Maier, J. Adv. Funct. Mater. 2009, 19 (1), 96. doi: 10.1002/adfm.200800805  doi: 10.1002/adfm.200800805

    39. [39]

      Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000, 408 (6815), 946. doi: 10.1038/35050047  doi: 10.1038/35050047

    40. [40]

      Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Adv. Mater. 2006, 18 (17), 2226. doi: 10.1002/adma.200502604  doi: 10.1002/adma.200502604

    41. [41]

      Balaya, P.; Li, H.; Kienle, L.; Maier, J. Adv. Funct. Mater. 2003, 13 (8), 621. doi: 10.1002/adfm.200304406  doi: 10.1002/adfm.200304406

    42. [42]

      Maier, J. Angew. Chem. Int. Ed. 2013, 52 (19), 4998. doi: 10.1002/anie.201205569  doi: 10.1002/anie.201205569

    43. [43]

      Maier, J. Nat. Mater. 2005, 4 (11), 805. doi: 10.1038/nmat1513  doi: 10.1038/nmat1513

    44. [44]

      Li, C.; Gu, L.; Guo, X.; Samuelis, D.; Tang, K.; Maier, J. Nano Lett. 2012, 12 (3), 1241. doi: 10.1021/nl203623h  doi: 10.1021/nl203623h

    45. [45]

      Li, C.; Maier, J. Solid State Ion. 2012, 225, 408. doi: 10.1016/j.ssi.2012.02.036  doi: 10.1016/j.ssi.2012.02.036

    46. [46]

      de Klerk, N. J. J.; Wagemaker, M. ACS Appl. Energy Mater. 2018, 10 (1), 5609. doi: 10.1021/acsaem.8b01141  doi: 10.1021/acsaem.8b01141

    47. [47]

      Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z.; Zhang, X.; He, P.; Zhou, H.; Wagemaker, M. Joule 2020, 4 (6), 1311. doi: 10.1016/j.joule.2020.04.002  doi: 10.1016/j.joule.2020.04.002

    48. [48]

      Takada, K.; Ohta, N.; Zhang, L.; Xu, X.; Hang, B. T.; Ohnishi, T.; Osada, M.; Sasaki, T. Solid State Ion. 2012, 225, 594. doi: 10.1016/j.ssi.2012.01.009  doi: 10.1016/j.ssi.2012.01.009

    49. [49]

      Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Chem. Mater. 2014, 26 (14), 4248. doi: 10.1021/cm5016959  doi: 10.1021/cm5016959

    50. [50]

      Li, X.; Sun, Q.; Wang, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L.; Zhu, L. J. Power Sources 2020, 456, 227997. doi: 10.1016/j.jpowsour.2020.227997  doi: 10.1016/j.jpowsour.2020.227997

    51. [51]

      Liu, Y.; Yu, T.; Guo, S.; Zhou, H. Acta Phys. -Chim. Sin. 2023, 39, 2301027.  doi: 10.3866/PKU.WHXB202301027

    52. [52]

      Zhao, Y.; Chen, C.; Liu, W.; Hu, W.; Liu, J. Acta Phys. -Chim. Sin. 2023, 39, 2211017.  doi: 10.3866/PKU.WHXB202211017

    53. [53]

      Seino, Y.; Ota, T.; Takada, K. J. Power Sources 2011, 196 (15), 6488. doi: 10.1016/j.jpowsour.2011.03.090  doi: 10.1016/j.jpowsour.2011.03.090

    54. [54]

      Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. J. Electrochem. Soc. 2009, 156 (1), A27. doi: 10.1149/1.3005972  doi: 10.1149/1.3005972

    55. [55]

      Takada, K.; Ohta, N.; Zhang, L.; Fukuda, K.; Sakaguchi, I.; Ma, R.; Osada, M.; Sasaki, T. Solid State Ion. 2008, 179 (27–32), 1333. doi: 10.1016/j.ssi.2008.02.017  doi: 10.1016/j.ssi.2008.02.017

    56. [56]

      Machida, N.; Kashiwagi, J.; Naito, M.; Shigematsu, T. Solid State Ion. 2012, 225, 354. doi: 10.1016/j.ssi.2011.11.026  doi: 10.1016/j.ssi.2011.11.026

    57. [57]

      Woo, J. H.; Trevey, J. E.; Cavanagh, A. S.; Choi, Y. S.; Kim, S. C.; George, S. M.; Oh, K. H.; Lee, S.-H. J. Electrochem. Soc. 2012, 159 (7), A1120. doi: 10.1149/2.085207jes  doi: 10.1149/2.085207jes

    58. [58]

      Wang, C.-W.; Ren, F.-C.; Zhou, Y.; Yan, P.-F.; Zhou, X.-D.; Zhang, S.-J.; Liu, W.; Zhang, W.-D.; Zou, M.-H.; Zeng, L.-Y.; et al. Energy Environ. Sci. 2021, 14 (1), 437. doi: 10.1039/D0EE03212C  doi: 10.1039/D0EE03212C

    59. [59]

      Xu, Z.-M.; Bo, S.-H.; Zhu, H. ACS Appl. Mater. Interfaces 2018, 10 (43), 36941. doi: 10.1021/acsami.8b12026  doi: 10.1021/acsami.8b12026

    60. [60]

      Nolan, A. M.; Liu, Y.; Mo, Y. ACS Energy Lett. 2019, 4 (10), 2444. doi: 10.1021/acsenergylett.9b01703  doi: 10.1021/acsenergylett.9b01703

    61. [61]

      Zhang, H.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. Chem. Rev. 2022, 122 (6), 5641. doi: 10.1021/acs.chemrev.1c00327  doi: 10.1021/acs.chemrev.1c00327

    62. [62]

      Haruta, M.; Shiraki, S.; Suzuki, T.; Kumatani, A.; Ohsawa, T.; Takagi, Y.; Shimizu, R.; Hitosugi, T. Nano Lett. 2015, 15 (3), 1498. doi: 10.1021/nl5035896  doi: 10.1021/nl5035896

    63. [63]

      Hart, F. X.; Bates, J. B. J. Appl. Phys. 1998, 83 (12), 7560. doi: 10.1063/1.367521  doi: 10.1063/1.367521

    64. [64]

      Lucovsky, G.; Liang, W. Y.; White, R. M.; Pisharody, K. R. Solid State Commun. 1976, 19 (4), 303. doi: 10.1016/0038-1098(76)91337-5  doi: 10.1016/0038-1098(76)91337-5

    65. [65]

      Trevey, J. E.; Stoldt, C. R.; Lee, S.-H. J. Electrochem. Soc. 2011, 158 (12), A1282. doi: 10.1149/2.017112jes  doi: 10.1149/2.017112jes

    66. [66]

      Cai, L.; Zhang, Q.; Mwizerwa, J. P.; Wan, H.; Yang, X.; Xu, X.; Yao, X. ACS Appl. Mater. Interfaces 2018, 10 (12), 10053. doi: 10.1021/acsami.7b18798  doi: 10.1021/acsami.7b18798

    67. [67]

      Chen, F.; Kong, L.; Song, W.; Jiang, C.; Tian, S.; Yu, F.; Qin, L.; Wang, C.; Zhao, X. J. Materiomics 2019, 5 (1), 73. doi: 10.1016/j.jmat.2018.10.001  doi: 10.1016/j.jmat.2018.10.001

    68. [68]

      Yada, C.; Ohmori, A.; Ide, K.; Yamasaki, H.; Kato, T.; Saito, T.; Sagane, F.; Iriyama, Y. Adv. Energy Mater. 2014, 4 (9), 1301416. doi: 10.1002/aenm.201301416  doi: 10.1002/aenm.201301416

    69. [69]

      Kim, S.; Fleig, J.; Maier, J. Phys. Chem. Chem. Phys. 2003, 5 (11), 2268. doi: 10.1039/B300170A  doi: 10.1039/B300170A

    70. [70]

      Gregori, G.; Merkle, R.; Maier, J. Prog. Mater. Sci. 2017, 89, 252. doi: 10.1016/j.pmatsci.2017.04.009  doi: 10.1016/j.pmatsci.2017.04.009

    71. [71]

      Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C. A. J.; Nonaka, K.; Sugita, Y.; Ogumi, Z. Angew. Chem. Int. Ed. 2010, 49 (26), 4414. doi: 10.1002/anie.200907319  doi: 10.1002/anie.200907319

    72. [72]

      Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D. Nanoscale 2017, 9 (2), 893. doi: 10.1039/C6NR07971G  doi: 10.1039/C6NR07971G

    73. [73]

      Tsuchiya, B.; Ohnishi, J.; Sasaki, Y.; Yamamoto, T.; Yamamoto, Y.; Motoyama, M.; Iriyama, Y.; Morita, K. Adv. Mater. Interfaces 2019, 6 (14), 1900100. doi: 10.1002/admi.201900100  doi: 10.1002/admi.201900100

    74. [74]

      Katzenmeier, L.; Carstensen, L.; Schaper, S. J.; Müller-Buschbaum, P.; Bandarenka, A. S. Adv. Mater. 2021, 33 (24), 2100585. doi: 10.1002/adma.202100585  doi: 10.1002/adma.202100585

    75. [75]

      Katzenmeier, L.; Helmer, S.; Braxmeier, S.; Knobbe, E.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2021, 13 (4), 5853. doi: 10.1021/acsami.0c21304  doi: 10.1021/acsami.0c21304

    76. [76]

      Katzenmeier, L.; Carstensen, L.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2022, 14 (13), 15811. doi: 10.1021/acsami.2c00650  doi: 10.1021/acsami.2c00650

    77. [77]

      Swift, M. W.; Qi, Y. Phys. Rev. Lett. 2019, 122 (16), 167701. doi: 10.1103/PhysRevLett.122.167701  doi: 10.1103/PhysRevLett.122.167701

    78. [78]

      Liu, Y.; Bai, Y.; Jaegermann, W.; Hausbrand, R.; Xu, B.-X. ACS Appl. Mater. Interfaces 2021, 13 (4), 5895. doi: 10.1021/acsami.0c22986  doi: 10.1021/acsami.0c22986

    79. [79]

      Sinzig, S.; Hollweck, T.; Schmidt, C. P.; Wall, W. A. J. Electrochem. Soc. 2023, 170 (4), 040513. doi: 10.1149/1945-7111/acc692  doi: 10.1149/1945-7111/acc692

    80. [80]

      Katzenmeier, L.; Gößwein, M.; Gagliardi, A.; Bandarenka, A. S. J. Phys. Chem. C 2022, 126 (26), 10900. doi: 10.1021/acs.jpcc.2c02481  doi: 10.1021/acs.jpcc.2c02481

    81. [81]

      Nomura, Y.; Yamamoto, K.; Hirayama, T.; Ouchi, S.; Igaki, E.; Saitoh, K. Angew. Chem. 2019, 131 (16), 5346. doi: 10.1002/ange.201814669  doi: 10.1002/ange.201814669

    82. [82]

      Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W. Adv. Energy Mater. 2020, 10 (4), 1903311. doi: 10.1002/aenm.201903311  doi: 10.1002/aenm.201903311

    83. [83]

      Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022, 14 (22), 25556. doi: 10.1021/acsami.2c05239  doi: 10.1021/acsami.2c05239

    84. [84]

      Fingerle, M.; Buchheit, R.; Sicolo, S.; Albe, K.; Hausbrand, R. Chem. Mater. 2017, 29 (18), 7675. doi: 10.1021/acs.chemmater.7b00890  doi: 10.1021/acs.chemmater.7b00890

    85. [85]

      Tian, H.-K.; Jalem, R.; Gao, B.; Yamamoto, Y.; Muto, S.; Sakakura, M.; Iriyama, Y.; Tateyama, Y. ACS Appl. Mater. Interfaces 2020, 12 (49), 54752. doi: 10.1021/acsami.0c16463  doi: 10.1021/acsami.0c16463

    86. [86]

      Wang, D.; Jiao, Y.; Shi, W.; Pu, B.; Ning, F.; Yi, J.; Ren, Y.; Yu, J.; Li, Y.; Wang, H.; et al. Prog. Mater. Sci. 2023, 133, 101055. doi: 10.1016/j.pmatsci.2022.101055  doi: 10.1016/j.pmatsci.2022.101055

    87. [87]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22 (3), 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    88. [88]

      Cherkashinin, G.; Hausbrand, R.; Jaegermann, W. J. Electrochem. Soc. 2019, 166 (3), A5308. doi: 10.1149/2.0441903jes  doi: 10.1149/2.0441903jes

    89. [89]

      Boettcher, S. W.; Oener, S. Z.; Lonergan, M. C.; Surendranath, Y.; Ardo, S.; Brozek, C.; Kempler, P. A. ACS Energy Lett. 2021, 6 (1), 261. doi: 10.1021/acsenergylett.0c02443  doi: 10.1021/acsenergylett.0c02443

    90. [90]

      Yu, P.; Li, C.; Guo, X. J. Phys. Chem. C 2014, 118 (20), 10616. doi: 10.1021/jp5010693  doi: 10.1021/jp5010693

    91. [91]

      Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Nat. Rev. Mater. 2021, 6 (11), 1020. doi: 10.1038/s41578-021-00324-w  doi: 10.1038/s41578-021-00324-w

    92. [92]

      Li, X.; Su, J.; Li, Z.; Zhao, Z.; Zhang, F.; Zhang, L.; Ye, W.; Li, Q.; Wang, K.; Wang, X.; et al. Sci. Bull. 2022, 67 (11), 1145. doi: 10.1016/j.scib.2022.04.001  doi: 10.1016/j.scib.2022.04.001

  • 加载中
    1. [1]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    3. [3]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    4. [4]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    5. [5]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    9. [9]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    12. [12]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    15. [15]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    16. [16]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    17. [17]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(2)
  • Abstract views(212)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return