Citation: Haoyu Sun, Dun Li, Yuanyuan Min, Yingying Wang, Yanyun Ma, Yiqun Zheng, Hongwen Huang. Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230700. doi: 10.3866/PKU.WHXB202307007 shu

Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products

  • Corresponding author: Yingying Wang, hxwyy2005@mail.sdu.edu.cn Yiqun Zheng, yzheng@jnxy.edu.cn Hongwen Huang, huanghw@hnu.edu.cn
  • These authors contribute equally to this work.
  • Received Date: 3 July 2023
    Revised Date: 14 August 2023
    Accepted Date: 19 August 2023
    Available Online: 24 August 2023

    Fund Project: the Natural Science Foundation of China 21701100Shandong Provincial Natural Science Foundation, China 2020MB048Shandong Provincial Natural Science Foundation, China ZR2022MB120Young Innovative Talents Introduction & Cultivation Program for Colleges and Universities of Shandong Province, China Granted by Department of Education of Shandong Province, Sub-Title: Innovative Research Team on Energy Storage and Environment MaterialsDoctoral Startup Research Funding, China 2020BSZX01Hundred Outstanding Talent Program of Jining University, China 2020ZYRC05

  • In recent years, Cu-based multi-metallic nanocrystals with controlled elemental distributions have been extensively studied for potential applications as electrocatalysts for CO2 reduction reaction (CO2RR). Modifying Cu electrocatalysts with secondary or additional metals offers a viable approach to manipulate the overall d-band structure which would cause the shift in the d-band center. Such manipulation can affect the surface affinity of Cu towards key intermediates and thus the following catalytic pathway. Apart from endeavors to adjust the electronic structure, morphological engineering provides effective avenues to enhance the electrocatalytic performance of CO2RR. In contrast to quasi-spherical particles with irregular shapes, a 3D-assembled porous structure utilizing 2D nanosheets as building blocks offers advantages such as maximizing surface atom exposure and creating numerous diffusion channels and reactive sites for intermediates formed during catalysis. Yet, it is technique challenging to construct such type of nano-architecture via a rationally-design synthetic routes and traditional stepwise self-assembling strategy is time-consuming and lack of versatile control over the structural parameters of resulting products. Therefore, it holds significant value to develop a synthesis method capable of yielding high-purity formations of unique nanostructures. These structures should possess accurately controlled elemental compositions and electronic configurations, and establish a potential correlation between structural benefits and enhanced electrochemical performance in CO2RR. Herein, we report the controlled synthesis of palladium-copper-silver (Pd-Cu-Ag) nanocrystals with rationally-designed two-dimensional (2D)-three-dimensional (3D) hybrid architectures and validated with the promising use for electrochemical CO2 reduction (CO2RR). The synthetic procedure includes the conversion of Au@CuxO nanospheres into CuAg hierarchical nanoflowers (HNFs), as directed by the capping agent octadecyltrimethyl ammonium chloride. Interestingly, the nanosheets are formed in situ as the building block. Following galvanic replacement reaction between CuAg HNFs and Na2PdCl4 removes Ag and Cu, introduces zero-valent Pd, and creates abundant pores on the nanosheets. These CuAg-based products are tested as CO2RR electrocatalysts, in which the Pd0.7Cu40.0Ag59.7 PHNFs displayed the optimized performance in terms of C2+ products selectivity (69.5%) and C2+ partial current density (−349.1 mA·cm−2). As revealed by density functional theory (DFT) simulations, PdAgCu surface has distinct electronic property, which lower the reaction barrier for C-C coupling, protruding the exceptional advantage of the Pd doping towards CuAg electrocatalysts for CO2 reduction. The present study offers a straightforward approach to fabricate hierarchical multi-metallic nanostructures with the porous nanosheet as building block, and validates its structural advantage in electrocatalysis, shedding light on the rational design of efficient CO2RR catalyst.
  • 加载中
    1. [1]

      Xia, W.; Xie, Y.; Jia, S.; Han, S.; Qi, R.; Chen, T.; Xing, X.; Yao, T.; Zhou, D.; Dong, X.; et al. J. Am. Chem. Soc. 2023, 145, 17253. doi: 10.1021/jacs.3c04612  doi: 10.1021/jacs.3c04612

    2. [2]

      Xue, H.; Zhao, Z.; Liao, P.; Chen, X. J. Am. Chem. Soc. 2023, 145, 14978. doi: 10.1021/jacs.3c05023  doi: 10.1021/jacs.3c05023

    3. [3]

      Bi, J.; Li, P.; Liu, J.; Wang, Y.; Song, X.; Kang, X.; Sun, X.; Zhu, Q.; Han, B. Angew. Chem. Int. Ed. 2023, 1, e202307612. doi: 10.1002/anie.202307612  doi: 10.1002/anie.202307612

    4. [4]

      Ling, N.; Zhang, J.; Wang, M.; Wang, Z.; Mi, Z.; Bin Dolmanan, S.; Zhang, M.; Wang, B.; Leow, W. R.; Zhang, J.; et al. Angew. Chem. Int. Ed. 2023, 1, e202308782. doi: 10.1002/anie.202308782  doi: 10.1002/anie.202308782

    5. [5]

      Weng, S.; Toh, W. L.; Surendranath, Y. J. Am. Chem. Soc. 2023, 145, 16787. doi: 10.1021/jacs.3c04769  doi: 10.1021/jacs.3c04769

    6. [6]

      Jia, H.; Yang, Y.; Chow, T. H.; Zhang, H.; Liu, X.; Wang, J.; Zhang, C. Adv. Funct. Mater. 2021, 31, 2101255. doi: 10.1002/adfm.202101255  doi: 10.1002/adfm.202101255

    7. [7]

      Zheng, Y.; Zhang, J.; Ma, Z.; Zhang, G.; Zhang, H.; Fu, X.; Ma, Y.; Liu, F.; Liu, M.; Huang, H. Small 2022, 18, e2201695. doi: 10.1002/small.202201695  doi: 10.1002/small.202201695

    8. [8]

      Kuhn, A. N.; Zhao, H.; Nwabara, U. O.; Lu, X.; Liu, M.; Pan, Y. T.; Zhu, W.; Kenis, P. J. A.; Yang, H. Adv. Funct. Mater. 2021, 31, 2101668. doi: 10.1002/adfm.202101668  doi: 10.1002/adfm.202101668

    9. [9]

      Wei, D.; Wang, Y.; Dong, C. L.; Zhang, Z.; Wang, X.; Huang, Y. C.; Shi, Y.; Zhao, X.; Wang, J; Long, R; et al. Angew. Chem. Int. Ed. 2023, 62, e202217369. doi: 10.1002/anie.202217369  doi: 10.1002/anie.202217369

    10. [10]

      Lv, H.; Lv, F.; Qin, H.; Min, X.; Sun, L.; Han, N.; Xu, D.; Li, Y.; Liu, B. CCS Chem. 2022, 4, 1376. doi: 10.31635/ccschem.021.202100958  doi: 10.31635/ccschem.021.202100958

    11. [11]

      Li, Z.; He, D.; Yan, X.; Dai, S.; Younan, S.; Ke, Z.; Pan, X.; Xiao, X.; Wu, H.; Gu, J. Angew. Chem. Int. Ed. 2020, 59, 18572. doi: 10.1002/anie.202000318  doi: 10.1002/anie.202000318

    12. [12]

      Guntern, Y. T.; Okatenko, V.; Pankhurst, J.; Varandili, S. B.; Iyengar, P.; Koolen, C.; Stoian, D.; Vavra, J.; Buonsanti, R. ACS Catal. 2021, 11, 1248. doi: 10.1021/acscatal.0c04403  doi: 10.1021/acscatal.0c04403

    13. [13]

      Hammer, B.; Nørskov, J. K. Adv. Catal. 2000, 45, 71. doi: 10.1016/S0360-0564(02)45013-4  doi: 10.1016/S0360-0564(02)45013-4

    14. [14]

      Zhang, X.-G.; Jin, X.; Wu, D.-Y.; Tian, Z.-Q. J. Phys. Chem. C. 2018, 122, 25447. doi: 10.1021/acs.jpcc.8b08170  doi: 10.1021/acs.jpcc.8b08170

    15. [15]

      Chang, K.; Jian, X.; Jeong, H. M.; Kwon, Y.; Lu, Q.; Cheng, M. J. J. Phys. Chem. Lett. 2020, 11, 1896. doi: 10.1021/acs.jpclett.0c00082  doi: 10.1021/acs.jpclett.0c00082

    16. [16]

      Xiong, L.; Zhang, X.; Yuan, H.; Wang, J.; Yuan, X.; Lian, Y.; Jin, H.; Sun, H.; Deng, Z.; Wang, D; et al. Angew. Chem. Int. Ed. 2021, 60, 2508. doi: 10.1002/anie.202012631  doi: 10.1002/anie.202012631

    17. [17]

      Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M.; Huang, Y. Nano Res. 2021, 14, 3497. doi: 10.1007/s12274-021-3639-x  doi: 10.1007/s12274-021-3639-x

    18. [18]

      Ting, L. R. L.; Piqué, O.; Lim, S. Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B. S. ACS Catal. 2020, 10, 4059. doi: 10.1021/acscatal.9b05319  doi: 10.1021/acscatal.9b05319

    19. [19]

      Scarabelli, L.; Sun, M.; Zhuo, X.; Yoo, S.; Millstone, J. E.; Jones, M. R.; Liz-Marzan, L. M. Chem. Rev. 2023, 123, 3493. doi: 10.1021/acs.chemrev.3c00033  doi: 10.1021/acs.chemrev.3c00033

    20. [20]

      Zaza, L.; Rossi, K.; Buonsanti, R. ACS Energy Lett. 2022, 7, 1284. doi: 10.1021/acsenergylett.2c00035  doi: 10.1021/acsenergylett.2c00035

    21. [21]

      Rong, S.; Wang, X. Chem. Commun. 2022, 58, 11475. doi: 10.1039/d2cc04332g  doi: 10.1039/d2cc04332g

    22. [22]

      Xia, Z.; Guo, S. Chem. Soc. Rev. 2019, 48, 3265. doi: 10.1039/c8cs00846a  doi: 10.1039/c8cs00846a

    23. [23]

      Yu, S.; Yang, H. Chem. Commun. 2023, 59, 4852. doi: 10.1039/d3cc00590a  doi: 10.1039/d3cc00590a

    24. [24]

      Zhang, G.; Ma, Y.; Liu, F.; Tong, Z.; Sha, J.; Zhao, W.; Liu, M.; Zheng, Y. Front. Chem. 2021, 9, 671220. doi: 10.3389/fchem.2021.671220  doi: 10.3389/fchem.2021.671220

    25. [25]

      Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301  doi: 10.1088/0953-8984/14/11/301

    26. [26]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    27. [27]

      Wang, X.; Wang, Z.; García de Arquer, F. P.; Dinh, C.-T.; Ozden, A.; Li, Y. C.; Nam, D.-H.; Li, J.; Liu, Y.-S.; Wicks, J.; et al. Nat. Energy 2020, 5, 478. doi: 10.1038/s41560-020-0607-8  doi: 10.1038/s41560-020-0607-8

    28. [28]

      Li, F.; Thevenon, A.; Rosas-Hern; ez, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2  doi: 10.1038/s41586-019-1782-2

    29. [29]

      Wang, Y.; Wang, Z.; Dinh, C.-T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C.-S.; Gabardo, C. M.; Luo, M; et al. Nat. Catal. 2019, 3, 98. doi: 10.1038/s41929-019-0397-1  doi: 10.1038/s41929-019-0397-1

    30. [30]

      Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comp. Mater. Sci. 2003, 28, 250. doi: 10.1016/s0927-0256(03)00111-3  doi: 10.1016/s0927-0256(03)00111-3

    31. [31]

      Zheng, Y.; Zhang, G.; Ma, Y.; Kong, Y.; Liu, F.; Liu, M. CrystEngComm 2022, 24, 2451. doi: 10.1039/D1CE01505B  doi: 10.1039/D1CE01505B

    32. [32]

      Wu, S.; Jia, Q.; Wang, Y.; Liu, F.; Zhang, G.; Zhang, H.; Zhang, H.; Liu, M.; Zheng, Y. Ceram. Int. 2022, 48, 30367. doi: 10.1016/j.ceramint.2022.06.310  doi: 10.1016/j.ceramint.2022.06.310

    33. [33]

      Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194. doi: 10.1002/advs.201700194  doi: 10.1002/advs.201700194

    34. [34]

      Ou, L.; He, Z.; Yang, H.; Chen, Y. ACS Omega 2021, 6, 17839. doi: 10.1021/acsomega.1c01062  doi: 10.1021/acsomega.1c01062

    35. [35]

      Liu, H.; Yang, B. Chem. Commun. 2022, 58, 709. doi: 10.1039/d1cc06735d  doi: 10.1039/d1cc06735d

    36. [36]

      Zhu, C.; Chen, A.; Mao, J.; Wu, G.; Li, S.; Dong, X.; Li, G.; Jiang, Z.; Song, Y. Small. Strut. 2023, 4, 2200328. doi: 10.1002/sstr.202200328  doi: 10.1002/sstr.202200328

    37. [37]

      Hammer, B.; Nørskov, J. K. Surf. Sci. 1995, 343, 211. doi: 10.1016/0039-6028(96)80007-0  doi: 10.1016/0039-6028(96)80007-0

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    5. [5]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    6. [6]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    11. [11]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    12. [12]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    14. [14]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    17. [17]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(2)
  • Abstract views(762)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return