Citation: Meng-Yin Wang, Ruo-Bei Huang, Jian-Feng Xiong, Jing-Hua Tian, Jian-Feng Li, Zhong-Qun Tian. Critical Role and Recent Development of Separator in Zinc-Air Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230701. doi: 10.3866/PKU.WHXB202307017 shu

Critical Role and Recent Development of Separator in Zinc-Air Batteries

  • Corresponding author: Jing-Hua Tian, jhtian@xmu.edu.cn Jian-Feng Li, Li@xmu.edu.cn
  • Received Date: 11 July 2023
    Revised Date: 18 August 2023
    Accepted Date: 22 August 2023
    Available Online: 28 August 2023

    Fund Project: the Natural Science Foundation of Fujian Province, China 2021J06001the National Key Research and Development Program of China 2020YFB1505800

  • Amidst widespread consumption and the scarcity of non-renewable fossil fuels, the advancement of clean energy sources like solar and wind energy holds immense significance. Nevertheless, these clean energy sources grapple with unstable power supply, underscoring the pressing need for the enhancement of large-scale energy conversion and storage devices. Zinc-air batteries, boasting high energy density, safety, affordability, ease of assembly, eco-friendliness, and abundant zinc metal resources, exhibit promising potential as energy storage and conversion solutions. Nevertheless, various challenges persist in their application, including a limited cycle life and inadequate power density. Throughout the charge and discharge cycles, factors such as the dendritic growth of the zinc negative electrode, the formation of ZnO passivation layers, electrolyte evaporation, and side reactions involving the diffusion of zincate ions to the positive electrode collectively exert influence on the performance of zinc-air batteries. The separator plays a crucial role in zinc-air batteries by isolating the positive and negative electrodes to prevent short circuits, and these aforementioned issues can be resolved through optimization of the design. Until now, the commonly employed separators in zinc-air batteries can be categorized into various types: standard porous separators, anion exchange membranes, polymer gel electrolyte membranes, and composite membranes comprising diverse polymer compositions. Among these, within the context of separator research, porous separators of the polyolefin type are generally utilized in aqueous alkaline zinc-air batteries. Nevertheless, their pronounced hydrophobic nature results in markedly diminished ion conductivity. Conversely, gel-based solid-state or semi-solid-state electrolyte membranes are tailored for flexible electronic device applications. This adaptation ensures that zinc-air batteries uphold favorable electrochemical performance even under deformation conditions, simultaneously addressing the challenge of electrolyte volatilization to a certain degree. Fundamental attributes of the separator, such as pore size, hydrophilicity, and other properties, significantly impact the battery's lifespan and charge/discharge performance. Nevertheless, research on separators and their modifications to enhance zinc-air battery performance, along with the underlying principles, lags behind other aspects of zinc-air battery research, presenting ample room for advancement. This review offers a concise overview of zinc-air battery development, using aqueous alkaline zinc-air batteries as an example to elucidate their operational principles. The objective is to grasp the challenges leading to battery failure in different components and to particularly analyze how separator performance influences overall battery efficiency. This includes aspects such as ion selectivity, ion conductivity, stability, and water retention of the separator. The overview is divided into two main sections: (1) elucidating the fundamental structure and operational principles of the zinc-air battery, and (2) comprehensively exploring the fundamental attributes of the separator and its pivotal function within the zinc-air battery. The research progress and perspective for the development of zinc-air battery separators are also discussed and anticipated.
  • 加载中
    1. [1]

      Liu, J. -N.; Zhao, C. -X.; Wang, J.; Ren, D.; Li, B. -Q.; Zhang, Q. Energy Environ. Sci. 2022, 15, 4542. doi: 10.1039/d2ee02440c  doi: 10.1039/d2ee02440c

    2. [2]

      Harting, K.; Kunz, U.; Turek, T. Z. Phys. Chem. 2012, 226, 151. doi: 10.1524/zpch.2012.0152  doi: 10.1524/zpch.2012.0152

    3. [3]

      Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Adv. Mater. 2017, 29, 1604685. doi: 10.1002/adma.201604685  doi: 10.1002/adma.201604685

    4. [4]

      Zhu, X.; Hu, C.; Amal, R.; Dai, L.; Lu, X. Energy Environ. Sci. 2020, 13, 4536. doi: 10.1039/d0ee02800b  doi: 10.1039/d0ee02800b

    5. [5]

      Park, J. E.; Lim, M. S.; Kim, J. K.; Choi, H. J.; Sung, Y. -E.; Cho, Y. -H. J. Ind. Eng. Chem. 2019, 69, 161. doi: 10.1016/j.jiec.2018.09.023  doi: 10.1016/j.jiec.2018.09.023

    6. [6]

      Qaseem, A.; Chen, F.; Qiu, C.; Mahmoudi, A.; Wu, X.; Wang, X.; Johnston, R. L. Part. Part. Syst. Charact. 2017, 34, 1700097. doi: 10.1002/ppsc.201700097  doi: 10.1002/ppsc.201700097

    7. [7]

      Chakkaravarthy, C.; Waheed, A. K. A.; Udupa, H. V. K. J. Power Sources 1981, 6, 203. doi: 10.1016/0378-7753(81)80027-4  doi: 10.1016/0378-7753(81)80027-4

    8. [8]

      Zheng, Q.; Zhang, Y.; Su, C.; Zhao, L.; Guo, Y. Asia-Pac. J. Chem. Eng. 2022, 17, e2776. doi: 10.1002/apj.2776  doi: 10.1002/apj.2776

    9. [9]

      Liu, H.; Liu, Q.; Wang, Y.; Wang, Y.; Chou, S.; Hu, Z.; Zhang, Z. Chin. Chem. Lett. 2022, 33, 683. doi: 10.1016/j.cclet.2021.07.038  doi: 10.1016/j.cclet.2021.07.038

    10. [10]

      Niu, Y.; Gong, S.; Liu, X.; Xu, C.; Xu, M.; Sun, S. -G.; Chen, Z. eScience 2022, 2, 546. doi: 10.1016/j.esci.2022.05.001  doi: 10.1016/j.esci.2022.05.001

    11. [11]

      Dong, F.; Wu, M.; Chen, Z.; Liu, X.; Zhang, G.; Qiao, J.; Sun, S. Nano-Micro Lett. 2022, 14, 36. doi: 10.1007/s40820-021-00768-3  doi: 10.1007/s40820-021-00768-3

    12. [12]

      Zhang, X. R.; Xu, Y. F.; Shen, S. Y.; Chen, Y.; Huang, L.; Li, J. T.; Sun, S. G. Acta Phys. -Chim. Sin. 2017, 33, 2237.  doi: 10.3866/PKU.WHXB201705231

    13. [13]

      Xiao, Y.; Pei, Y.; Hu, Y. F.; Ma, R. G.; Wang, D. Y.; Wang, J. C. Acta Phys. -Chim. Sin. 2021, 37, 2009051.  doi: 10.3866/PKU.WHXB202009051

    14. [14]

      Prakoso, B.; Mahbub, M. A. A.; Yilmaz, M.; Khoiruddin; Wenten, I. G.; Handoko, A. D.; Sumboja, A. Chemnanomat 2021, 7, 354. doi: 10.1002/cnma.202000672  doi: 10.1002/cnma.202000672

    15. [15]

      Zhao, Z.; Fan, X.; Ding, J.; Hu, W.; Zhong, C.; Lu, J. ACS Energy Lett. 2019, 4, 2259. doi: 10.1021/acsenergylett.9b01541  doi: 10.1021/acsenergylett.9b01541

    16. [16]

      Jeong, B. J.; Jo, Y. N. Appl. Sci. -Basel 2021, 11, 11675. doi: 10.3390/app112411675  doi: 10.3390/app112411675

    17. [17]

      Chen, C. -Y.; Matsumoto, K.; Kubota, K.; Hagiwara, R.; Xu, Q. Adv. Energy Mater. 2019, 9, 1900196. doi: 10.1002/aenm.201900196  doi: 10.1002/aenm.201900196

    18. [18]

      Thomas, S.; Cole, I. S.; Sridhar, M.; Birbilis, N. Electrochim. Acta 2013, 97, 192. doi: 10.1016/j.electacta.2013.03.008  doi: 10.1016/j.electacta.2013.03.008

    19. [19]

      Lee, S. H.; Ryu, K. S. Bull. Korean Chem. Soc. 2017, 38, 523. doi: 10.1002/bkcs.11149  doi: 10.1002/bkcs.11149

    20. [20]

      Kim, H. S.; Jo, Y. N.; Lee, W. J.; Kim, K. J.; Lee, C. W. Electroanalysis 2015, 27, 517. doi: 10.1002/elan.201400457  doi: 10.1002/elan.201400457

    21. [21]

      Clark, S.; Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Blazquez, J. A.; Tolchard, J. R.; Jusys, Z.; Horstmann, B. Adv. Energy Mater. 2020, 10, 1903470. doi: 10.1002/aenm.201903470  doi: 10.1002/aenm.201903470

    22. [22]

      Ingale, P.; Sakthivel, M.; Drillet, J. F. J. Electrochem. Soc. 2017, 164, H5224. doi: 10.1149/2.0351708jes  doi: 10.1149/2.0351708jes

    23. [23]

      Dai, G.; Lu, L.; Shim, J.; Lee, H. T. Korean Hydrogen New Energ. Soc. 2021, 32, 401. doi: 10.7316/KHNES.2021.32.5.401  doi: 10.7316/KHNES.2021.32.5.401

    24. [24]

      Sumboja, A.; Ge, X.; Zheng, G.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. J. Power Sources 2016, 332, 330. doi: 10.1016/j.jpowsour.2016.09.142  doi: 10.1016/j.jpowsour.2016.09.142

    25. [25]

      Goh, F. W. T.; Liu, Z.; Hor, T. S. A.; Zhang, J.; Ge, X.; Zong, Y.; Yu, A.; Khoo, W. J. Electrochem. Soc. 2014, 161, A2080. doi: 10.1149/2.0311414jes  doi: 10.1149/2.0311414jes

    26. [26]

      Han, J. W.; Jo, Y. N. Kor. J. Mater. Res. 2019, 29, 798. doi: 10.3740/mrsk.2019.29.12.798  doi: 10.3740/mrsk.2019.29.12.798

    27. [27]

      Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Blazquez, J. A.; Grande, H. -J. Energy Sci. Eng. 2018, 6, 174. doi: 10.1002/ese3.191  doi: 10.1002/ese3.191

    28. [28]

      Mainar, A. R.; Leonet, O.; Bengoechea, M.; Boyano, I.; de Meatza, I.; Kvasha, A.; Guerfi, A.; Alberto Blazquez, J. Int. J. Energy Res. 2016, 40, 1032. doi: 10.1002/er.3499  doi: 10.1002/er.3499

    29. [29]

      Yang, D.; Chen, D.; Jiang, Y.; Ang, E. H.; Feng, Y.; Rui, X.; Yu, Y. Carbon Energy 2021, 3, 50. doi: 10.1002/cey2.88  doi: 10.1002/cey2.88

    30. [30]

      Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Z. Energy Environ. Sci. 2017, 10, 2056. doi: 10.1039/c7ee01913k  doi: 10.1039/c7ee01913k

    31. [31]

      Liu, Q.; Liu, R.; He, C.; Xia, C.; Guo, W.; Xu, Z. -L.; Xia, B. Y. eScience 2022, 2, 453. doi: 10.1016/j.esci.2022.08.004  doi: 10.1016/j.esci.2022.08.004

    32. [32]

      Tsehaye, M. T.; Alloin, F.; Iojoiu, C.; Tufa, R. A.; Aili, D.; Fischer, P.; Velizarov, S. J. Power Sources 2020, 475, 228689. doi: 10.1016/j.jpowsour.2020.228689  doi: 10.1016/j.jpowsour.2020.228689

    33. [33]

      Zhu, A. L.; Wilkinson, D. P.; Zhang, X.; Xing, Y.; Rozhin, A. G.; Kulinich, S. A. J. Energy Storage 2016, 8, 35. doi: 10.1016/j.est.2016.09.007  doi: 10.1016/j.est.2016.09.007

    34. [34]

      Hwang, H. J.; Chi, W. S.; Kwon, O.; Lee, J. G.; Kim, J. H.; Shul, Y. -G. ACS Appl. Mater. Interfaces 2016, 8, 26298. doi: 10.1021/acsami.6b07841  doi: 10.1021/acsami.6b07841

    35. [35]

      Zhao, C. -X.; Yu, L.; Liu, J. -N.; Wang, J.; Yao, N.; Li, X. -Y.; Chen, X.; Li, B. -Q.; Zhang, Q. Angew. Chem. -Int. Ed. 2022, 61, e202208042. doi: 10.1002/anie.202208042  doi: 10.1002/anie.202208042

    36. [36]

      Zhao, C. -X.; Liu, J. -N.; Yao, N.; Wang, J.; Ren, D.; Chen, X.; Li, B. -Q.; Zhang, Q. Angew. Chem. -Int. Ed. 2021, 60, 15281. doi: 10.1002/anie.202104171  doi: 10.1002/anie.202104171

    37. [37]

      Sangeetha, T.; Chen, P. -T.; Yan, W. -M.; Huang, K. D. Energy 2020, 197, 117181. doi: 10.1016/j.energy.2020.117181  doi: 10.1016/j.energy.2020.117181

    38. [38]

      Zhong, Y.; Liu, B.; Zhao, Z.; Shen, Y.; Liu, X.; Zhong, C. Energies 2021, 14, 2607. doi: 10.3390/en14092607  doi: 10.3390/en14092607

    39. [39]

      Lu, C. -T.; Zhu, Z. -Y.; Chen, S. -W.; Chang, Y. -L.; Hsueh, K. -L. Batteries-Basel 2022, 8, 92. doi: 10.3390/batteries8080092  doi: 10.3390/batteries8080092

    40. [40]

      Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Kvasha, A.; de Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z.; Alberto Blazquez, J. J. Energy Storage 2018, 15, 304. doi: 10.1016/j.est.2017.12.004  doi: 10.1016/j.est.2017.12.004

    41. [41]

      Zhu, Y.; Yue, K.; Xia, C.; Zaman, S.; Yang, H.; Wang, X.; Yan, Y.; Xia, B. Y. Nano-Micro Lett. 2021, 13, 137. doi: 10.1007/s40820-021-00669-5  doi: 10.1007/s40820-021-00669-5

    42. [42]

      Yao, Z. -C.; Tang, T.; Hu, J. -S.; Wan, L. -J. Energy Fuels 2021, 35, 6380. doi: 10.1021/acs.energyfuels.1c00275  doi: 10.1021/acs.energyfuels.1c00275

    43. [43]

      Abbasi, A.; Xu, Y.; Khezri, R.; Etesami, M.; Lin, C.; Kheawhom, S.; Lu, Y. Mater. Today Sustain. 2022, 18, 100126. doi: 10.1016/j.mtsust.2022.100126  doi: 10.1016/j.mtsust.2022.100126

    44. [44]

      Leong, K. W.; Wang, Y.; Ni, M.; Pan, W.; Luo, S.; Leung, D. Y. C. Renew. Sust. Energ. Rev. 2022, 154, 111771. doi: 10.1016/j.rser.2021.111771  doi: 10.1016/j.rser.2021.111771

    45. [45]

      Chen, X.; Zhou, Z.; Karahan, H. E.; Shao, Q.; Wei, L.; Chen, Y. Small 2018, 14, 1801929. doi: 10.1002/smll.201801929  doi: 10.1002/smll.201801929

    46. [46]

      Marcus, K.; Liang, K.; Niu, W.; Yang, Y. J. Phys. Chem. Lett. 2018, 9, 2746. doi: 10.1021/acs.jpclett.8b00925  doi: 10.1021/acs.jpclett.8b00925

    47. [47]

      Kim, H. -W.; Lim, J. -M.; Lee, H. -J.; Eom, S. -W.; Hong, Y. T.; Lee, S. -Y. J. Mater. Chem. A 2016, 4, 3711. doi: 10.1039/c5ta09576j  doi: 10.1039/c5ta09576j

    48. [48]

      Thuy Nguyen Thanh, T.; Chung, H. -J.; Ivey, D. G. Electrochim. Acta 2019, 327, 135021. doi: 10.1016/j.electacta.2019.135021  doi: 10.1016/j.electacta.2019.135021

    49. [49]

      Bonnick, P.; Dahn, J. R. J. Electrochem. Soc. 2012, 159, A981. doi: 10.1149/2.023207jes  doi: 10.1149/2.023207jes

    50. [50]

      Saputra, H.; Othman, R.; Sutjipto, A. G. E.; Muhida, R. J. Membr. Sci. 2011, 367, 152. doi: 10.1016/j.memsci.2010.10.061  doi: 10.1016/j.memsci.2010.10.061

    51. [51]

      Xu, N.; Zhang, Y.; Wang, M.; Fan, X.; Zhang, T.; Peng, L.; Zhou, X. -D.; Qiao, J. Nano Energy 2019, 65, 104021. doi: 10.1016/j.nanoen.2019.104021  doi: 10.1016/j.nanoen.2019.104021

    52. [52]

      Wang, Q.; Feng, Q.; Lei, Y.; Tang, S.; Xu, L.; Xiong, Y.; Fang, G.; Wang, Y.; Yang, P.; Liu, J.; Liu, W.; Xiong, X. Nat. Commun. 2022, 13, 3689. doi: 10.1038/s41467-022-31383-4  doi: 10.1038/s41467-022-31383-4

    53. [53]

      Sankaralingam, R. K.; Seshadri, S.; Sunarso, J.; Bhatt, A. I.; Kapoor, A. In PVA-Based KOH Polymer Gel Electrolyte as a Membrane Separator for Zinc-Air Flow Battery, 1st International Conference on Energy Materials (ICEM), Xiamen Univ, Electr Network, Nov 05–08, 2022; Wee-Jun Ong, Ka Lun Wong, Eds.; Elsevier: Amsterdam, 2021; pp. 1649–1654.

    54. [54]

      Yang, C. C.; Lin, S. J. J. Power Sources 2002, 112, 497. doi: 10.1016/s0378-7753(02)00438-x  doi: 10.1016/s0378-7753(02)00438-x

    55. [55]

      Xu, M.; Dou, H.; Zhang, Z.; Zheng, Y.; Ren, B.; Ma, Q.; Wen, G.; Luo, D.; Yu, A.; Zhang, L.; et al. Angew. Chem. -Int. Ed. 2022, 61, e202117703. doi: 10.1002/anie.202117703  doi: 10.1002/anie.202117703

    56. [56]

      Arora, P.; Zhang, Z. J. Chem. Rev. 2004, 104, 4419. doi: 10.1021/cr020738u  doi: 10.1021/cr020738u

    57. [57]

      Pleha, D.; Dvorak, P.; Kunovjanek, M.; Musil, M.; Cech, O. In Battery Separators, International Meeting on Advanced Batteries, Accumulators and Fuel Cells-12 (ABAF-12), Brno Univ Technol, Brno, Czech Republic, Sep. 11–14, 2012; Vondrak, J (Vondrak, J); Sedlarikova, M (Sedlarikova, M); Vanysek, P (Vanysek, P), Eds.; The Electrochemical Society: Pennington, 2011; pp. 153–158.

    58. [58]

      Ma, L.; Chen, S.; Wang, D.; Yang, Q.; Mo, F.; Liang, G.; Li, N.; Zhang, H.; Zapien, J. A.; Zhi, C. Adv. Energy Mater. 2019, 9, 1803046. doi: 10.1002/aenm.201803046  doi: 10.1002/aenm.201803046

    59. [59]

      Kwon, O.; Hwang, H. J.; Ji, Y.; Jeon, O. S.; Kim, J. P.; Lee, C.; Shul, Y. G. Sci. Rep. 2019, 9, 3175. doi: 10.1038/s41598-019-38552-4  doi: 10.1038/s41598-019-38552-4

    60. [60]

      Plaimer, M.; Breitfuss, C.; Sinz, W.; Heindl, S. F.; Ellersdorfer, C.; Steffan, H.; Wilkening, M.; Hennige, V.; Tatschl, R.; Geier, A.; et al. J. Power Sources 2016, 306, 702. doi: 10.1016/j.jpowsour.2015.12.047  doi: 10.1016/j.jpowsour.2015.12.047

    61. [61]

      Abbasi, A.; Hosseini, S.; Somwangthanaroj, A.; Mohamad, A. A.; Kheawhom, S. Int. J. Mol. Sci. 2019, 20, 3678. doi: 10.3390/ijms20153678  doi: 10.3390/ijms20153678

    62. [62]

      Lee, H. -J.; Lim, J. -M.; Kim, H. -W.; Jeong, S. -H.; Eom, S. -W.; Hong, Y. T.; Lee, S. -Y. J. Membr. Sci. 2016, 499, 526. doi: 10.1016/j.memsci.2015.10.038  doi: 10.1016/j.memsci.2015.10.038

    63. [63]

      Tsehaye, M. T.; Gebreslassie, G. T.; Choi, N. H.; Milian, D.; Martin, V.; Fischer, P.; Tubke, J.; El Kissi, N.; Donten, M. L.; Alloin, F.; et al. Molecules 2021, 26, 4062. doi: 10.3390/molecules26134062  doi: 10.3390/molecules26134062

    64. [64]

      Tsehaye, M. T.; Choi, N. H.; Fischer, P.; Tubke, J.; Planes, E.; Alloin, F.; Iojoiu, C. ACS Appl. Energ. Mater. 2022, 5, 7069. doi: 10.1021/acsaem.2c00697  doi: 10.1021/acsaem.2c00697

    65. [65]

      Dewi, E. L.; Oyaizu, K.; Nishide, H.; Tsuchida, E. J. Power Sources 2003, 115, 149. doi: 10.1016/s0378-7753(02)00650-x  doi: 10.1016/s0378-7753(02)00650-x

    66. [66]

      Nanthapong, S.; Kheawhom, S.; Klaysom, C. Int. J. Mol. Sci. 2020, 21, 7052. doi: 10.3390/ijms21197052  doi: 10.3390/ijms21197052

    67. [67]

      Zuo, Y.; Wang, K.; Zhao, S.; Wei, M.; Liu, X.; Zhang, P.; Xiao, Y.; Xiong, J. Chem. Eng. J. 2022, 430, 132996. doi: 10.1016/j.cej.2021.132996  doi: 10.1016/j.cej.2021.132996

    68. [68]

      Fu, J.; Zhang, J.; Song, X.; Zarrin, H.; Tian, X.; Qiao, J.; Rasen, L.; Li, K.; Chen, Z. Energy Environ. Sci. 2016, 9, 663. doi: 10.1039/c5ee03404c  doi: 10.1039/c5ee03404c

    69. [69]

      Teng, H. -T.; Wang, W. -T.; Han, X. -F.; Hao, X.; Yang, R.; Tian, J. -H. Acta Phys. -Chim. Sin. 2023, 39, 2107017.  doi: 10.3866/PKU.WHXB202107017

    70. [70]

      Wu, G. M.; Lin, S. J.; Yang, C. C. J. Membr. Sci. 2006, 280, 802. doi: 10.1016/j.memsci.2006.02.037  doi: 10.1016/j.memsci.2006.02.037

    71. [71]

      Zhang, G.; Cai, X.; Li, C.; Yao, J.; Tian, Z.; Zhang, F.; Liu, Y.; Liu, W.; Zhang, X. Int. J. Biol. Macromol. 2022, 221, 446. doi: 10.1016/j.ijbiomac.2022.09.005  doi: 10.1016/j.ijbiomac.2022.09.005

    72. [72]

      Miao, H.; Chen, B.; Li, S.; Wu, X.; Wang, Q.; Zhang, C.; Sun, Z.; Li, H. J. Power Sources 2020, 450, 227653. doi: 10.1016/j.jpowsour.2019.227653  doi: 10.1016/j.jpowsour.2019.227653

    73. [73]

      Wu, G. M.; Lin, S. J.; You, J. H.; Yang, C. C. Mater. Chem. Phys. 2008, 112, 798. doi: 10.1016/j.matchemphys.2008.06.058  doi: 10.1016/j.matchemphys.2008.06.058

    74. [74]

      Zhang, Y.; Li, C.; Cai, X.; Yao, J.; Li, M.; Zhang, X.; Liu, Q. Electrochim. Acta 2016, 220, 635. doi: 10.1016/j.electacta.2016.10.103  doi: 10.1016/j.electacta.2016.10.103

    75. [75]

      Wang, M.; Xu, N.; Fu, J.; Liu, Y.; Qiao, J. J. Mater. Chem. A 2019, 7, 11257. doi: 10.1039/c9ta02314c  doi: 10.1039/c9ta02314c

    76. [76]

      Cai, X.; Zhang, Y.; Li, C.; Zhang, G.; Wang, X.; Zhang, X.; Wang, Q.; Wang, F. Membranes. 2021, 11, 224. doi: 10.3390/membranes11030224  doi: 10.3390/membranes11030224

    77. [77]

      Liu, X.; Fan, X.; Liu, B.; Ding, J.; Deng, Y.; Han, X.; Zhong, C.; Hu, W. Adv. Mater. . 2021, 33, 2006461. doi: 10.1002/adma.202006461  doi: 10.1002/adma.202006461

    78. [78]

      Singh, G.; Kumar, M.; Thomas, T. S.; Nagaiah, T. C.; Mandal, D. ACS Appl. Energ. Mater. 2021, 4, 14689. doi: 10.1021/acsaem.1c03318  doi: 10.1021/acsaem.1c03318

    79. [79]

      Sapkota, P.; Kim, H. J. Ind. Eng. Chem. 2010, 16, 39. doi: 10.1016/j.jiec.2010.01.024  doi: 10.1016/j.jiec.2010.01.024

    80. [80]

      You, X.; Qiao, C.; Peng, D.; Liu, W.; Li, C.; Zhao, H.; Qi, H.; Cai, X.; Shao, Y.; Shi, X. Polymers 2021, 13, 9. doi: 10.3390/polym13010009  doi: 10.3390/polym13010009

    81. [81]

      Zhao, N.; Wu, F.; Xing, Y.; Qu, W.; Chen, N.; Shang, Y.; Yan, M.; Li, Y.; Li, L.; Chen, R. ACS Appl. Mater. Interfaces 2019, 11, 15537. doi: 10.1021/acsami.9b00758  doi: 10.1021/acsami.9b00758

    82. [82]

      Song, Z.; Liu, X.; Ding, J.; Liu, J.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. ACS Appl. Mater. Interfaces 2022, 14, 49801. doi: 10.1021/acsami.2c14470  doi: 10.1021/acsami.2c14470

    83. [83]

      Yang, C. C.; Lin, S. J. J. Appl. Electrochem. 2003, 33, 777. doi: 10.1023/a:1025514620869  doi: 10.1023/a:1025514620869

    84. [84]

      Fan, X.; Liu, J.; Song, Z.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. Nano Energy 2019, 56, 454. doi: 10.1016/j.nanoen.2018.11.057  doi: 10.1016/j.nanoen.2018.11.057

    85. [85]

      Zuo, Y.; Zhang, W.; Wei, M.; Zhang, P.; Zhao, S.; Pei, P.; Qiu, L.; Wang, H.; Meng, Z.; Wang, K. Energy Storage Mater. 2022, 53, 136. doi: 10.1016/j.ensm.2022.08.047  doi: 10.1016/j.ensm.2022.08.047

    86. [86]

      Song, Z.; Ding, J.; Liu, B.; Liu, X.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Adv. Mater. 2020, 32, 1908127. doi: 10.1002/adma.201908127  doi: 10.1002/adma.201908127

    87. [87]

      Zhang, P.; Wang, K.; Zuo, Y.; Wei, M.; Wang, H.; Chen, Z.; Shang, N.; Pei, P. ACS Appl. Mater. Interfaces 2022, 14, 49109. doi: 10.1021/acsami.2c13625  doi: 10.1021/acsami.2c13625

    88. [88]

      Li, M.; Liu, B.; Fan, X.; Liu, X.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. ACS Appl. Mater. Interfaces 2019, 11, 28909. doi: 10.1021/acsami.9b09086  doi: 10.1021/acsami.9b09086

    89. [89]

      Liu, Q.; Xia, C.; He, C.; Guo, W.; Wu, Z. P.; Li, Z.; Zhao, Q.; Xia, B. Y. Angew. Chem. -Int. Ed. 2022, 61, e202210567. doi: 10.1002/anie.202210567  doi: 10.1002/anie.202210567

    90. [90]

      Park, J.; Park, M.; Nam, G.; Lee, J. -S.; Cho, J. Adv. Mater. 2015, 27, 1396. doi: 10.1002/adma.201404639  doi: 10.1002/adma.201404639

    91. [91]

      Gu, C.; Xie, X. -Q.; Liang, Y.; Li, J.; Wang, H.; Wang, K.; Liu, J.; Wang, M.; Zhang, Y.; Li, M.; et al. Energy Environ. Sci. 2021, 14, 4451. doi: 10.1039/d1ee01134k  doi: 10.1039/d1ee01134k

    92. [92]

      Sun, N.; Lu, F.; Yu, Y.; Su, L.; Gao, X.; Zheng, L. ACS Appl. Mater. Interfaces 2020, 12, 11778. doi: 10.1021/acsami.0c00325  doi: 10.1021/acsami.0c00325

  • 加载中
    1. [1]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    5. [5]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    9. [9]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    15. [15]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    16. [16]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    18. [18]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    19. [19]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(2)
  • Abstract views(1045)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return