All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation
- Corresponding author: Siqi Shi, sqshi@shu.edu.cn
Citation:
Da Wang, Xiaobin Yin, Jianfang Wu, Yaqiao Luo, Siqi Shi. All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation[J]. Acta Physico-Chimica Sinica,
;2024, 40(7): 230702.
doi:
10.3866/PKU.WHXB202307029
Zhang, S.; Ma, J.; Dong, S.; Cui, G. Electrochem. Energy Rev. 2023, 6 (1), 4. doi: 10.1007/s41918-022-00143-9
doi: 10.1007/s41918-022-00143-9
Huo, S.; Sheng, L.; Xue, W.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M.; He, X. Adv. Energy Mater. 2023, 13 (15), 2204343. doi: 10.1002/aenm.202204343
doi: 10.1002/aenm.202204343
Janek, J.; Zeier, W. G. Nat. Energy 2023, 8 (3), 230. doi: 10.1038/s41560-023-01208-9
doi: 10.1038/s41560-023-01208-9
Bates, A. M.; Preger, Y.; Torres-Castro, L.; Harrison, K. L.; Harris, S. J.; Hewson, J. Joule 2022, 6 (4), 742. doi: 10.1016/j.joule.2022.02.007
doi: 10.1016/j.joule.2022.02.007
Rettenwander, D.; Redhammer, G.; Preishuber-Pflügl, F.; Cheng, L.; Miara, L.; Wagner, R.; Welzl, A.; Suard, E.; Doeff, M. M.; Wilkening, M.; et al. Chem. Mater. 2016, 28 (7), 2384. doi: 10.1021/acs.chemmater.6b00579
doi: 10.1021/acs.chemmater.6b00579
Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K. R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; et al. Chem. Mater. 2020, 32 (6), 2664. doi: 10.1021/acs.chemmater.9b04764
doi: 10.1021/acs.chemmater.9b04764
Xu, G.; Luo, L.; Liang, J.; Zhao, S.; Yang, R.; Wang, C.; Yu, T.; Wang, L.; Xiao, W.; Wang, J.; et al. Nano Energy 2022, 92, 106674. doi: 10.1016/j.nanoen.2021.106674
doi: 10.1016/j.nanoen.2021.106674
Zou, Z.; Li, Y.; Lu, Z.; Wang, D.; Cui, Y.; Guo, B.; Li, Y.; Liang, X.; Feng, J.; Li, H.; et al. Chem. Rev. 2020, 120 (9), 4169. doi: 10.1021/acs.chemrev.9b00760
doi: 10.1021/acs.chemrev.9b00760
Jiang, Y.; Lai, A.; Ma, J.; Yu, K.; Zeng, H.; Zhang, G.; Huang, W.; Wang, C.; Chi, S.; Wang, J.; et al. ChemSusChem 2023, 16 (9), e202202156. doi: 10.1002/cssc.202202156
doi: 10.1002/cssc.202202156
Gandi, S.; Chidambara Swamy Vaddadi, V. S.; Sripada Panda, S. S.; Goona, N. K.; Parne, S. R.; Lakavat, M.; Bhaumik, A. J. Power Sources 2022, 521, 230930. doi: 10.1016/j.jpowsour.2021.230930
doi: 10.1016/j.jpowsour.2021.230930
Deng, Z.; Kumar, V.; Bölle, F. T.; Caro, F.; Franco, A. A.; Castelli, I. E.; Canepa, P.; Seh, Z. W. Energy Environ. Sci. 2022, 15 (2), 579. doi: 10.1039/D1EE02324A
doi: 10.1039/D1EE02324A
Wang, L.; Xie, R.; Chen, B.; Yu, X.; Ma, J.; Li, C.; Hu, Z.; Sun, X.; Xu, C.; Dong, S.; et al. Nat. Commun. 2020, 11 (1), 5889. doi: 10.1038/s41467-020-19726-5
doi: 10.1038/s41467-020-19726-5
Yi, J.; He, P.; Liu, H.; Ni, H.; Bai, Z.; Fan, L.-Z. J. Energy Chem. 2021, 52, 202. doi: 10.1016/j.jechem.2020.03.057
doi: 10.1016/j.jechem.2020.03.057
Park, B. K.; Kim, H.; Kim, K. S.; Kim, H.; Han, S. H.; Yu, J.; Hah, H. J.; Moon, J.; Cho, W.; Kim, K. J. Adv. Energy Mater. 2022, 12 (37), 2201208. doi: 10.1002/aenm.202201208
doi: 10.1002/aenm.202201208
Tian, H.-K.; Qi, Y. J. Electrochem. Soc. 2017, 164 (11), E3512. doi: 10.1149/2.0481711jes
doi: 10.1149/2.0481711jes
Lewis, J. A.; Tippens, J.; Cortes, F. J. Q.; McDowell, M. T. Trends Chem. 2019, 1 (9), 845. doi: 10.1016/j.trechm.2019.06.013
doi: 10.1016/j.trechm.2019.06.013
Kim, J.; Kim, M. J.; Kim, J.; Lee, J. W.; Park, J.; Wang, S. E.; Lee, S.; Kang, Y. C.; Paik, U.; Jung, D. S.; et al. Adv. Funct. Mater. 2023, 33 (12), 2211355. doi: 10.1002/adfm.202211355
doi: 10.1002/adfm.202211355
Jung, S.-K.; Gwon, H.; Lee, S.-S.; Kim, H.; Lee, J. C.; Chung, J. G.; Park, S. Y.; Aihara, Y.; Im, D. J. Mater. Chem. A 2019, 7 (40), 22967. doi: 10.1039/C9TA08517C
doi: 10.1039/C9TA08517C
Gao, B.; Jalem, R.; Tateyama, Y. ACS Appl. Mater. Interfaces 2021, 13 (10), 11765. doi: 10.1021/acsami.0c19091
doi: 10.1021/acsami.0c19091
Ren, F.; Liang, Z.; Zhao, W.; Zuo, W.; Lin, M.; Wu, Y.; Yang, X.; Gong, Z.; Yang, Y. Energy Environ. Sci. 2023, 16 (6), 2579. doi: 10.1039/D3EE00870C
doi: 10.1039/D3EE00870C
Swift, M. W.; Jagad, H.; Park, J.; Qie, Y.; Wu, Y.; Qi, Y. Curr. Opin. Solid State Mater. Sci. 2022, 26 (3), 100990. doi: 10.1016/j.cossms.2022.100990
doi: 10.1016/j.cossms.2022.100990
Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1984, 88 (11), 1057. doi: 10.1002/bbpc.198400007
doi: 10.1002/bbpc.198400007
Maier, J. Prog. Solid State Chem. 1995, 23 (3), 171. doi: 10.1016/0079-6786(95)00004-E
doi: 10.1016/0079-6786(95)00004-E
Wu, J.-F.; Guo, X. Phys. Chem. Chem. Phys. 2017, 19 (8), 5880. doi: 10.1039/C6CP07757A
doi: 10.1039/C6CP07757A
Frenkel, J. Kinetic Theory of Liquids; Oxford University Press: Oxford, UK, 1946.
Lehovec, K. J. Chem. Phys. 1953, 21 (7), 1123. doi: 10.1063/1.1699148
doi: 10.1063/1.1699148
Kliewer, K. L.; Koehler, J. S. Phys. Rev. 1965, 140 (4A), A1226. doi: 10.1103/PhysRev.140.A1226
doi: 10.1103/PhysRev.140.A1226
Liang, C. C. J. Electrochem. Soc. 1973, 120 (10), 1289. doi: 10.1149/1.2403248
doi: 10.1149/1.2403248
Dudney, N. J. J. Am. Ceram. Soc. 1985, 68 (10), 538. doi: 10.1111/j.1151-2916.1985.tb11520.x
doi: 10.1111/j.1151-2916.1985.tb11520.x
Maier, J. J. Phys. Chem. Solids 1985, 46 (3), 309. doi: 10.1016/0022-3697(85)90172-6
doi: 10.1016/0022-3697(85)90172-6
Jow, T.; Wagner, J. B. J. Electrochem. Soc. 1979, 126 (11), 1963. doi: 10.1149/1.2128835
doi: 10.1149/1.2128835
Nakamura, O.; Goodenough, J. B. Solid State Ion. 1982, 7 (2), 119. doi: 10.1016/0167-2738(82)90004-2
doi: 10.1016/0167-2738(82)90004-2
Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1985, 89 (4), 355. doi: 10.1002/bbpc.19850890402
doi: 10.1002/bbpc.19850890402
Modine, F. A.; Lubben, D.; Bates, J. B. J. Appl. Phys. 1993, 74 (4), 2658. doi: 10.1063/1.354657
doi: 10.1063/1.354657
Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1986, 90 (1), 26. doi: 10.1002/bbpc.19860900105
doi: 10.1002/bbpc.19860900105
Maier, J.; Lauer, U. Ber. Bunsen-Ges. Phys. Chem. 1990, 94 (9), 973. doi: 10.1002/bbpc.19900940918
doi: 10.1002/bbpc.19900940918
Guo, X.; Vasco, E.; Mi, S.; Szot, K.; Wachsman, E.; Waser, R. Acta Mater. 2005, 53 (19), 5161. doi: 10.1016/j.actamat.2005.07.033
doi: 10.1016/j.actamat.2005.07.033
Guo, X.; Maier, J. Adv. Funct. Mater. 2009, 19 (1), 96. doi: 10.1002/adfm.200800805
doi: 10.1002/adfm.200800805
Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000, 408 (6815), 946. doi: 10.1038/35050047
doi: 10.1038/35050047
Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Adv. Mater. 2006, 18 (17), 2226. doi: 10.1002/adma.200502604
doi: 10.1002/adma.200502604
Balaya, P.; Li, H.; Kienle, L.; Maier, J. Adv. Funct. Mater. 2003, 13 (8), 621. doi: 10.1002/adfm.200304406
doi: 10.1002/adfm.200304406
Maier, J. Angew. Chem. Int. Ed. 2013, 52 (19), 4998. doi: 10.1002/anie.201205569
doi: 10.1002/anie.201205569
Maier, J. Nat. Mater. 2005, 4 (11), 805. doi: 10.1038/nmat1513
doi: 10.1038/nmat1513
Li, C.; Gu, L.; Guo, X.; Samuelis, D.; Tang, K.; Maier, J. Nano Lett. 2012, 12 (3), 1241. doi: 10.1021/nl203623h
doi: 10.1021/nl203623h
Li, C.; Maier, J. Solid State Ion. 2012, 225, 408. doi: 10.1016/j.ssi.2012.02.036
doi: 10.1016/j.ssi.2012.02.036
de Klerk, N. J. J.; Wagemaker, M. ACS Appl. Energy Mater. 2018, 10 (1), 5609. doi: 10.1021/acsaem.8b01141
doi: 10.1021/acsaem.8b01141
Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z.; Zhang, X.; He, P.; Zhou, H.; Wagemaker, M. Joule 2020, 4 (6), 1311. doi: 10.1016/j.joule.2020.04.002
doi: 10.1016/j.joule.2020.04.002
Takada, K.; Ohta, N.; Zhang, L.; Xu, X.; Hang, B. T.; Ohnishi, T.; Osada, M.; Sasaki, T. Solid State Ion. 2012, 225, 594. doi: 10.1016/j.ssi.2012.01.009
doi: 10.1016/j.ssi.2012.01.009
Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Chem. Mater. 2014, 26 (14), 4248. doi: 10.1021/cm5016959
doi: 10.1021/cm5016959
Li, X.; Sun, Q.; Wang, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L.; Zhu, L. J. Power Sources 2020, 456, 227997. doi: 10.1016/j.jpowsour.2020.227997
doi: 10.1016/j.jpowsour.2020.227997
Liu, Y.; Yu, T.; Guo, S.; Zhou, H. Acta Phys. -Chim. Sin. 2023, 39, 2301027.
doi: 10.3866/PKU.WHXB202301027
Zhao, Y.; Chen, C.; Liu, W.; Hu, W.; Liu, J. Acta Phys. -Chim. Sin. 2023, 39, 2211017.
doi: 10.3866/PKU.WHXB202211017
Seino, Y.; Ota, T.; Takada, K. J. Power Sources 2011, 196 (15), 6488. doi: 10.1016/j.jpowsour.2011.03.090
doi: 10.1016/j.jpowsour.2011.03.090
Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. J. Electrochem. Soc. 2009, 156 (1), A27. doi: 10.1149/1.3005972
doi: 10.1149/1.3005972
Takada, K.; Ohta, N.; Zhang, L.; Fukuda, K.; Sakaguchi, I.; Ma, R.; Osada, M.; Sasaki, T. Solid State Ion. 2008, 179 (27–32), 1333. doi: 10.1016/j.ssi.2008.02.017
doi: 10.1016/j.ssi.2008.02.017
Machida, N.; Kashiwagi, J.; Naito, M.; Shigematsu, T. Solid State Ion. 2012, 225, 354. doi: 10.1016/j.ssi.2011.11.026
doi: 10.1016/j.ssi.2011.11.026
Woo, J. H.; Trevey, J. E.; Cavanagh, A. S.; Choi, Y. S.; Kim, S. C.; George, S. M.; Oh, K. H.; Lee, S.-H. J. Electrochem. Soc. 2012, 159 (7), A1120. doi: 10.1149/2.085207jes
doi: 10.1149/2.085207jes
Wang, C.-W.; Ren, F.-C.; Zhou, Y.; Yan, P.-F.; Zhou, X.-D.; Zhang, S.-J.; Liu, W.; Zhang, W.-D.; Zou, M.-H.; Zeng, L.-Y.; et al. Energy Environ. Sci. 2021, 14 (1), 437. doi: 10.1039/D0EE03212C
doi: 10.1039/D0EE03212C
Xu, Z.-M.; Bo, S.-H.; Zhu, H. ACS Appl. Mater. Interfaces 2018, 10 (43), 36941. doi: 10.1021/acsami.8b12026
doi: 10.1021/acsami.8b12026
Nolan, A. M.; Liu, Y.; Mo, Y. ACS Energy Lett. 2019, 4 (10), 2444. doi: 10.1021/acsenergylett.9b01703
doi: 10.1021/acsenergylett.9b01703
Zhang, H.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. Chem. Rev. 2022, 122 (6), 5641. doi: 10.1021/acs.chemrev.1c00327
doi: 10.1021/acs.chemrev.1c00327
Haruta, M.; Shiraki, S.; Suzuki, T.; Kumatani, A.; Ohsawa, T.; Takagi, Y.; Shimizu, R.; Hitosugi, T. Nano Lett. 2015, 15 (3), 1498. doi: 10.1021/nl5035896
doi: 10.1021/nl5035896
Hart, F. X.; Bates, J. B. J. Appl. Phys. 1998, 83 (12), 7560. doi: 10.1063/1.367521
doi: 10.1063/1.367521
Lucovsky, G.; Liang, W. Y.; White, R. M.; Pisharody, K. R. Solid State Commun. 1976, 19 (4), 303. doi: 10.1016/0038-1098(76)91337-5
doi: 10.1016/0038-1098(76)91337-5
Trevey, J. E.; Stoldt, C. R.; Lee, S.-H. J. Electrochem. Soc. 2011, 158 (12), A1282. doi: 10.1149/2.017112jes
doi: 10.1149/2.017112jes
Cai, L.; Zhang, Q.; Mwizerwa, J. P.; Wan, H.; Yang, X.; Xu, X.; Yao, X. ACS Appl. Mater. Interfaces 2018, 10 (12), 10053. doi: 10.1021/acsami.7b18798
doi: 10.1021/acsami.7b18798
Chen, F.; Kong, L.; Song, W.; Jiang, C.; Tian, S.; Yu, F.; Qin, L.; Wang, C.; Zhao, X. J. Materiomics 2019, 5 (1), 73. doi: 10.1016/j.jmat.2018.10.001
doi: 10.1016/j.jmat.2018.10.001
Yada, C.; Ohmori, A.; Ide, K.; Yamasaki, H.; Kato, T.; Saito, T.; Sagane, F.; Iriyama, Y. Adv. Energy Mater. 2014, 4 (9), 1301416. doi: 10.1002/aenm.201301416
doi: 10.1002/aenm.201301416
Kim, S.; Fleig, J.; Maier, J. Phys. Chem. Chem. Phys. 2003, 5 (11), 2268. doi: 10.1039/B300170A
doi: 10.1039/B300170A
Gregori, G.; Merkle, R.; Maier, J. Prog. Mater. Sci. 2017, 89, 252. doi: 10.1016/j.pmatsci.2017.04.009
doi: 10.1016/j.pmatsci.2017.04.009
Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C. A. J.; Nonaka, K.; Sugita, Y.; Ogumi, Z. Angew. Chem. Int. Ed. 2010, 49 (26), 4414. doi: 10.1002/anie.200907319
doi: 10.1002/anie.200907319
Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D. Nanoscale 2017, 9 (2), 893. doi: 10.1039/C6NR07971G
doi: 10.1039/C6NR07971G
Tsuchiya, B.; Ohnishi, J.; Sasaki, Y.; Yamamoto, T.; Yamamoto, Y.; Motoyama, M.; Iriyama, Y.; Morita, K. Adv. Mater. Interfaces 2019, 6 (14), 1900100. doi: 10.1002/admi.201900100
doi: 10.1002/admi.201900100
Katzenmeier, L.; Carstensen, L.; Schaper, S. J.; Müller-Buschbaum, P.; Bandarenka, A. S. Adv. Mater. 2021, 33 (24), 2100585. doi: 10.1002/adma.202100585
doi: 10.1002/adma.202100585
Katzenmeier, L.; Helmer, S.; Braxmeier, S.; Knobbe, E.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2021, 13 (4), 5853. doi: 10.1021/acsami.0c21304
doi: 10.1021/acsami.0c21304
Katzenmeier, L.; Carstensen, L.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2022, 14 (13), 15811. doi: 10.1021/acsami.2c00650
doi: 10.1021/acsami.2c00650
Swift, M. W.; Qi, Y. Phys. Rev. Lett. 2019, 122 (16), 167701. doi: 10.1103/PhysRevLett.122.167701
doi: 10.1103/PhysRevLett.122.167701
Liu, Y.; Bai, Y.; Jaegermann, W.; Hausbrand, R.; Xu, B.-X. ACS Appl. Mater. Interfaces 2021, 13 (4), 5895. doi: 10.1021/acsami.0c22986
doi: 10.1021/acsami.0c22986
Sinzig, S.; Hollweck, T.; Schmidt, C. P.; Wall, W. A. J. Electrochem. Soc. 2023, 170 (4), 040513. doi: 10.1149/1945-7111/acc692
doi: 10.1149/1945-7111/acc692
Katzenmeier, L.; Gößwein, M.; Gagliardi, A.; Bandarenka, A. S. J. Phys. Chem. C 2022, 126 (26), 10900. doi: 10.1021/acs.jpcc.2c02481
doi: 10.1021/acs.jpcc.2c02481
Nomura, Y.; Yamamoto, K.; Hirayama, T.; Ouchi, S.; Igaki, E.; Saitoh, K. Angew. Chem. 2019, 131 (16), 5346. doi: 10.1002/ange.201814669
doi: 10.1002/ange.201814669
Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W. Adv. Energy Mater. 2020, 10 (4), 1903311. doi: 10.1002/aenm.201903311
doi: 10.1002/aenm.201903311
Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022, 14 (22), 25556. doi: 10.1021/acsami.2c05239
doi: 10.1021/acsami.2c05239
Fingerle, M.; Buchheit, R.; Sicolo, S.; Albe, K.; Hausbrand, R. Chem. Mater. 2017, 29 (18), 7675. doi: 10.1021/acs.chemmater.7b00890
doi: 10.1021/acs.chemmater.7b00890
Tian, H.-K.; Jalem, R.; Gao, B.; Yamamoto, Y.; Muto, S.; Sakakura, M.; Iriyama, Y.; Tateyama, Y. ACS Appl. Mater. Interfaces 2020, 12 (49), 54752. doi: 10.1021/acsami.0c16463
doi: 10.1021/acsami.0c16463
Wang, D.; Jiao, Y.; Shi, W.; Pu, B.; Ning, F.; Yi, J.; Ren, Y.; Yu, J.; Li, Y.; Wang, H.; et al. Prog. Mater. Sci. 2023, 133, 101055. doi: 10.1016/j.pmatsci.2022.101055
doi: 10.1016/j.pmatsci.2022.101055
Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22 (3), 587. doi: 10.1021/cm901452z
doi: 10.1021/cm901452z
Cherkashinin, G.; Hausbrand, R.; Jaegermann, W. J. Electrochem. Soc. 2019, 166 (3), A5308. doi: 10.1149/2.0441903jes
doi: 10.1149/2.0441903jes
Boettcher, S. W.; Oener, S. Z.; Lonergan, M. C.; Surendranath, Y.; Ardo, S.; Brozek, C.; Kempler, P. A. ACS Energy Lett. 2021, 6 (1), 261. doi: 10.1021/acsenergylett.0c02443
doi: 10.1021/acsenergylett.0c02443
Yu, P.; Li, C.; Guo, X. J. Phys. Chem. C 2014, 118 (20), 10616. doi: 10.1021/jp5010693
doi: 10.1021/jp5010693
Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Nat. Rev. Mater. 2021, 6 (11), 1020. doi: 10.1038/s41578-021-00324-w
doi: 10.1038/s41578-021-00324-w
Li, X.; Su, J.; Li, Z.; Zhao, Z.; Zhang, F.; Zhang, L.; Ye, W.; Li, Q.; Wang, K.; Wang, X.; et al. Sci. Bull. 2022, 67 (11), 1145. doi: 10.1016/j.scib.2022.04.001
doi: 10.1016/j.scib.2022.04.001
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259