Citation: Xiaofei Liu, He Wang, Li Tao, Weimin Ren, Xiaobing Lu, Wenzhen Zhang. Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230700. doi: 10.3866/PKU.WHXB202307008 shu

Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide

  • Corresponding author: Wenzhen Zhang, zhangwz@dlut.edu.cn
  • Received Date: 3 July 2023
    Revised Date: 27 July 2023
    Accepted Date: 27 July 2023
    Available Online: 3 August 2023

    Fund Project: the National Natural Science Foundation of China 22278054the National Natural Science Foundation of China 21920102006the Fundamental Research Funds for the Central Universities, China DUT22LAB609

  • Carbon dioxide (CO2) serves as a non-toxic, abundant, cheap, and renewable C1 feedstock in synthetic chemistry. The synthesis of high value-added fine chemicals, such as organic carboxylic acids, using CO2, is always a focal point of research. Due to the thermodynamic stability and kinetic inertness of carbon dioxide, traditional carboxylation reactions utilizing CO2 often require harsh reaction conditions. However, organic electrochemical synthesis, which employs electrons as clean reagents to drive the reaction and avoids additional chemical oxidants or reductants, has emerged as a safer, more economical, highly selective, sustainable, and environmentally friendly method for preparing fine chemicals. Electrocarboxylation, which leverages organic electrochemical synthesis to catalytically transform CO2, provides a milder and more efficient route for CO2 utilization. Among these approaches, electrocarboxylation of organic halides or pseudohalides containing C―X bonds with CO2 has been extensively investigated as a means to access value-added carboxylic acids. Phosphates, known for their good leaving group properties, find extensive applications in organic synthesis. Under reductive conditions, the radical anion generated by benzyl phosphate easily dissociates into a benzyl radical and a phosphate anion. Hence, it can serve as an attractive substrate for participating in electrocarboxylation reactions. In this study, we report the highly efficient electrocarboxylation of benzylic phosphate and phosphinate derivatives using CO2 as the carboxyl source. The constant current reaction took place in an undivided cell, employing glassy carbon as the cathode, and magnesium as the sacrificial anode, in a mixed solvent of DMF and THF. Additionally, this mild electrolysis can be carried out under nonsacrificial anode conditions, using cheap carbon felt electrode as both the nonsacrificial anode and cathode and N, N-diisopropylethylamine as an external reductant, therefore provided operationally simple and highly efficient synthetic method toward aryl acetic acids in moderate to good yield. The broad substrate scope, simple operation, facile scalability, and highly efficient transformation of phosphates into high value-added aryl acetic acids under mild conditions demonstrate the potential applicability of this reaction. To gain insight into the possible reaction mechanism, several control experiments were conducted. Isotope-labeling 13CO2 experiment, cyclic voltammetry experiments, radical trapping reactions, and deuterium-labeling experiment indicated that cathodically generated benzylic radical and benzylic anion were key intermediates. Moreover, the single electron reduction of CO2 to CO2•− might also occur during the reaction.
  • 加载中
    1. [1]

      Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. doi: 10.1038/ncomms6933  doi: 10.1038/ncomms6933

    2. [2]

      Jacob, D.; Julien, R. L.; Dmitry, P. Z.; Ruben, M. Chem 2021, 7, 2927. doi: 10.1016/j.chempr.2021.10.016  doi: 10.1016/j.chempr.2021.10.016

    3. [3]

      Cai, S. F.; Li, H. R.; He, L. N. Green Chem. 2021, 23, 9334. doi: 10.1039/d1gc02783b  doi: 10.1039/d1gc02783b

    4. [4]

      Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598. doi: 10.1016/s1872-2067(21)64029-9  doi: 10.1016/s1872-2067(21)64029-9

    5. [5]

      Ye, J. H.; Ju, T.; Huang, H.; Liao, L. L.; Yu, D. G. Acc. Chem. Res. 2021, 54, 2518. doi: 10.1021/acs.accounts.1c00135  doi: 10.1021/acs.accounts.1c00135

    6. [6]

      Yi, Y.; Xi, C. Chin. J. Catal. 2022, 43, 1652. doi: 10.1016/s1872-2067(21)63956-6  doi: 10.1016/s1872-2067(21)63956-6

    7. [7]

      Blobaum, A. L.; Marnett, L. J. J. Biol. Chem. 2007, 282, 16379. doi: 10.1074/jbc.M609883200  doi: 10.1074/jbc.M609883200

    8. [8]

      Senboku, H.; Yoneda, K.; Hara, S. Tetrahedron Lett. 2015, 56, 6772. doi: 10.1016/j.tetlet.2015.10.068  doi: 10.1016/j.tetlet.2015.10.068

    9. [9]

      Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391. doi: 10.1002/chem.201503359  doi: 10.1002/chem.201503359

    10. [10]

      Shao, P.; Wang, S.; Chen, C.; Xi, C. Org. Lett. 2016, 18, 2050. doi: 10.1021/acs.orglett.6b00665  doi: 10.1021/acs.orglett.6b00665

    11. [11]

      Leon, T.; Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1221. doi: 10.1021/ja311045f  doi: 10.1021/ja311045f

    12. [12]

      Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem. Int. Ed. 2016, 55, 5053. doi: 10.1002/anie.201600697  doi: 10.1002/anie.201600697

    13. [13]

      Liao, L. L.; Cao, G. M.; Ye, J. H.; Sun, G. Q.; Zhou, W. J.; Gui, Y. Y.; Yan, S. S.; Shen, G.; Yu, D. G. J. Am. Chem. Soc. 2018, 140, 17338. doi: 10.1021/jacs.8b08792  doi: 10.1021/jacs.8b08792

    14. [14]

      Ran, C. K.; Niu, Y. N.; Song, L.; Wei, M. K.; Cao, Y. F.; Luo, S. P.; Yu, Y. M.; Liao, L. L.; Yu, D. G. ACS Catal. 2022, 12, 18. doi: 10.1021/acscatal.1c04921  doi: 10.1021/acscatal.1c04921

    15. [15]

      Jing, K.; Wei, M. -K.; Yan, S. -S.; Liao, L. -L.; Niu, Y. -N.; Luo, S. -P.; Yu, B.; Yu, D. -G. Chin. J. Catal. 2022, 43, 1667. doi: 10.1016/s1872-2067(21)63859-7  doi: 10.1016/s1872-2067(21)63859-7

    16. [16]

      Yan, S. S.; Liu, S. H.; Chen, L.; Bo, Z. Y.; Jing, K.; Gao, T. Y.; Yu, B.; Lan, Y.; Luo, S. P.; Yu, D. G. Chem 2021, 7, 3099. doi: 10.1016/j.chempr.2021.08.004  doi: 10.1016/j.chempr.2021.08.004

    17. [17]

      Jin, Y.; Toriumi, N.; Iwasawa, N. ChemSusChem 2022, 15, e202200021. doi: 10.1002/cssc.202200021  doi: 10.1002/cssc.202200021

    18. [18]

      Zhang, S.; Chen, W. Q.; Yu, A.; He, L. N. ChemCatChem 2015, 7, 3972. doi: 10.1002/cctc.201500724  doi: 10.1002/cctc.201500724

    19. [19]

      Hang, W.; Li, D.; Zou, S.; Xi, C. J. Org. Chem. 2023, 88, 5007. doi: 10.1021/acs.joc.2c01840  doi: 10.1021/acs.joc.2c01840

    20. [20]

      Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. doi: 10.1021/acs.chemrev.7b00397  doi: 10.1021/acs.chemrev.7b00397

    21. [21]

      Yuan, Y.; Yang, J.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058. doi: 10.1039/d1cs00150g  doi: 10.1039/d1cs00150g

    22. [22]

      Jiao, K. J.; Xing, Y. K.; Yang, Q. L.; Qiu, H.; Mei, T. S. Acc. Chem. Res. 2020, 53, 300. doi: 10.1021/acs.accounts.9b00603  doi: 10.1021/acs.accounts.9b00603

    23. [23]

      Rockl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45. doi: 10.1021/acs.accounts.9b00511  doi: 10.1021/acs.accounts.9b00511

    24. [24]

      Siu, J. C.; Fu, N.; Lin, S. Acc. Chem. Res. 2020, 53, 547. doi: 10.1021/acs.accounts.9b00529  doi: 10.1021/acs.accounts.9b00529

    25. [25]

      Zhu, C.; Ang, N. W. J.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Cent. Sci. 2021, 7, 415. doi: 10.1021/acscentsci.0c01532  doi: 10.1021/acscentsci.0c01532

    26. [26]

      Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50, 7941. doi: 10.1039/d1cs00223f  doi: 10.1039/d1cs00223f

    27. [27]

      Liu, Y.; Li, P.; Wang, Y.; Qiu, Y. Angew. Chem. Int. Ed. 2023, e202306679. doi: 10.1002/anie.202306679  doi: 10.1002/anie.202306679

    28. [28]

      Cheng, X.; Lei, A.; Mei, T. -S.; Xu, H. -C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4, 1120. doi: 10.31635/ccschem.021.202101451  doi: 10.31635/ccschem.021.202101451

    29. [29]

      Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. Acc. Chem. Res. 2020, 53, 72. doi: 10.1021/acs.accounts.9b00539  doi: 10.1021/acs.accounts.9b00539

    30. [30]

      Chang, X.; Zhang, Q.; Guo, C. Angew. Chem. Int. Ed. 2020, 59, 12612. doi: 10.1002/anie.202000016  doi: 10.1002/anie.202000016

    31. [31]

      Senboku, H.; Katayama, A. Curr. Opin. Green Sustain. Chem. 2017, 3, 50. doi: 10.1016/j.cogsc.2016.10.003  doi: 10.1016/j.cogsc.2016.10.003

    32. [32]

      Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F. -E. Green Synth. Catal. 2021, 2, 19. doi: 10.1016/j.gresc.2021.01.009  doi: 10.1016/j.gresc.2021.01.009

    33. [33]

      Liu, X. -F.; Zhang, K.; Tao, L.; Lu, X. -B.; Zhang, W. -Z. Green Chem. Eng. 2022, 3, 125. doi: 10.1016/j.gce.2021.12.001  doi: 10.1016/j.gce.2021.12.001

    34. [34]

      Zhang, K.; Liu, X. F.; Ren, W. M.; Lu, X. B.; Zhang, W. Z. Chem. Eur. J. 2023, 29, e202204073. doi: 10.1002/chem.202204073  doi: 10.1002/chem.202204073

    35. [35]

      Wang, S.; Feng, T.; Wang, Y.; Qiu, Y. Chem. Asian J. 2022, 17, e202200543. doi: 10.1002/asia.202200543  doi: 10.1002/asia.202200543

    36. [36]

      Wang, Y.; Zhao, Z.; Pan, D.; Wang, S.; Jia, K.; Ma, D.; Yang, G.; Xue, X. S.; Qiu, Y. Angew. Chem. Int. Ed. 2022, 61, e202210201. doi: 10.1002/anie.202210201  doi: 10.1002/anie.202210201

    37. [37]

      Sun, G. Q.; Zhang, W.; Liao, L. L.; Li, L.; Nie, Z. H.; Wu, J. G.; Zhang, Z.; Yu, D. G. Nat. Commun. 2021, 12, 7086. doi: 10.1038/s41467-021-27437-8  doi: 10.1038/s41467-021-27437-8

    38. [38]

      Tummanapalli, S.; Gulipalli, K. C.; Endoori, S.; Bodige, S.; Kumar Pommidi, A.; Medaboina, S.; Rejinthala, S.; Choppadandi, S.; Boya, R.; Kanuka, A.; et al. Tetrahedron Lett. 2022, 104, 154022. doi: 10.1016/j.tetlet.2022.154022  doi: 10.1016/j.tetlet.2022.154022

    39. [39]

      Corbin, N.; Junor, G. P.; Ton, T. N.; Baker, R. J.; Manthiram, K. J. Am. Chem. Soc. 2023, 145, 1740. doi: 10.1021/jacs.2c10561  doi: 10.1021/jacs.2c10561

    40. [40]

      Ang, N. W. J.; Oliveira, J. C. A.; Ackermann, L. Angew. Chem. Int. Ed. 2020, 59, 12842. doi: 10.1002/anie.202003218  doi: 10.1002/anie.202003218

    41. [41]

      Jiao, K. J.; Li, Z. M.; Xu, X. T.; Zhang, L. P.; Li, Y. Q.; Zhang, K.; Mei, T. S. Org. Chem. Front. 2018, 5, 2244. doi: 10.1039/c8qo00507a  doi: 10.1039/c8qo00507a

    42. [42]

      Sun, G. Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L. L.; Zhang, Z.; Li, L.; Lu, Z.; Yu, D. G.; et al. Nature 2023, 615, 67. doi: 10.1038/s41586-022-05667-0  doi: 10.1038/s41586-022-05667-0

    43. [43]

      Zhao, Z.; Liu, Y.; Wang, S.; Tang, S.; Ma, D.; Zhu, Z.; Guo, C.; Qiu, Y. Angew. Chem. Int. Ed. 2023, 62, e202214710. doi: 10.1002/anie.202214710  doi: 10.1002/anie.202214710

    44. [44]

      Rawat, V. K.; Hayashi, H.; Katsuyama, H.; Mangaonkar, S. R.; Mita, T. Org. Lett. 2023, 25, 4231. doi: 10.1021/acs.orglett.3c01033  doi: 10.1021/acs.orglett.3c01033

    45. [45]

      Zhang, W.; Liao, L. L.; Li, L.; Liu, Y.; Dai, L. F.; Sun, G. Q.; Ran, C. K.; Ye, J. H.; Lan, Y.; Yu, D. G. Angew. Chem. Int. Ed. 2023, 62, e202301892. doi: 10.1002/anie.202301892  doi: 10.1002/anie.202301892

    46. [46]

      Sheta, A. M.; Alkayal, A.; Mashaly, M. A.; Said, S. B.; Elmorsy, S. S.; Malkov, A. V.; Buckley, B. R. Angew. Chem. Int. Ed. 2021, 60, 21832. doi: 10.1002/anie.202105490  doi: 10.1002/anie.202105490

    47. [47]

      Sheta, A. M.; Mashaly, M. A.; Said, S. B.; Elmorsy, S. S.; Malkov, A. V.; Buckley, B. R. Chem. Sci. 2020, 11, 9109. doi: 10.1039/d0sc03148h  doi: 10.1039/d0sc03148h

    48. [48]

      Alkayal, A.; Tabas, V.; Montanaro, S.; Wright, I. A.; Malkov, A. V.; Buckley, B. R. J. Am. Chem. Soc. 2020, 142, 1780. doi: 10.1021/jacs.9b13305  doi: 10.1021/jacs.9b13305

    49. [49]

      Zhang, W.; Lin, S. J. Am. Chem. Soc. 2020, 142, 20661. doi: 10.1021/jacs.0c08532  doi: 10.1021/jacs.0c08532

    50. [50]

      Liao, L. L.; Wang, Z. H.; Cao, K. G.; Sun, G. Q.; Zhang, W.; Ran, C. K.; Li, Y.; Chen, L.; Yu, D. G. J. Am. Chem. Soc. 2022, 144, 2062. doi: 10.1021/jacs.1c12071  doi: 10.1021/jacs.1c12071

    51. [51]

      Zhao, B.; Pan, Z.; Pan, J.; Deng, H.; Bu, X.; Ma, M.; Xue, F. Green Chem. 2023, 25, 3095. doi: 10.1039/d2gc04636a  doi: 10.1039/d2gc04636a

    52. [52]

      You, Y.; Kanna, W.; Takano, H.; Hayashi, H.; Maeda, S.; Mita, T. J. Am. Chem. Soc. 2022, 144, 3685. doi: 10.1021/jacs.1c13032  doi: 10.1021/jacs.1c13032

    53. [53]

      Wang, Y.; Tang, S.; Yang, G.; Wang, S.; Ma, D.; Qiu, Y. Angew. Chem. Int. Ed. 2022, e202207746. doi: 10.1002/anie.202207746  doi: 10.1002/anie.202207746

    54. [54]

      Scott J. H.; Mark D. E. J. Med. Chem. 2008, 51, 2328. doi: 10.1021/jm701260b  doi: 10.1021/jm701260b

    55. [55]

      Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem. Rev. 2014, 114, 9154. doi: 10.1021/cr5002035  doi: 10.1021/cr5002035

    56. [56]

      Trost, B. M.; Czabaniuk, L. C. J. Am. Chem. Soc. 2012, 134, 5778. doi: 10.1021/ja301461p  doi: 10.1021/ja301461p

    57. [57]

      He, Y.; Huang, L.; Xie, L.; Liu, P.; Wei, Q.; Mao, F.; Zhang, X.; Huang, J.; Chen, S.; Huang, C. J. Org. Chem. 2019, 84, 10088. doi: 10.1021/acs.joc.9b01278  doi: 10.1021/acs.joc.9b01278

    58. [58]

      Schwarz, K. J.; Yang, C.; Fyfe, J. W. B.; Snaddon, T. N. Angew. Chem. Int. Ed. 2018, 57, 12102. doi: 10.1002/anie.201806742  doi: 10.1002/anie.201806742

    59. [59]

      Liu, W.; Zheng, Y. Chin. J. Org. Chem. 2021, 41, 3344. doi: 10.6023/cjoc202100061  doi: 10.6023/cjoc202100061

    60. [60]

      Wang, H.; Wang, Z.; Zhao, G.; Ramadoss, V.; Tian, L.; Wang, Y. Org. Lett. 2022, 24, 3668. doi: 10.1021/acs.orglett.2c01286  doi: 10.1021/acs.orglett.2c01286

    61. [61]

      Zhang, K.; Liu, X. F.; Zhang, W. Z.; Ren, W. M.; Lu, X. B. Org. Lett. 2022, 24, 3565. doi: 10.1021/acs.orglett.2c01267  doi: 10.1021/acs.orglett.2c01267

    62. [62]

      Zhang, K.; Ren, B. H.; Liu, X. F.; Wang, L. L.; Zhang, M.; Ren, W. M.; Lu, X. B.; Zhang, W. Z. Angew. Chem. Int. Ed. 2022, 61, e202207660. doi: 10.1002/anie.202207660  doi: 10.1002/anie.202207660

    63. [63]

      Liu, X. F.; Zhang, K.; Wang, L. L.; Wang, H.; Huang, J.; Zhang, X. T.; Lu, X. B.; Zhang, W. Z. J. Org. Chem. 2023, 88, 5212. doi: 10.1021/acs.joc.2c01816  doi: 10.1021/acs.joc.2c01816

    64. [64]

      Wang, L. L.; Liu, X. F.; Wang, H.; Tao, L.; Huang, J.; Ren, W. M.; Lu, X. B.; Zhang, W. Z. Synthesis 2023, 55, 2951. doi: 10.1055/s-0041-1738439  doi: 10.1055/s-0041-1738439

    65. [65]

      Deposition no. 2278317 (for 2t) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif, accessed on Aug 2, 2023).

    66. [66]

      Chen, X. W.; Zhu, L.; Gui, Y. Y.; Jing, K.; Jiang, Y. X.; Bo, Z. Y.; Lan, Y.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2019, 141, 18825. doi: 10.1021/jacs.9b09721  doi: 10.1021/jacs.9b09721

    67. [67]

      Chen, X. W.; Yue, J. P.; Wang, K.; Gui, Y. Y.; Niu, Y. N.; Liu, J.; Ran, C. K.; Kong, W.; Zhou, W. J.; Yu, D. G. Angew. Chem. Int. Ed. 2021, 60, 14068. doi: 10.1002/anie.202102769  doi: 10.1002/anie.202102769

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    3. [3]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    17. [17]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(0)
  • Abstract views(836)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return