Citation: Shuang Cao, Bo Zhong, Chuanbiao Bie, Bei Cheng, Feiyan Xu. Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230701. doi: 10.3866/PKU.WHXB202307016 shu

Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction

  • Corresponding author: Feiyan Xu, xufeiyan@cug.edu.cn
  • Received Date: 11 July 2023
    Revised Date: 25 July 2023
    Accepted Date: 25 July 2023
    Available Online: 31 July 2023

    Fund Project: the National Key Research and Development Program of China 2022YFB3803600the National Key Research and Development Program of China 2022YFE0115900National Natural Science Foundation of China 52003213National Natural Science Foundation of China 22238009National Natural Science Foundation of China 22261142666National Natural Science Foundation of China 52073223National Natural Science Foundation of China 22278324National Natural Science Foundation of China 51932007the Natural Science Foundation of Hubei Province of China 2022CFA001

  • Developing novel nanostructures to enhance the efficiency of solar-to-chemical conversion through integrated photocatalytic hydrogen (H2) evolution and organic transformation holds great promise in addressing pressing energy and environmental crises. Ternary metal sulfides have garnered considerable attention in photocatalytic H2 production due to their tunable bandgap and excellent visible light response. Among them, Zn0.5Cd0.5S stands out as a reduction photocatalyst with a narrow bandgap, a high conduction band level, and excellent resistance to photocorrosion. However, unitary Zn0.5Cd0.5S suffers from a high recombination rate of photogenerated electron/hole pairs, resulting in only a small fraction of charge carriers being involved in the photoreactions, leading to a low quantum efficiency that falls short of practical demand. WO3, a typical oxidation photocatalyst with a lower valence band position and strong oxidization ability, is an ideal candidate for constructing an S-scheme heterojunction with Zn0.5Cd0.5S. Herein, a core-shell structured WO3/Zn0.5Cd0.5S heterojunction with Zn0.5Cd0.5S nanosheets vertically growing out of WO3 nanofibers is fabricated through electrospinning and hydrothermal methods. The distinct disparity in work functions leads to the transfer of electrons from Zn0.5Cd0.5S to WO3 upon contact, creating an interfacial electric field (IEF) and simultaneously bending the energy bands at the interface. As a consequence of IEF, bent energy bands, and coulomb attraction, the photogenerated electrons in the conduction band of WO3 migrate to the valence band of Zn0.5Cd0.5S and recombine with its photoinduced holes, signifying the formation of an S-scheme heterojunction between WO3 and Zn0.5Cd0.5S and enabling efficient separation of powerful charge carriers, as evidenced by in situ irradiated X-ray photoelectron spectroscopy, electron paramagnetic resonance, and time-resolved fluorescence spectroscopy analyses. Benefiting from the unique S-scheme photocatalytic mechanism, along with the effective chemisorption and activation of reactants on the catalyst, the optimized WO3/Zn0.5Cd0.5S heterostructures exhibit exceptional photocatalytic performance in H2 production (715 μmol∙g−1∙h−1) and the transformation from lactic acid to pyruvic acid without the need for any noble metal cocatalyst, achieving the full utilization of photoinduced electrons and holes. In situ diffuse reflectance infrared Fourier transform spectroscopy, as well as density functional theory simulations, reveal the photoreaction mechanism of H2 production and organic transformation. This work offers valuable insights into the design and investigation of the mechanism behind novel S-scheme heterojunction photocatalysts, enabling high-performance H2 production and simultaneous organic transformation.
  • 加载中
    1. [1]

      Domaschke, M.; Zhou, X.; Wergen, L.; Romeis, S.; Miehlich, M. E.; Meyer, K.; Peukert, W.; Schmuki, P. ACS Catal. 2019, 9, 3627. doi: 10.1021/acscatal.9b00578  doi: 10.1021/acscatal.9b00578

    2. [2]

      Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu, H.; Li, H.; Li, Y.; et al. Appl. Catal. B 2019, 248, 84. doi: 10.1016/j.apcatb.2019.02.020  doi: 10.1016/j.apcatb.2019.02.020

    3. [3]

      Tuna Genç, M.; Sarilmaz, A.; Dogan, S.; Aksoy Çekceoğlu, İ.; Ozen, A.; Aslan, E.; Saner Okan, B.; Jaafar, J.; Ozel, F.; Ersoz, M.; et al. Int. J. Hydrog. Energy 2023, 38, 253. doi: 10.1016/j.ijhydene.2023.04.185  doi: 10.1016/j.ijhydene.2023.04.185

    4. [4]

      Lin, K.; Wang, Z.; Hu, Z.; Luo, P.; Yang, X.; Zhang, X.; Rafiq, M.; Huang, F.; Cao, Y. J. Mater. Chem. A 2019, 7, 19087. doi: 10.1039/c9ta06219j  doi: 10.1039/c9ta06219j

    5. [5]

      Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016  doi: 10.1016/j.jmst.2021.10.016

    6. [6]

      Gao, R.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42, 15. doi: 10.1016/s1872-2067(20)63614-2  doi: 10.1016/s1872-2067(20)63614-2

    7. [7]

      Lei, Y.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Hoong Ng, K.; Lai, Y. Chem. Eng. J. 2021, 425, 131478. doi: 10.1016/j.cej.2021.131478  doi: 10.1016/j.cej.2021.131478

    8. [8]

      Liu, Y.; Sun, Z.; Hu, Y. H. Chem. Eng. J. 2021, 409, 128250. doi: 10.1016/j.cej.2020.128250  doi: 10.1016/j.cej.2020.128250

    9. [9]

      Wageh, S.; Al-Ghamdi, A. A.; Al-Hartomy, O. A.; Alotaibi, M. F.; Wang, L. Chin. J. Catal. 2022, 43, 586. doi: 10.1016/s1872-2067(21)63925-6  doi: 10.1016/s1872-2067(21)63925-6

    10. [10]

      Wageh, S.; Al-Ghamdi, A. A.; Xu, Q. Acta Phys. -Chim. Sin. 2022, 38, 2202001. doi: 10.3866/PKU.WHXB202202001  doi: 10.3866/PKU.WHXB202202001

    11. [11]

      Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q. Chin. J. Catal. 2022, 43, 2720. doi: 10.1016/S1872-2067(22)64133-0  doi: 10.1016/S1872-2067(22)64133-0

    12. [12]

      Lin, S.; Zhang, N.; Wang, F.; Lei, J.; Zhou, L.; Liu, Y.; Zhang, J. ACS Sustain. Chem. Eng. 2020, 9, 481. doi: 10.1021/acssuschemeng.0c07753  doi: 10.1021/acssuschemeng.0c07753

    13. [13]

      Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci. Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034  doi: 10.1016/j.jmst.2020.03.034

    14. [14]

      Zhen, W.; Ning, X.; Yang, B.; Wu, Y.; Li, Z.; Lu, G. Appl. Catal. B 2018, 221, 243. doi: 10.1016/j.apcatb.2017.09.024  doi: 10.1016/j.apcatb.2017.09.024

    15. [15]

      Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2108475. doi: 10.1002/adma.202108475  doi: 10.1002/adma.202108475

    16. [16]

      Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174. doi: 10.1039/d2ta05181h  doi: 10.1039/d2ta05181h

    17. [17]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    18. [18]

      Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi: 10.1002/anie.202304559  doi: 10.1002/anie.202304559

    19. [19]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028. doi: 10.3866/PKU.WHXB202108028  doi: 10.3866/PKU.WHXB202108028

    20. [20]

      Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022, 38, 2110049. doi: 10.3866/PKU.WHXB202110049  doi: 10.3866/PKU.WHXB202110049

    21. [21]

      Liu, K.; Peng, L.; Zhen, P.; Chen, L.; Song, S.; Garcia, H.; Sun, C. J. Phys. Chem. C 2021, 125, 14656. doi: 10.1021/acs.jpcc.1c03535  doi: 10.1021/acs.jpcc.1c03535

    22. [22]

      Wang, K.; Li, S.; Wang, G.; Li, Y.; Li, Y.; Jin, Z. Int. J. Energy Res. 2022, 46, 19508. doi: 10.1002/er.8522  doi: 10.1002/er.8522

    23. [23]

      Zou, Y.; Guo, C.; Cao, X.; Chen, T.; Kou, Y.; Zhang, L.; Wang, T.; Akram, N.; Wang, J. Int. J. Hydrog. Energy 2022, 47, 25289. doi: 10.1016/j.ijhydene.2022.05.251  doi: 10.1016/j.ijhydene.2022.05.251

    24. [24]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    25. [25]

      Xia, Y.; Zhu, B.; Li, L.; Ho, W.; Wu, J.; Chen, H.; Yu, J. Small 2023, 19, 2301928. doi: 10.1002/smll.202301928  doi: 10.1002/smll.202301928

    26. [26]

      Zhang, J.; Le, Y.; Zhang, Y. J. Mater. Sci. Technol. 2023, 142, 121. doi: 10.1016/j.jmst.2022.11.001  doi: 10.1016/j.jmst.2022.11.001

    27. [27]

      Cao, B.; Wan, S.; Wang, Y.; Guo, H.; Ou, M.; Zhong, Q. J. Colloid Interface Sci. 2022, 605, 311. doi: 10.1016/j.jcis.2021.07.113  doi: 10.1016/j.jcis.2021.07.113

    28. [28]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6  doi: 10.1016/s1872-2067(19)63382-6

    29. [29]

      Huang, D.; Wen, M.; Zhou, C.; Li, Z.; Cheng, M.; Chen, S.; Xue, W.; Lei, L.; Yang, Y.; Xiong, W.; Wang, W. Appl. Catal. B 2020, 267, 118651. doi: 10.1016/j.apcatb.2020.118651  doi: 10.1016/j.apcatb.2020.118651

    30. [30]

      Li, H.; Hao, X.; Liu, Y.; Li, Y.; Jin, Z. J. Colloid Interface Sci. 2020, 572, 62. doi: 10.1016/j.jcis.2020.03.052  doi: 10.1016/j.jcis.2020.03.052

    31. [31]

      Ye, H. -F.; Shi, R.; Yang, X.; Fu, W. -F.; Chen, Y. Appl. Catal. B 2018, 233, 70. doi: 10.1016/j.apcatb.2018.03.060  doi: 10.1016/j.apcatb.2018.03.060

    32. [32]

      Cai, M.; Liu, Y.; Dong, K.; Wang, C.; Li, S. J. Colloid Interface Sci. 2023, 629, 276. doi: 10.1016/j.jcis.2022.08.136  doi: 10.1016/j.jcis.2022.08.136

    33. [33]

      Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009  doi: 10.1016/j.jmst.2023.05.009

    34. [34]

      Cai, M.; Wang, C.; Liu, Y.; Yan, R.; Li, S. Sep. Purif. Technol. 2022, 300, 121892. doi: 10.1016/j.seppur.2022.121892  doi: 10.1016/j.seppur.2022.121892

    35. [35]

      Dai, D.; Xu, H.; Ge, L.; Han, C.; Gao, Y.; Li, S.; Lu, Y. Appl. Catal. B 2017, 217, 429. doi: 10.1016/j.apcatb.2017.06.014  doi: 10.1016/j.apcatb.2017.06.014

    36. [36]

      Shao, Z.; He, Y.; Zeng, T.; Yang, Y.; Pu, X.; Ge, B.; Dou, J. J. Alloy. Compd. 2018, 769, 889. doi: 10.1016/j.jallcom.2018.08.064  doi: 10.1016/j.jallcom.2018.08.064

    37. [37]

      Wang, P.; Zhan, S.; Wang, H.; Xia, Y.; Hou, Q.; Zhou, Q.; Li, Y.; Kumar, R. R. Appl. Catal. B 2018, 230, 210. doi: 10.1016/j.apcatb.2018.02.043  doi: 10.1016/j.apcatb.2018.02.043

    38. [38]

      Zhang, L.; Zhang, F.; Xue, H.; Gao, J.; Peng, Y.; Song, W.; Ge, L. Chin. J. Catal. 2021, 42, 1677. doi: 10.1016/S1872-2067(21)63791-9  doi: 10.1016/S1872-2067(21)63791-9

    39. [39]

      Bai, J.; Chen, W.; Hao, L.; Shen, R.; Zhang, P.; Li, N.; Li, X. Chem. Eng. J. 2022, 447, 137488. doi: 10.1016/j.cej.2022.137488  doi: 10.1016/j.cej.2022.137488

    40. [40]

      Bai, J.; Shen, R.; Chen, W.; Xie, J.; Zhang, P.; Jiang, Z.; Li, X. Chem. Eng. J. 2022, 429, 132587. doi: 10.1016/j.cej.2021.132587  doi: 10.1016/j.cej.2021.132587

    41. [41]

      Wang, Y.; Ying, M.; Zhang, M.; Ren, X.; Kim, I. S. Macromol. Mater. Eng. 2021, 306, 2100587. doi: 10.1002/mame.202100587  doi: 10.1002/mame.202100587

    42. [42]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    43. [43]

      Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015  doi: 10.1016/j.jmat.2021.02.015

    44. [44]

      Dai, Z.; Zhen, Y.; Sun, Y.; Li, L.; Ding, D. Chem. Eng. J. 2021, 415, 129002. doi: 10.1016/j.cej.2021.129002  doi: 10.1016/j.cej.2021.129002

    45. [45]

      Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016  doi: 10.1016/j.jmst.2022.02.016

    46. [46]

      Li, H.; Tao, S.; Wan, S.; Qiu, G.; Long, Q.; Yu, J.; Cao, S. Chin. J. Catal. 2023, 46, 167. doi: 10.1016/S1872-2067(22)64201-3  doi: 10.1016/S1872-2067(22)64201-3

    47. [47]

      Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol. 2022, 122, 231. doi: 10.1016/j.jmst.2022.02.014  doi: 10.1016/j.jmst.2022.02.014

    48. [48]

      Kumar, A.; Khosla, A.; Kumar Sharma, S.; Dhiman, P.; Sharma, G.; Gnanasekaran, L.; Naushad, M.; Stadler, F. J. Fuel 2023, 333, 126267. doi: 10.1016/j.fuel.2022.126267  doi: 10.1016/j.fuel.2022.126267

    49. [49]

      Wang, L.; Bie, C.; Yu, J. Trends in Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    50. [50]

      Xi, Y.; Chen, W.; Dong, W.; Fan, Z.; Wang, K.; Shen, Y.; Tu, G.; Zhong, S.; Bai, S. ACS Appl. Mater. Interfaces 2021, 13, 39491. doi: 10.1021/acsami.1c11233  doi: 10.1021/acsami.1c11233

    51. [51]

      Zhang, B.; Hu, X.; Liu, E.; Fan, J. Chin. J. Catal. 2021, 42, 1519. doi: 10.1016/S1872-2067(20)63765-2  doi: 10.1016/S1872-2067(20)63765-2

    52. [52]

      Wang, X.; Sayed, M.; Ruzimuradov, O.; Zhang, J.; Fan, Y.; Li, X.; Bai, X.; Low, J. Appl. Mater. Today 2022, 29, 101609. doi: 10.1016/j.apmt.2022.101609  doi: 10.1016/j.apmt.2022.101609

    53. [53]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/s1872-2067(22)64106-8  doi: 10.1016/s1872-2067(22)64106-8

    54. [54]

      Dutta, V.; Sharma, S.; Raizada, P.; Thakur, V. K.; Khan, A. A. P.; Saini, V.; Asiri, A. M.; Singh, P. J. Environ. Chem. Eng. 2021, 9, 105018. doi: 10.1016/j.jece.2020.105018  doi: 10.1016/j.jece.2020.105018

    55. [55]

      Xiang, X.; Zhu, B.; Zhang, J.; Jiang, C.; Chen, T.; Yu, H.; Yu, J.; Wang, L. Appl. Catal. B 2023, 324, 122301. doi: 10.1016/j.apcatb.2022.122301  doi: 10.1016/j.apcatb.2022.122301

    56. [56]

      Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S.; Li, Y. Chin. J. Struct. Chem. 2022, 41, 2206006. doi: 10.14102/j.cnki.0254-5861.2022-0124  doi: 10.14102/j.cnki.0254-5861.2022-0124

    57. [57]

      Jiang, J.; Wang, G.; Shao, Y.; Wang, J.; Zhou, S.; Su, Y. Chin. J. Catal. 2022, 43, 329. doi: 10.1016/S1872-2067(21)63889-5  doi: 10.1016/S1872-2067(21)63889-5

    58. [58]

      Wei, Y.; Zhang, Q.; Zhou, Y.; Ma, X.; Wang, L.; Wang, Y.; Sa, R.; Long, J.; Fu, X.; Yuan, R. Chin. J. Catal. 2022, 43, 2665. doi: 10.1016/S1872-2067(22)64124-X  doi: 10.1016/S1872-2067(22)64124-X

    59. [59]

      Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi: 10.1021/acs.jpclett.2c02125  doi: 10.1021/acs.jpclett.2c02125

    60. [60]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    61. [61]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

  • 加载中
    1. [1]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    2. [2]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    4. [4]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    7. [7]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    8. [8]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    9. [9]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    10. [10]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    11. [11]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    14. [14]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    16. [16]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    17. [17]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    18. [18]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    19. [19]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(0)
  • Abstract views(272)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return