Citation: Jingkun Yu, Xue Yong, Ang Cao, Siyu Lu. Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230701. doi: 10.3866/PKU.WHXB202307015 shu

Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity

  • Corresponding author: Xue Yong, x.yong@sheffield.ac.uk Siyu Lu, sylu2013@zzu.edu.cn
  • Received Date: 6 July 2023
    Revised Date: 22 August 2023
    Accepted Date: 23 August 2023
    Available Online: 28 August 2023

    Fund Project: the National Natural Science Foundation of China 51973200the National Natural Science Foundation of China 52122308

  • Designing efficient single-atom catalysts (SACs) with high selectivity for the electrocatalytic reduction of nitrate to ammonia formation is both crucial and challenging. This challenge arises due to the intricate and competitive electronic interactions among intermediates, metal active centers, and coordination environments. In this work, we present a comprehensive investigation detailing how to enhance the activity and selectivity of the electrocatalytic nitrate reduction reaction (NO3RR) by transitioning from single-layer SACs to bilayer SACs (BSACs). This enhancement is achieved through axial dd orbital hybridization, as elucidated by a systematic study of 27 SACs and BSACs utilizing density functional theory (DFT) calculations. Considering potential pathways involving O-terminal, N-terminal, NO-terminal, and NO-dimer configurations, our calculations reveal that among monolayer SAC candidates, Ti-Pc and V-Pc exhibit low limiting potentials (UL) of −0.24 and −0.48 V, respectively. Furthermore, analyses of formation energy, dissolution potential, and ab initio molecular dynamics results demonstrate the robust stability of these catalysts under reaction conditions. In these single-layer transition metal (TM)-Pc complexes, the d-band energy levels and occupation numbers are influenced by dxz/dyz and pz orbital hybridizations. Notably, the presence of axial dz2 orbitals introduces a novel avenue for fine-tuning d-band characteristics and reactivity through dz2dz2 interactions. Building on these insights, the formation of BSACs using Ti-Pc and V-Pc as substrates, facilitated by axial dd orbital hybridization, offers a distinctive approach to modulating the catalytic performance of NO3RR. Significantly, we establish a two-dimensional volcano correlation encompassing the d-band center (εd), dxz + dyz orbital occupation numbers, and UL to describe NO3RR catalytic efficacy. Optimal BSACs should possess concurrent appropriate εd and dxz + dyz occupation numbers. Remarkably, Ti-Mo and Ti-Ta BSACs emerge as exceptional NO3RR catalyst candidates, both displaying a remarkably low UL of −0.13 V. The hybridization between dz2dz2 orbitals heightens charge transfer and structural stability within double-layer metals. The scarcity of contiguous metal sites introduces a substantial energy barrier hindering NO2, NO, and N2 formation, effectively suppressing NO3RR by-products. In summation, this investigation imparts valuable insights into effectively enhancing nitrate reduction on SACs and BSACs, offering valuable guidance for advancing electrocatalyst development.
  • 加载中
    1. [1]

      Kim, H. E.; Kim, J.; Ra, E. C.; Zhang, H.; Jang, Y. J.; Lee, J. S. Angew. Chem. Int. Ed. 2022, 61, e202204117. doi: 10.1002/anie.202204117z  doi: 10.1002/anie.202204117z

    2. [2]

      Chen, F.-Y.; Wu, Z.-Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M.; et al. Nat. Nanotechnol. 2022, 17, 759. doi: 10.1038/s41565-022-01121-4  doi: 10.1038/s41565-022-01121-4

    3. [3]

      Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. Nano Res. Energy 2022, 1, e9120010. doi: 10.26599/NRE.2022.9120010  doi: 10.26599/NRE.2022.9120010

    4. [4]

      Song, W.; Yue, L.; Fan, X.; Luo, Y.; Ying, B.; Sun, S.; Zheng, D.; Liu, Q.; Hamdy, M. S.; Sun, X. Inorg. Chem. Front. 2023, 10, 3489. doi: 10.1039/D3QI00554B  doi: 10.1039/D3QI00554B

    5. [5]

      Li, Z.; Liang, J.; Liu, Q.; Xie, L.; Zhang, L.; Ren, Y.; Yue, L.; Li, N.; Tang, B.; Alshehri, A. A.; et al. Mater. Today Phys. 2022, 23, 100619. doi: 10.1016/j.mtphys.2022.100619  doi: 10.1016/j.mtphys.2022.100619

    6. [6]

      Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wan, G.; Zhang, Y. L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18, 2106961. doi: 10.1002/smll.202106961  doi: 10.1002/smll.202106961

    7. [7]

      Xu, X.; Hu, L.; Li, Z.; Xie, L.; Sun, S.; Zhang, L.; Li, J.; Luo, Y.; Yan, X.; Hamdy, et al. Sustain. Energy Fuels 2022, 6, 4130. doi: 10.1039/D2SE00830K  doi: 10.1039/D2SE00830K

    8. [8]

      Zhao, D.; Ma, C.; Li, J.; Li, R.; Fan, X.; Zhang, L.; Dong, K.; Luo, Y.; Zheng, D.; Sun, S.; et al. Inorg. Chem. Front. 2022, 9, 6412. doi: 10.1039/D2QI01791A  doi: 10.1039/D2QI01791A

    9. [9]

      Lu, X.; Yu, J.; Cai, J.; Zhang, Q.; Yang, S.; Gu, L.; Waterhouse, G. I. N.; Zang, S.-Q.; Yang, B.; Lu, S. Cell Rep. Phys. Sci. 2022, 3, 100961. doi: 10.1016/j.xcrp.2022.100961  doi: 10.1016/j.xcrp.2022.100961

    10. [10]

      Cai, J.; Huang, J.; Cao, A.; Wei, Y.; Wang, H.; Li, X.; Jiang, Z.; Waterhouse, G. I. N.; Lu, S.; Zang, S.-Q. Appl. Catal. B Environ. 2023, 328, 122473. doi: 10.1016/j.apcatb.2023.122473  doi: 10.1016/j.apcatb.2023.122473

    11. [11]

      Lin, L.; Li, H.; Wang, Y.; Li, H.; Wei, P.; Nan, B.; Si, R.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2021, 60, 26582. doi: 10.1002/ange.202113135  doi: 10.1002/ange.202113135

    12. [12]

      Wu, M.; Zhang, Y.; Fu, Z.; Lyu, Z.; Li, Q.; Wang, J. Acta Phys.-Chim. Sin. 2023, 39, 2207007.  doi: 10.3866/PKU.WHXB202207007

    13. [13]

      Shen, T.; Huang, X.; Xi, S.; Li, W.; Sun, S.; Hou, Y. J. Energy Chem. 2022, 68, 184. doi: 10.1016/j.jechem.2021.10.027  doi: 10.1016/j.jechem.2021.10.027

    14. [14]

      Lv, X.; Wei, W.; Zhao, P.; Er, D.; Huang, B.; Dai, Y.; Jacob, T. J. Catal. 2019, 378, 97. doi: 10.1016/j.jcat.2019.08.019  doi: 10.1016/j.jcat.2019.08.019

    15. [15]

      Luo, Y.; Wang, D. Acta Phys.-Chim. Sin. 2023, 39, 2212020.  doi: 10.3866/PKU.WHXB202212020

    16. [16]

      Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. ACS Catal. 2023, 13, 2981. doi: 10.1021/acscatal.2c05992  doi: 10.1021/acscatal.2c05992

    17. [17]

      Hung, S. F.; Xu, A.; Wang, X.; Li, F.; Hsu, S. H.; Li, Y.; Wicks, J.; Cervantes, E. G.; Rasouli, A. S.; Li, Y. C.; et al. Nat. Commun. 2022, 13, 819. doi: 10.1038/s41467-022-28456-9  doi: 10.1038/s41467-022-28456-9

    18. [18]

      Wang, Y.; Liang, Y.; Bo, T.; Meng, S.; Liu, M. J. Phys. Chem. Lett. 2022, 13, 5969. doi: 10.1021/acs.jpclett.2c01381  doi: 10.1021/acs.jpclett.2c01381

    19. [19]

      Li, X.; Chen, T.; Yang, B.; Xiang, Z. Angew. Chem. Int. Ed. 2023, 62, e202215441. doi: 10.1002/ange.202215441  doi: 10.1002/ange.202215441

    20. [20]

      Bai, L.; Hsu, C.-S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. Nat. Energy 2021, 6, 1054. doi: 10.1038/s41560-021-00925-3  doi: 10.1038/s41560-021-00925-3

    21. [21]

      Zhang, Y. X.; Zhang, S.; Huang, H.; Liu, X.; Li, B.; Lee, Y.; Wang, X.; Bai, Y.; Sun, M.; Wu, Y.; et al. J. Am. Chem. Soc. 2023, 145, 4819. doi: 10.1021/jacs.2c13886  doi: 10.1021/jacs.2c13886

    22. [22]

      Hu, R.; Li, Y.; Wang, F.; Shang, J. Nanoscale 2020, 12, 20413. doi: 10.1039/D0NR05202G  doi: 10.1039/D0NR05202G

    23. [23]

      Wu, X.; Wang, Q.; Yang, S.; Zhang, J.; Cheng, Y.; Tang, H.; Ma, L.; Min, X.; Tang, C.; Jiang, S. P.; et al. Energy Environ. Sci. 2022, 15, 1183. doi: 10.1039/D1EE03311E  doi: 10.1039/D1EE03311E

    24. [24]

      Lv, X. S.; Mou, T.; Li, J. W.; Kou, L. Z.; Frauenheim, T. Adv. Funct. Mater. 2022, 32, 2201262. doi: 10.1002/adfm.202201262  doi: 10.1002/adfm.202201262

    25. [25]

      Zhang, K.; Xu, J.; Yan, T.; Jia, L.; Zhang, J.; Shao, C.; Zhang, L.; Han, N.; Li, Y. Adv. Funct. Mater. 2023, 33, 2214062. doi: 10.1002/adfm.202214062  doi: 10.1002/adfm.202214062

    26. [26]

      Wang, T.; Zhou, L.; Xia, S.; Yu, L. J. Phys. Chem. C 2023, 127, 2963. doi: 10.1021/acs.jpcc.2c08319  doi: 10.1021/acs.jpcc.2c08319

    27. [27]

      Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0  doi: 10.1016/0927-0256(96)00008-0

    28. [28]

      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558  doi: 10.1103/PhysRevB.47.558

    29. [29]

      Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B 1999, 59, 7413. doi: 10.1103/PhysRevB.59.7413  doi: 10.1103/PhysRevB.59.7413

    30. [30]

      Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978. doi: 10.1103/PhysRevB.48.4978.2  doi: 10.1103/PhysRevB.48.4978.2

    31. [31]

      Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953  doi: 10.1103/PhysRevB.50.17953

    32. [32]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495  doi: 10.1002/jcc.20495

    33. [33]

      Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188  doi: 10.1103/PhysRevB.13.5188

    34. [34]

      Tang, W.; Sanville, E.; Henkelman, G. J. Phys. Condens. Matter 2009, 21, 084204. doi: 10.1088/0953-8984/21/8/084204  doi: 10.1088/0953-8984/21/8/084204

    35. [35]

      Nosé, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334  doi: 10.1063/1.447334

    36. [36]

      Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. J. Comput. Chem. 2020, 41, 1931. doi: 10.1002/jcc.26353  doi: 10.1002/jcc.26353

    37. [37]

      Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. Comput. Phys. Commun. 2021, 267, 108033. doi: 10.1016/j.cpc.2021.108033  doi: 10.1016/j.cpc.2021.108033

    38. [38]

      Chen, Z. W.; Chen, L. X.; Jiang, M.; Chen, D.; Wang, Z. L.; Yao, X.; Singh, C. V.; Jiang, Q. J. Mater. Chem. A 2020, 8, 15086. doi: 10.1039/D0TA04919K  doi: 10.1039/D0TA04919K

    39. [39]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j  doi: 10.1021/jp047349j

    40. [40]

      Niu, H.; Zhang, Z.; Wang, X.; Wan, X.; Shao, C.; Guo, Y. Adv. Funct. Mater. 2020, 31, 2008533. doi: 10.1002/adfm.202008533  doi: 10.1002/adfm.202008533

    41. [41]

      Hammer, B.; Nørskov, J. K. Adv. Catal. 2000, 45, 71. doi: 10.1016/S0360-0564(02)45013-4  doi: 10.1016/S0360-0564(02)45013-4

    42. [42]

      Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulie, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Isci, U.; Berlinguette, C. P.; et al. Nat. Commun. 2019, 10, 3602. doi: 10.1038/s41467-019-11542-w  doi: 10.1038/s41467-019-11542-w

    43. [43]

      Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, K. ACS Energy Lett. 2018, 3, 1381. doi: 10.1021/acsenergylett.8b00519  doi: 10.1021/acsenergylett.8b00519

    44. [44]

      Han, A.; Wang, B.; Kumar, A.; Qin, Y.; Jin, J.; Wang, X.; Yang, C.; Dong, B.; Jia, Y.; Liu, J.; Sun, X. Small Methods 2019, 3, 1800471. doi: 10.1002/smtd.201800471  doi: 10.1002/smtd.201800471

    45. [45]

      Li, J.; Zhang, L.; Doyle-Davis, K.; Li, R.; Sun, X. Carbon Energy 2020, 2, 488. doi: 10.1002/cey2.74  doi: 10.1002/cey2.74

    46. [46]

      Lv, L.; Shen, Y.; Liu, J.; Meng, X.; Gao, X.; Zhou, M.; Zhang, Y.; Gong, D.; Zheng, Y.; Zhou, Z. J. Phys. Chem. Lett. 2021, 12, 11143. doi: 10.1021/acs.jpclett.1c03005  doi: 10.1021/acs.jpclett.1c03005

    47. [47]

      Yang, M.; Wang, Z.; Jiao, D.; Li, G.; Cai, Q.; Zhao, J. Appl. Surf. Sci. 2022, 592, 153213. doi: 10.1016/j.apsusc.2022.153213  doi: 10.1016/j.apsusc.2022.153213

    48. [48]

      Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D. H.; Tan, C. S.; et al. J. Am. Chem. Soc. 2020, 142, 5702. doi: 10.1021/jacs.9b13347  doi: 10.1021/jacs.9b13347

    49. [49]

      Hu, T.; Wang, C.; Wang, M.; Li, C. M.; Guo, C. ACS Catal. 2021, 11, 14417. doi: 10.1021/acscatal.1c03666  doi: 10.1021/acscatal.1c03666

    50. [50]

      Hu, T.; Wang, M.; Guo, C.; Li, C. M. J. Mater. Chem. A 2022, 10, 8923. doi: 10.1039/D2TA00470D  doi: 10.1039/D2TA00470D

    51. [51]

      Niu, H.; Wang, X.; Shao, C.; Liu, Y.; Zhang, Z.; Guo, Y. J. Mater. Chem. A 2020, 8, 6555. doi: 10.1039/D0TA00794C  doi: 10.1039/D0TA00794C

    52. [52]

      Sathishkumar, N.; Wu, S.; Chen, H. App. Surf. Sci. 2022, 598, 153829. doi: 10.1016/j.apsusc.2022.153829  doi: 10.1016/j.apsusc.2022.153829

    53. [53]

      Liu, J.-X.; Richards, D.; Singh, N.; Goldsmith, B. R. ACS Catal. 2019, 9, 7052. doi: 10.1021/acscatal.9b02179  doi: 10.1021/acscatal.9b02179

  • 加载中
    1. [1]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    4. [4]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    7. [7]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    10. [10]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    11. [11]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    12. [12]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    17. [17]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

Metrics
  • PDF Downloads(1)
  • Abstract views(870)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return