Citation: Xue Xiao, Jiachun Li, Xiangtong Meng, Jieshan Qiu. Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230700. doi: 10.3866/PKU.WHXB202307006 shu

Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage

  • Corresponding author: Xiangtong Meng, mengxt@mail.buct.edu.cn Jieshan Qiu, qiujs@mail.buct.edu.cn
  • Received Date: 3 July 2023
    Revised Date: 4 August 2023
    Accepted Date: 5 August 2023
    Available Online: 10 August 2023

    Fund Project: the National Natural Science Foundation of China 52002014the National Natural Science Foundation of China U2003216the Natural Science Foundation of Guangxi 2021GXNSFAA220018the Shenzhen Science and Technology Program CJGJZD20210408092801005

  • Sodium-ion batteries (SIBs), featuring with adequate sodium resources, relatively high safety, and similar chemical properties between sodium and lithium, have been considered one of the most potential candidates to lithium-ion batteries (LIBs). However, the larger radii of sodium ions (vs. lithium ions) lead to sluggish diffusion kinetics of sodium ions, low storage capacity, and adverse volume variation during sodiation and desodiation. In particular, anode materials work well in LIBs have been proved ineffective in SIBs. Therefore, the development of cheap anode materials with remarkable performance is critical to the commercialization of SIBs. Despite the good conductivity and robust stability of carbon materials, they usually showcase moderate discharge capacity and poor rate performance in SIBs. Iron sulfides are considered promising anode materials for SIBs due to their high theoretical capacity. Nevertheless, iron sulfides exhibit severe volumetric expansion during charge and discharge, resulting in low rate performance and poor stability. In this regard, hybridizing carbon materials with iron sulfides to configure composite materials is an important way to improve the electrochemical performance of SIBs. Here, three-dimensional cluster-structured sulfur-doped carbon-coated Fe0.95S1.05 nanospheres (Fe0.95S1.05@SC) are crafted by one-step annealing of ferrocene and sulfur powder, of which the implementation as anode of sodium ion batteries is reported. Scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results confirm the successful synthesis of the Fe0.95S1.05@SC composite. The coated sulfur-doped carbon layer can improve the conductivity of the Fe0.95S1.05 material and alleviate corresponding volume expansion during the reaction process, thus delivering a robust electrochemical stability. The interconnected cluster structures of Fe0.95S1.05@SC provide channels for the transport of electrons and ions, enabling the material excellent rate performance. Thanks to the unique structures of as-made Fe0.95S1.0@SC, when acting as anodes of SIBs, it demonstrates stable cycling performance and high rate performance. The electrochemical reaction process on Fe0.95S1.05@SC electrode is studied by cyclic voltammetry, validating that this electrode has good electrochemical reversibility. During the first few cycles of charging and discharging process, stable solid electrolyte interphase (SEI) layer forms on the surface of the carbon layer, which helps to avoid the direct exposure of Fe0.95S1.05 to the electrolyte and prevent the material from inactivation by the dissolution or escape of the sulfur element within Fe0.95S1.0. In the half-battery system, after 100 cycles at 0.1 A∙g−1, the high specific capacity of 614.7 mAh∙g−1 for Fe0.95S1.05@SC is retained, and the specific capacity at 10 A∙g−1 can still reach 235.7 mAh∙g−1. In the full battery system, the reversible capacity at 0.1 and 10 A∙g−1 is 482.8 and 288.3 mAh∙g−1, respectively. The as-made Fe0.95S1.05@SC with excellent electrochemical properties holds promise as anodes for sodium-ion batteries.
  • 加载中
    1. [1]

      Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M. Renew. Sust. Energ. Rev. 2020, 119, 109549. doi: 10.16/j.rser.2019.109549  doi: 10.16/j.rser.2019.109549

    2. [2]

      Bai, Y.; Liu, Y.; Li, Y.; Ling, L.; Wu, F.; Wu, C. RSC Adv. 2017, 7, 5519. doi: 10.1039/c6ra27212f  doi: 10.1039/c6ra27212f

    3. [3]

      Zhao, L.; Zhang, T.; Li, W.; Li, T.; Zhang, L.; Zhang, X.; Wang, Z. Engineering 2023, doi: 10.1016/j.eng.2021.08.032  doi: 10.1016/j.eng.2021.08.032

    4. [4]

      Zhang, T.; Li, C.; Wang, F.; Noori, A.; Mousavi, M.; Xia, X.; Zhang, Y. Chem. Rec. 2022, 22, e202200083. doi: 10.1002/tcr.202200083  doi: 10.1002/tcr.202200083

    5. [5]

      Hwang, J.; Myung, S.; Sun, Y. Chem. Soc. Rev. 2017, 46, 3529. doi: 10.1039/c6cs00776g  doi: 10.1039/c6cs00776g

    6. [6]

      Nayak, P.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102. doi: 10.1002/anie.201703772  doi: 10.1002/anie.201703772

    7. [7]

      Sun, L.; Xie, J.; Zhang, X.; Zhang, L.; Wu, J.; Shao, R.; Jiang, R.; Jin, Z. Dalton Trans. 2020, 49, 15712. doi: 10.1039/D0DT03258A  doi: 10.1039/D0DT03258A

    8. [8]

      Ma, L.; Chen, R.; Hu, Y.; Zhu, G.; Chen, T.; Lu, H.; Liang, J.; Tie, Z.; Jin, Z.; Liu, J. Nanoscale 2016, 8, 17911. doi: 10.1039/C6NR06307A  doi: 10.1039/C6NR06307A

    9. [9]

      Sun, L.; Song, X.; Liu, Y.; Xie, J.; Wu, J.; Cheng, F.; Zhang, X.; Tie, Z.; Jin, Z. FlatChem 2021, 28, 100258. doi: 10.1016/j.flatc.2021.100258  doi: 10.1016/j.flatc.2021.100258

    10. [10]

      Chen, T.; Cheng, B.; Chen, R.; Hu, Y.; Lv, H.; Zhu, G.; Wang, Y.; Ma, L.; Liang, J.; Tie, Z.; et al. ACS Appl. Mater. Interfaces 2016, 8, 26834. doi: 10.1021/acsami.6b08911  doi: 10.1021/acsami.6b08911

    11. [11]

      Lv, H.; Wang, X.; Yang, Y.; Liu, T.; Zhang, L. Acta Phys.-Chim. Sin. 2023, 39, 2210014.  doi: 10.3866/PKU.WHXB202210014

    12. [12]

      Zhang, H.; Huang, Y.; Ming, H.; Cao, G.; Zhang, W.; Ming, J.; Chen, R. J. Mater. Chem. A 2020, 8, 1604. doi: 10.1039/C9TA09984K  doi: 10.1039/C9TA09984K

    13. [13]

      Miao, X.; Sun, D.; Zhou, X.; Lei, Z. Chem. Eng. J. 2019, 364, 208. doi: 10.1016/j.cej.2019.01.158  doi: 10.1016/j.cej.2019.01.158

    14. [14]

      Xiao, Y.; Lee, S.; Sun, Y. Adv. Energy Mater. 2017, 7, 1601329. doi: 10.1002/aenm.201601329  doi: 10.1002/aenm.201601329

    15. [15]

      Zhang, K.; Park, M.; Zhou, L.; Lee, G.; Shin, J.; Hu, Z.; Chou, S.; Chen, J.; Kang, Y. Angew. Chem. Int. Ed. 2016, 55, 12822. doi: 10.1002/anie.201607469  doi: 10.1002/anie.201607469

    16. [16]

      Zhu, Y.; Nie, P.; Shen, L.; Dong, S.; Sheng, Q.; Li, H.; Luo, H.; Zhang, X. Nanoscale 2015, 7, 3309. doi: 10.1039/C4NR05242K  doi: 10.1039/C4NR05242K

    17. [17]

      Walter, M.; Zünd, T.; Kovalenko, M. Nanoscale 2015, 7, 9158. doi: 10.1039/C5NR00398A  doi: 10.1039/C5NR00398A

    18. [18]

      Wang, Y.; Yang, J.; Chou, S.; Liu, H.; Zhang, W.; Zhao, D.; Dou, S. Nat. Commun. 2015, 6, 8689. doi: 10.1038/ncomms9689  doi: 10.1038/ncomms9689

    19. [19]

      Bu, F.; Xiao, P.; Chen, J.; Aly, A. M.; Shakir, I.; Xu, Y. J. Mater. Chem. A 2018, 6, 6414. doi: 10.1039/c7ta11111h  doi: 10.1039/c7ta11111h

    20. [20]

      Kandula, S.; Sik, Y. B.; Cho, J.; Lim, H.; Gon, S. J. Chem. Eng. J. 2022, 439, 135678. doi: 10.1016/j.cej.2022.135678  doi: 10.1016/j.cej.2022.135678

    21. [21]

      Ma, H.; Su, D.; Klein, H. A.; Jin, G.; Guo, X. Carbon 2006, 44, 2254. doi: 10.1016/j.carbon.2006.02.033  doi: 10.1016/j.carbon.2006.02.033

    22. [22]

      Qian, J.; Wu, F.; Ye, Y.; Zhang, M.; Huang, Y.; Xing, Y.; Qu, W.; Li, L.; Chen, R. Adv. Energy Mater. 2018, 8, 1703159. doi: 10.1002/aenm.201703159  doi: 10.1002/aenm.201703159

    23. [23]

      Pan, Q.; Zheng, F.; Liu, Y.; Li, Y.; Zhong, W.; Chen, G.; Hu, J.; Yang, C.; Liu, M. J. Mater. Chem. A 2019, 7, 20229. doi: 10.1039/c9ta07302g  doi: 10.1039/c9ta07302g

    24. [24]

      Xiao, Y.; Hwang, J.; Belharouak, I.; Sun, Y. ACS Energy Lett. 2017, 2, 364. doi: 10.1021/acsenergylett.6b00660  doi: 10.1021/acsenergylett.6b00660

    25. [25]

      Huang, S.; Li, Y.; Chen, S.; Wang, Y.; Wang, Z.; Fan, S.; Zhang, D.; Yang, H. Energy Storage Mater. 2020, 32, 151. doi: 10.1016/j.ensm.2020.06.039  doi: 10.1016/j.ensm.2020.06.039

    26. [26]

      Wang, Q.; Zhang, W.; Guo, C.; Liu, Y.; Wang, C.; Guo, Z. Adv. Funct. Mater. 2017, 27, 1703390. doi: 10.1002/adfm.201703390  doi: 10.1002/adfm.201703390

    27. [27]

      Xu, Y.; Li, W.; Zhang, F.; Zhang, X.; Zhang, W.; Lee, C.; Tang, Y. J. Mater. Chem. A 2016, 4, 3697. doi: 10.1039/C5TA09138A  doi: 10.1039/C5TA09138A

    28. [28]

      Chen, B.; Qin, H.; Li, K.; Zhang, B.; Liu, E.; Zhao, N.; Shi, C.; He, C. Nano Energy 2019, 66, 104133. doi: 10.1016/j.nanoen.2019.104133  doi: 10.1016/j.nanoen.2019.104133

    29. [29]

      Lu, Z.; Wang, N.; Zhang, Y.; Xue, P.; Guo, M.; Tang, B.; Xu, X.; Wang, W.; Bai, Z.; Dou, S. ACS Appl. Energy Mater. 2018, 1, 6234. doi: 10.1021/acsaem.8b01239  doi: 10.1021/acsaem.8b01239

    30. [30]

      Luo, W.; Cao, X.; Liang, S.; Huang, J.; Su, Q.; Wang, Y.; Fang, G.; Shan, L.; Zhou, J. ACS Appl. Energy Mater. 2019, 2, 4567. doi: 10.1021/acsaem.9b00632  doi: 10.1021/acsaem.9b00632

    31. [31]

      Peng, Q.; Lu, Y.; Qi, S.; Liang, M.; Xu, D.; Sun, W.; Lv, L.; Wei, Y.; Chen, S.; Wang, Y. ACS Appl. Energy Mater. 2022, 5, 3199. doi: 10.1021/acsaem.1c03810  doi: 10.1021/acsaem.1c03810

    32. [32]

      Xia, G.; Li, X.; Gu, Y.; Dong, P.; Zhang, Y.; Duan, J.; Wang, D.; Zhang, Y. Ionics 2020, 27, 191. doi: 10.1007/s11581-020-03818-9  doi: 10.1007/s11581-020-03818-9

    33. [33]

      Xie, D.; Cai, S.; Sun, X.; Hou, T.; Shen, K.; Ling, R.; Fan, A.; Zhang, R.; Jiang, S.; Lin, Y. Inorg. Chem. Commun. 2020, 11, 107635. doi: 10.1016/j.inoche.2019.107635  doi: 10.1016/j.inoche.2019.107635

    34. [34]

      Haridas, A.; Angulakshmi, N.; Stephan, A.; Lee, Y.; Ahn, J. Molecules 2021, 26, 4349. doi: 10.3390/molecules26144349  doi: 10.3390/molecules26144349

    35. [35]

      Chen, Y.; Zhao, Y.; Liu, H.; Ma, T. ACS Omega 2023, 8, 9145. doi: 10.1021/acsomega.2c06429  doi: 10.1021/acsomega.2c06429

    36. [36]

      Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Nat. Commun. 2015, 6, 6929. doi: 10.1038/ncomms7929  doi: 10.1038/ncomms7929

    37. [37]

      Fang, Y.; Yu, X.; Lou, X. Angewa. Chem. Int. Ed. 2018, 57, 9859. doi: 10.1002/anie.201805552  doi: 10.1002/anie.201805552

    38. [38]

      Fang, G.; Wu, Z.; Zhou, J.; Zhu, C.; Cao, X.; Lin, T.; Chen, Y.; Wang, C.; Pan, A.; Liang, S. Adv. Energy Mater. 2018, 8, 1703115. doi: 10.1002/aenm.201703155  doi: 10.1002/aenm.201703155

  • 加载中
    1. [1]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    2. [2]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    3. [3]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    4. [4]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    5. [5]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    6. [6]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    7. [7]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    8. [8]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    9. [9]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    10. [10]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    11. [11]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    12. [12]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    13. [13]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    17. [17]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    18. [18]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    19. [19]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(1)
  • Abstract views(630)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return