Citation: Ye Wang, Ruixiang Ge, Xiang Liu, Jing Li, Haohong Duan. An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230701. doi: 10.3866/PKU.WHXB202307019 shu

An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol

  • Corresponding author: Haohong Duan, hhduan@mail.tsinghua.edu.cn
  • Received Date: 11 July 2023
    Revised Date: 25 August 2023
    Accepted Date: 25 August 2023
    Available Online: 4 September 2023

    Fund Project: Beijing Natural Science Foundation, China JQ22003the National Natural Science Foundation of China 21978147the National Natural Science Foundation of China 21935001Beijing Municipal Natural Science Foundation, China 2214063

  • Nucleophile oxidation reaction (NOR) is emerging as a significant approach for the sustainable production of value-added chemicals. Among the various types, electrocatalytic glycerol oxidation reaction (GOR) stands out as a crucial method for producing C1 to C3 chemicals including formic acid (FA). Non-noble-metal-based (oxy)hydroxides have found extensive use in GOR, yet achieving industrially-demanded current densities (> 300 mA·cm-2]) at moderate potentials remains a challenge. It is well documented that GOR catalyzed by (oxy)hydroxides follows an indirect oxidation mechanism. Specifically, the nucleophile, glycerol, undergoes oxidation by the electrogenerated oxyhydroxides with electrophilic adsorption oxygen. Therefore, comprehending the evolution of the electrocatalyst in GOR is critically important. In this paper, we have developed molybdenum-doped nickel oxyhydroxides (Mo-NiOOH) through cyclic voltammetry (CV) activation of nickel molybdate (NiMoO4). We demonstrated that Mo species leach from NiMoO4, and the resulting Mo-NiOOH retains the nanosheet array morphology of NiMoO4. We subjected the freshly prepared Mo-NiOOH to systematic characterizations employing techniques such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) mapping, Raman spectroscopy, inductively coupled plasma-mass spectrometry (ICP-MS), and X-ray photoelectron spectroscopy (XPS). The above structural characterizations confirm that Mo-NiOOH inherits the nanosheet array morphology of the NiMoO4 precursor with reduced Mo content, thereby indicating the phase reconstruction from oxides to oxyhydroxides post CV activation. Furthermore, the Ni3+/Ni2+ ratio in Mo-NiOOH surpasses that in NiOOH derived from CV activation of Ni(OH)2. Mo-NiOOH exhibits elevated electrochemically active surface areas (ECSAs) and a higher Ni3+/Ni2+ ratio compared to NiOOH obtained through CV activation of Ni(OH)2, facilitating the Mo-NiOOH exhibits higher ratio of Ni3+/Ni2+, higher electrochemically active surface areas (ECSAs) than NiOOH, and facilitated oxidation of Ni2+ to Ni3+. Consequently, Mo-NiOOH requires a lower applied potential than NiOOH (1.51 V versus 1.84 V vs. reversible hydrogen electrode (RHE)) to achieve a high current density (400 mA·cm−2]). Additionally, Mo-NiOOH demonstrates higher Faradaic efficiency towards formate (FEformate) in contrast to NiOOH (84.7% versus 59.6%), indicating enhanced carbon-carbon (C―C) bond cleavage due to Mo doping. Multi-potential step (STEP) experiments indicate that GOR catalyzed by NiOOH and Mo-NiOOH follows a similar indirect oxidation mechanism mediated by oxyhydroxides. Operando electrochemical impedance spectroscopy (EIS) and in situ Raman spectroscopy confirmed that Mo doping in NiOOH accelerates GOR kinetics and the oxidation of Ni2+ to Ni3+, contributing to the higher activity and formate selectivity of Mo-NiOOH than NiOOH. The strategy of surface modulation of oxyhydroxides through leaching of soluble anions offers guidelines for the rational design of high-performance NOR electrocatalysts.
  • 加载中
    1. [1]

      Zhou, H.; Li, Z.; Kong, X.; Duan, H. Chem. J. Chin. Univ. 2020, 41, 1449. doi: 10.7503/cjcu20200212  doi: 10.7503/cjcu20200212

    2. [2]

      Zeng, L.; Chen, Y.; Sun, M.; Huang, Q.; Sun, K.; Ma, J.; Li, J.; Tan, H.; Li, M.; Pan, Y.; et al. J. Am. Chem. Soc. 2023, 145, 17577. doi: 10.1021/jacs.3c02570  doi: 10.1021/jacs.3c02570

    3. [3]

      Wang, T.; Cao, X.; Jiao, L. Angew. Chem. Int. Ed. 2022, 61. doi: 10.1002/anie.202213328  doi: 10.1002/anie.202213328

    4. [4]

      Wang, F.; Duan, H. Chem Catal. 2022, 2, 644. doi: 10.1016/j.checat.2022.03.014  doi: 10.1016/j.checat.2022.03.014

    5. [5]

      Zhou, P.; Zhang, J. Sci. China Chem. 2023, 66, 1011. doi: 10.1007/s11426-022-1511-2  doi: 10.1007/s11426-022-1511-2

    6. [6]

      Sheng, H.; Janes, A. N.; Ross, R. D.; Hofstetter, H.; Lee, K.; Schmidt, J. R.; Jin, S. Nat. Catal. 2022, 5, 716. doi: 10.1038/s41929-022-00826-y  doi: 10.1038/s41929-022-00826-y

    7. [7]

      Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M. T. M. ACS Catal. 2012, 2, 759. doi: 10.1021/cs200599g  doi: 10.1021/cs200599g

    8. [8]

      Vo, T. -G.; Ho, P. -Y.; Chiang, C. -Y. Appl. Catal. B 2022, 300, 120723. doi: 10.1016/j.apcatb.2021.120723  doi: 10.1016/j.apcatb.2021.120723

    9. [9]

      Dai, C.; Sun, L.; Liao, H.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. J. Catal. 2017, 356, 14. doi: 10.1016/j.jcat.2017.10.010  doi: 10.1016/j.jcat.2017.10.010

    10. [10]

      Yan, Y.; Zhou, H.; Xu, S. -M.; Yang, J.; Hao, P.; Cai, X.; Ren, Y.; Xu, M.; Kong, X.; Shao, M.; et al. J. Am. Chem. Soc. 2023, 145, 6144. doi: 10.1021/jacs.2c11861  doi: 10.1021/jacs.2c11861

    11. [11]

      Morales, D. M.; Jambrec, D.; Kazakova, M. A.; Braun, M.; Sikdar, N.; Koul, A.; Brix, A. C.; Seisel, S.; Andronescu, C.; Schuhmann, W. ACS Catal. 2022, 12, 982. doi: 10.1021/acscatal.1c04150  doi: 10.1021/acscatal.1c04150

    12. [12]

      Wu, J. X.; Liu, X.; Hao, Y. M.; Wang, S. Y.; Wang, R.; Du, W.; Cha, S. S.; Ma, X. Y.; Yang, X. J.; Gong, M. Angew. Chem. Int. Ed. 2023, 62, e202216083. doi: 10.1002/anie.202216083  doi: 10.1002/anie.202216083

    13. [13]

      Li, Y.; Wei, X.; Han, S.; Chen, L.; Shi, J. Angew. Chem. Int. Ed. 2021, 60, 21464. doi: 10.1002/anie.202107510  doi: 10.1002/anie.202107510

    14. [14]

      Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10, 5335. doi: 10.1038/s41467-019-13375-z  doi: 10.1038/s41467-019-13375-z

    15. [15]

      Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. J. Am. Chem. Soc. 2022, 144, 7224. doi: 10.1021/jacs.1c13740  doi: 10.1021/jacs.1c13740

    16. [16]

      Bulushev, D. A.; Ross, J. R. H. ChemSusChem 2018, 11, 821. doi: 10.1002/cssc.201702075  doi: 10.1002/cssc.201702075

    17. [17]

      Govind Rajan, A.; Martirez, J. M. P.; Carter, E. A. J. Am. Chem. Soc. 2020, 142, 3600. doi: 10.1021/jacs.9b13708  doi: 10.1021/jacs.9b13708

    18. [18]

      Huang, J.; Li, Y.; Zhang, Y.; Rao, G.; Wu, C.; Hu, Y.; Wang, X.; Lu, R.; Li, Y.; Xiong, J. Angew. Chem. Int. Ed. 2019, 58, 17458. doi: 10.1002/anie.201910716  doi: 10.1002/anie.201910716

    19. [19]

      He, J.; Zou, Y.; Huang, Y.; Li, C.; Liu, Y.; Zhou, L.; Dong, C. -L.; Lu, X.; Wang, S. Sci. China Chem. 2020, 63, 1684. doi: 10.1007/s11426-020-9844-2  doi: 10.1007/s11426-020-9844-2

    20. [20]

      Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E. K.; Catlow, C. R. A.; Yan, K. Green Chem. 2021, 23, 4034. doi: 10.1039/d1gc00901j  doi: 10.1039/d1gc00901j

    21. [21]

      Goetz, M. K.; Bender, M. T.; Choi, K. -S. Nat. Commun. 2022, 13. doi: 10.1038/s41467-022-33637-7  doi: 10.1038/s41467-022-33637-7

    22. [22]

      Fu, G.; Kang, X.; Zhang, Y.; Yang, X.; Wang, L.; Fu, X. -Z.; Zhang, J.; Luo, J. -L.; Liu, J. Nano-Micro Lett. 2022, 14, 200. doi: 10.1007/s40820-022-00940-3  doi: 10.1007/s40820-022-00940-3

    23. [23]

      Böhm, D.; Beetz, M.; Kutz, C.; Zhang, S.; Scheu, C.; Bein, T.; Fattakhova-Rohlfing, D. Chem. Mater. 2020, 32, 10394. doi: 10.1021/acs.chemmater.0c02851  doi: 10.1021/acs.chemmater.0c02851

    24. [24]

      Zhao, P.; Ma, L.; Guo, J. J. Phys. Chem. Solids 2022, 164, 110634. doi: 10.1016/j.jpcs.2022.110634  doi: 10.1016/j.jpcs.2022.110634

    25. [25]

      Qin, H.; Ye, Y.; Li, J.; Jia, W.; Zheng, S.; Cao, X.; Lin, G.; Jiao, L. Adv. Funct. Mater. 2022, 33, 2209698. doi: 10.1002/adfm.202209698  doi: 10.1002/adfm.202209698

    26. [26]

      Wang, F.; Zhang, K.; Li, S.; Zha, Q.; Ni, Y. ACS Sustain. Chem. Eng. 2022, 10, 10383. doi: 10.1021/acssuschemeng.2c03166  doi: 10.1021/acssuschemeng.2c03166

    27. [27]

      Yan, J.; Kong, L.; Ji, Y.; White, J.; Li, Y.; Zhang, J.; An, P.; Liu, S.; Lee, S. -T.; Ma, T. Nat. Commun. 2019, 10, 2149. doi: 10.1038/s41467-019-09845-z  doi: 10.1038/s41467-019-09845-z

    28. [28]

      Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C. -L.; Huang, Y. -C.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C.; et al. Chem 2020, 6, 2974. doi: 10.1016/j.chempr.2020.07.022  doi: 10.1016/j.chempr.2020.07.022

    29. [29]

      Bender, M. T.; Lam, Y. C.; Hammes-Schiffer, S.; Choi, K. -S. J. Am. Chem. Soc. 2020, 142, 21538. doi: 10.1021/jacs.0c10924  doi: 10.1021/jacs.0c10924

    30. [30]

      Zhang, P.; Sun, L. Chin. J. Chem. 2020, 38, 996. doi: 10.1002/cjoc.201900467  doi: 10.1002/cjoc.201900467

    31. [31]

      Duan, Y.; Lee, J. Y.; Xi, S.; Sun, Y.; Ge, J.; Ong, S. J. H.; Chen, Y.; Dou, S.; Meng, F.; Diao, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 7418. doi: 10.1002/anie.202015060  doi: 10.1002/anie.202015060

    32. [32]

      Wang, Y.; Zhu, Y.; Zhao, S.; She, S.; Zhang, F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L.; Mao, H.; et al. Matter 2020, 3, 2124. doi: 10.1016/j.matt.2020.09.016  doi: 10.1016/j.matt.2020.09.016

    33. [33]

      Liu, X.; Meng, J.; Ni, K.; Guo, R.; Xia, F.; Xie, J.; Li, X.; Wen, B.; Wu, P.; Li, M.; et al. Cell Rep. Phys. Sci. 2020, 1, 100241. doi: 10.1016/j.xcrp.2020.100241  doi: 10.1016/j.xcrp.2020.100241

    34. [34]

      Lin, T. -W.; Dai, C. -S.; Hung, K. -C. Sci. Rep. 2014, 4, 7274. doi: 10.1038/srep07274  doi: 10.1038/srep07274

    35. [35]

      Kuai, C.; Zhang, Y.; Han, L.; Xin, H. L.; Sun, C. -J.; Nordlund, D.; Qiao, S.; Du, X. -W.; Lin, F. J. Mater. Chem. A 2020, 8, 10747. doi: 10.1039/d0ta04244g  doi: 10.1039/d0ta04244g

    36. [36]

      Yang, C.; Wang, H.; Lu, S.; Wu, C.; Liu, Y.; Tan, Q.; Liang, D.; Xiang, Y. Electrochim. Acta 2015, 182, 834. doi: 10.1016/j.electacta.2015.09.155  doi: 10.1016/j.electacta.2015.09.155

    37. [37]

      Kim, J. -H.; Kim, K. J.; Park, M. -S.; Lee, N. J.; Hwang, U.; Kim, H.; Kim, Y. -J. Electrochem. Commun. 2011, 13, 997. doi: 10.1016/j.elecom.2011.06.022  doi: 10.1016/j.elecom.2011.06.022

    38. [38]

      Gouda, L.; Sévery, L.; Moehl, T.; Mas-Marzá, E.; Adams, P.; Fabregat-Santiago, F.; Tilley, S. D. Green Chem. 2021, 23, 8061. doi: 10.1039/d1gc02031e  doi: 10.1039/d1gc02031e

    39. [39]

      Liu, B.; Zheng, Z.; Liu, Y.; Zhang, M.; Wang, Y.; Wan, Y.; Yan, K. J. Energy Chem. 2023, 78, 412. doi: 10.1016/j.jechem.2022.11.041  doi: 10.1016/j.jechem.2022.11.041

    40. [40]

      Chen, D.; Ding, Y.; Cao, X.; Wang, L.; Lee, H.; Lin, G.; Li, W.; Ding, G.; Sun, L. Angew. Chem. Int. Ed. 2023, e202309478. doi: 10.1002/anie.202309478  doi: 10.1002/anie.202309478

    41. [41]

      Sun, Y.; Shin, H.; Wang, F.; Tian, B.; Chiang, C. -W.; Liu, S.; Li, X.; Wang, Y.; Tang, L.; Goddard, W. A.; et al. J. Am. Chem. Soc. 2022, 144, 15185. doi: 10.1021/jacs.2c05403  doi: 10.1021/jacs.2c05403

    42. [42]

      Tao, S.; Wen, Q.; Jaegermann, W.; Kaiser, B. ACS Catal. 2022, 12, 1508. doi: 10.1021/acscatal.1c04589  doi: 10.1021/acscatal.1c04589

    43. [43]

      Deabate, S.; Fourgeot, F.; Henn, F. J. Power Sources 2000, 87, 125. doi: 10.1016/S0378-7753[99]00437-1  doi: 10.1016/S0378-7753[99]00437-1

    44. [44]

      Zhou, D.; Wang, S.; Jia, Y.; Xiong, X.; Yang, H.; Liu, S.; Tang, J.; Zhang, J.; Liu, D.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 736. doi: 10.1002/anie.201809689  doi: 10.1002/anie.201809689

    45. [45]

      Solomon, G.; Landström, A.; Mazzaro, R.; Jugovac, M.; Moras, P.; Cattaruzza, E.; Morandi, V.; Concina, I.; Vomiero, A. Adv. Energy Mater. 2021, 11, 2101324. doi: 10.1002/aenm.202101324  doi: 10.1002/aenm.202101324

    46. [46]

      Dürr, R. N.; Maltoni, P.; Tian, H.; Jousselme, B.; Hammarström, L.; Edvinsson, T. ACS Nano 2021, 15, 13504. doi: 10.1021/acsnano.1c04126  doi: 10.1021/acsnano.1c04126

    47. [47]

      Wang, A.; Chen, J.; Zhang, P.; Tang, S.; Feng, Z.; Yao, T.; Li, C. Acta Phys. -Chim. Sin. 2023, 39, 2301023. doi: 10.3866/PKU.WHXB202301023

    48. [48]

      Chen, P.; Cao, C.; Ding, C.; Yin, Z.; Qi, S.; Guo, J.; Zhang, M.; Sun, Z. J. Power Sources 2022, 521, 230920. doi: 10.1016/j.jpowsour.2021.230920  doi: 10.1016/j.jpowsour.2021.230920

    49. [49]

      Wang, L.; Zhang, L.; Ma, W.; Wan, H.; Zhang, X.; Zhang, X.; Jiang, S.; Zheng, J. Y.; Zhou, Z. Adv. Funct. Mater. 2022, 32, 2203342. doi: 10.1002/adfm.202203342  doi: 10.1002/adfm.202203342

    50. [50]

      Menezes, P. W.; Yao, S.; Beltrán-Suito, R.; Hausmann, J. N.; Menezes, P. V.; Driess, M. Angew. Chem. Int. Ed. 2021, 133, 4690. doi: 10.1002/anie.202014331  doi: 10.1002/anie.202014331

    51. [51]

      Zhong, M.; Hisatomi, T.; Kuang, Y.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M.; et al. J. Am. Chem. Soc. 2015, 137, 5053. doi: 10.1021/jacs.5b00256  doi: 10.1021/jacs.5b00256

    52. [52]

      Zheng, X.; Cao, Y.; Han, X.; Liu, H.; Wang, J.; Zhang, Z.; Wu, X.; Zhong, C.; Hu, W.; Deng, Y. Sci. China Mater. 2019, 62, 1096. doi: 10.1007/s40843-019-9413-5  doi: 10.1007/s40843-019-9413-5

    53. [53]

      Owusu, K. A.; Qu, L.; Li, J.; Wang, Z.; Zhao, K.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C.; Wei, Q.; et al. Nat. Commun. 2017, 8, 14264. doi: 10.1038/ncomms14264  doi: 10.1038/ncomms14264

    54. [54]

      Pang, X.; Bai, H.; Zhao, H.; Fan, W.; Shi, W. ACS Catal. 2022, 12, 1545. doi: 10.1021/acscatal.1c04880  doi: 10.1021/acscatal.1c04880

    55. [55]

      Idriss, H. Surf. Sci. 2021, 712, 121894. doi: 10.1016/j.susc.2021.121894  doi: 10.1016/j.susc.2021.121894

    56. [56]

      Xiao, Z.; Huang, Y. -C.; Dong, C. -L.; Xie, C.; Liu, Z.; Du, S.; Chen, W.; Yan, D.; Tao, L.; Shu, Z.; et al. J. Am. Chem. Soc. 2020, 142, 12087. doi: 10.1021/jacs.0c00257  doi: 10.1021/jacs.0c00257

    57. [57]

      Ye, F.; Zhang, S.; Cheng, Q.; Long, Y.; Liu, D.; Paul, R.; Fang, Y.; Su, Y.; Qu, L.; Dai, L.; et al. Nat. Commun. 2023, 14. doi: 10.1038/s41467-023-37679-3  doi: 10.1038/s41467-023-37679-3

    58. [58]

      Chen, Y. -Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. -H.; Wan, L. -J.; Hu, J. -S. Adv. Mater. 2017, 29, 1703311. doi: 10.1002/adma.201703311  doi: 10.1002/adma.201703311

    59. [59]

      Kong, X.; Zhang, C.; Hwang, S. Y.; Chen, Q.; Peng, Z. Small 2017, 13, 1700334. doi: 10.1002/smll.201700334  doi: 10.1002/smll.201700334

    60. [60]

      Deng, X.; Xu, G. Y.; Zhang, Y. J.; Wang, L.; Zhang, J.; Li, J. F.; Fu, X. Z.; Luo, J. L. Angew. Chem. Int. Ed. 2021, 60, 20535. doi: 10.1002/anie.202108955  doi: 10.1002/anie.202108955

    61. [61]

      Liu, Y.; Wang, Y.; Liu, B.; Mahmoud, A.; Yan, K. Acta Phys. -Chim. Sin. 2023, 39, 2205028. doi: 10.3866/PKU.WHXB202205028  doi: 10.3866/PKU.WHXB202205028

    62. [62]

      Zhang, Y.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R. S.; Fan, H. J. Adv. Energy Mater. 2016, 6, 1600221. doi: 10.1002/aenm.201600221  doi: 10.1002/aenm.201600221

    63. [63]

      Suen, N. -T.; Hung, S. -F.; Quan, Q.; Zhang, N.; Xu, Y. -J.; Chen, H. M. Chem. Soc. Rev. 2017, 46, 337. doi: 10.1039/c6cs00328a  doi: 10.1039/c6cs00328a

    64. [64]

      Wu, J.; Li, J.; Li, Y.; Ma, X. Y.; Zhang, W. Y.; Hao, Y.; Cai, W. B.; Liu, Z. P.; Gong, M. Angew. Chem. Int. Ed. 2022, 61, e202113362. doi: 10.1002/anie.202113362  doi: 10.1002/anie.202113362

    65. [65]

      Ge, R.; Li, J.; Duan, H. Sci. China Mater. 2022, 65, 3273. doi: 10.1007/s40843-022-2076-y  doi: 10.1007/s40843-022-2076-y

    66. [66]

      Wang, Y.; Zhu, Y. -Q.; Xie, Z.; Xu, S. -M.; Xu, M.; Li, Z.; Ma, L.; Ge, R.; Zhou, H.; Li, Z.; et al. ACS Catal. 2022, 12, 12432. doi: 10.1021/acscatal.2c03162  doi: 10.1021/acscatal.2c03162

    67. [67]

      Ge, R.; Wang, Y.; Li, Z.; Xu, M.; Xu, S. M.; Zhou, H.; Ji, K.; Chen, F.; Zhou, J.; Duan, H. Angew. Chem. Int. Ed. 2022, 61, e202200211. doi: 10.1002/anie.202200211  doi: 10.1002/anie.202200211

    68. [68]

      Zhou, P.; Lv, X.; Tao, S.; Wu, J.; Wang, H.; Wei, X.; Wang, T.; Zhou, B.; Lu, Y.; Frauenheim, T.; et al. Adv. Mater. 2022, 2204089. doi: 10.1002/adma.202204089  doi: 10.1002/adma.202204089

    69. [69]

      Xue, X.; Wang, Y.; Zhou, L.; Ge, R.; Yang, J.; Kong, X.; Xu, M.; Li, Z.; Ma, L.; Duan, H. Chin. J. Chem. 2022, 40, 2741. doi: 10.1002/cjoc.202200414  doi: 10.1002/cjoc.202200414

    70. [70]

      Zhu, Y. -Q.; Zhou, H.; Dong, J.; Xu, S. -M.; Xu, M.; Zheng, L.; Xu, Q.; Ma, L.; Li, Z.; Shao, M.; et al. Angew. Chem. Int. Ed. 2023, 62, e202219048. doi: 10.1002/anie.202219048  doi: 10.1002/anie.202219048

    71. [71]

      Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu, Y.; Liu, J.; Wang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 22908. doi: 10.1002/anie.202109211  doi: 10.1002/anie.202109211

    72. [72]

      Chen, W.; Wang, Y.; Wu, B.; Shi, J.; Li, Y.; Xu, L.; Xie, C.; Zhou, W.; Huang, Y. C.; Wang, T.; et al. Adv. Mater. 2022, 34, 2105320. doi: 10.1002/adma.202105320  doi: 10.1002/adma.202105320

    73. [73]

      Wang, H. -Y.; Hung, S. -F.; Chen, H. -Y.; Chan, T. -S.; Chen, H. M.; Liu, B. J. Am. Chem. Soc. 2016, 138, 36. doi: 10.1021/jacs.5b10525  doi: 10.1021/jacs.5b10525

    74. [74]

      Qi, Y.; Zhang, Y.; Yang, L.; Zhao, Y.; Zhu, Y.; Jiang, H.; Li, C. Nat. Commun. 2022, 13, 4602. doi: 10.1038/s41467-022-32443-5  doi: 10.1038/s41467-022-32443-5

    75. [75]

      Tang, L.; Xia, M.; Cao, S.; Bo, X.; Zhang, S.; Zhang, Y.; Liu, X.; Zhang, L.; Yu, L.; Deng, D. Nano Energy 2022, 101, 107562. doi: 10.1016/j.nanoen.2022.107562  doi: 10.1016/j.nanoen.2022.107562

    76. [76]

      Gu, K.; Wang, D.; Xie, C.; Wang, T.; Huang, G.; Liu, Y.; Zou, Y.; Tao, L.; Wang, S. Angew. Chem. Int. Ed. 2021, 60, 20253. doi: 10.1002/anie.202107390  doi: 10.1002/anie.202107390

    77. [77]

      Wang, S.; Chen, W.; Xu, L.; Zhu, X.; Huang, Y. -C.; Zhou, W.; Wang, D.; Zhou, Y.; Du, S.; Li, Q.; et al. Angew. Chem. Int. Ed. 2020, 60, 7297. doi: 10.1002/anie.202015773  doi: 10.1002/anie.202015773

    78. [78]

      Qi, Y.; Zhang, Y.; Yang, L.; Zhao, Y.; Zhu, Y.; Jiang, H.; Li, C. Nat. Commun. 2022, 13, 4602. doi: 10.1038/s41467-022-32443-5  doi: 10.1038/s41467-022-32443-5

    79. [79]

      Kuang, Z.; Liu, S.; Li, X.; Wang, M.; Ren, X.; Ding, J.; Ge, R.; Zhou, W.; Rykov, A. I.; Sougrati, M. T.; et al. J. Energy Chem. 2021, 57, 212. doi: 10.1016/j.jechem.2020.09.014  doi: 10.1016/j.jechem.2020.09.014

    80. [80]

      Xu, J.; Wang, B. -X.; Lyu, D.; Wang, T.; Wang, Z. Int. J. Hydrog. Energy 2023, 48, 10724. doi: 10.1016/j.ijhydene.2022.12.118  doi: 10.1016/j.ijhydene.2022.12.118

    81. [81]

      Bai, L.; Lee, S.; Hu, X. Angew. Chem. Int. Ed. 2021, 60, 3095. doi: 10.1002/anie.202011388  doi: 10.1002/anie.202011388

    82. [82]

      Lee, S.; Bai, L.; Hu, X. Angew. Chem. Int. Ed. 2020, 59, 8072. doi:10.1002/anie.201915803  doi: 10.1002/anie.201915803

  • 加载中
    1. [1]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    2. [2]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    3. [3]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    4. [4]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    7. [7]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    8. [8]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    12. [12]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    17. [17]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    18. [18]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    20. [20]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

Metrics
  • PDF Downloads(0)
  • Abstract views(250)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return