Recent Progress on Conversion of Carbon Dioxide into Carbamates
- Corresponding author: Chaorong Qi, crqi@scut.edu.cn Huanfeng Jiang, jianghf@scut.edu.cn
Citation:
Yanhui Guo, Li Wei, Zhonglin Wen, Chaorong Qi, Huanfeng Jiang. Recent Progress on Conversion of Carbon Dioxide into Carbamates[J]. Acta Physico-Chimica Sinica,
;2024, 40(4): 230700.
doi:
10.3866/PKU.WHXB202307004
Yu, D. Y.; Teong, S. P.; Zhang, Y. G. Coord. Chem. Rev. 2015, 293, 279. doi: 10.1016/j.ccr.2014.09.002
doi: 10.1016/j.ccr.2014.09.002
Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739. doi: 10.1021/acscatal.6b02124
doi: 10.1021/acscatal.6b02124
Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524. doi: 10.1039/C5CS00895F
doi: 10.1039/C5CS00895F
Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861. doi: 10.1039/C7CS00065K
doi: 10.1039/C7CS00065K
Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G. Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Coord. Chem. Rev. 2018, 374, 439. doi: 10.1016/j.ccr.2018.07.011
doi: 10.1016/j.ccr.2018.07.011
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Chem. Soc. Rev. 2019, 48, 4466. doi: 10.1039/c9cs00047j
doi: 10.1039/c9cs00047j
Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382. doi: 10.1039/C8CS00281A
doi: 10.1039/C8CS00281A
Yeung, C. S. Angew. Chem. Int. Ed. 2019, 58, 5492. doi: 10.1002/anie.201806285
doi: 10.1002/anie.201806285
Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. doi: 10.6023/cjoc202004030
doi: 10.6023/cjoc202004030
Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Sci. China Chem. 2020, 63, 1336. doi: 10.1007/s11426-020-9788-2
doi: 10.1007/s11426-020-9788-2
Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871. doi: 10.1021/acscatal.0c03127
doi: 10.1021/acscatal.0c03127
Tortajada, A.; Börjesson, M.; Martin. R. Acc. Chem. Res. 2021, 54, 3941. doi: 10.1021/acs.accounts.1c00480
doi: 10.1021/acs.accounts.1c00480
Ghosh, A. K.; Brindisi, M. J. Med. Chem. 2015, 58, 2895. doi: 10.1021/jm501371s
doi: 10.1021/jm501371s
Salisaeng, P.; Arnnok, P.; Patdhanagul, N.; Burakham, R. J. Agric. Food Chem. 2016, 64, 2145. doi: 10.1021/acs.jafc.5b05437
doi: 10.1021/acs.jafc.5b05437
Hara, S.; Ishikawa, N.; Hara, Y.; Nehira, T.; Sakai, K.; Gonoi, T.; Ishi-bashi, M. J. Nat. Prod. 2017, 80, 565. doi: 10.1021/acs.jnatprod.6b00935
doi: 10.1021/acs.jnatprod.6b00935
Pandey, G.; Khamrai, J.; Mishra, A. Org. Lett. 2018, 20, 166. doi: 10.1021/acs.orglett.7b03537
doi: 10.1021/acs.orglett.7b03537
Chiacchio, M. A.; Lanza, G.; Chiacchio, U.; Giofrè, S. V.; Romeo, R.; Iannazzo, D.; Legnani, L. Curr. Med. Chem. 2019, 26, 7337. doi: 10.2174/0929867326666181203130402
doi: 10.2174/0929867326666181203130402
Marchese, A. D.; Wollenburg, M.; Mirabi, B.; Abel-Snape, X.; Whyte, A.; Glorius, F.; Lautens, M. ACS Catal. 2020, 10, 4780. doi: 10.1021/acscatal.0c00841
doi: 10.1021/acscatal.0c00841
Wang, Y.; Wu, S.-B.; Shi, W.-J.; Shi, Z.-J. Org. Lett. 2016, 18, 2548. doi: 10.1021/acs.orglett.6b00819
doi: 10.1021/acs.orglett.6b00819
Tobisu, M.; Yasui, K.; Aihara, Y.; Chatani, N. Angew. Chem. Int. Ed. 2017, 56, 1877. doi: 10.1002/anie.201610409
doi: 10.1002/anie.201610409
Guo, W.; Gómez, J. E.; Cristòfol, À.; Xie, J.; Kleij, A. W. Angew. Chem. Int. Ed. 2018, 57, 13735. doi: 10.1002/anie.201805009
doi: 10.1002/anie.201805009
Yasui, K.; Chatani, N.; Tobisu, M. Org. Lett. 2018, 20, 2108. doi: 10.1021/acs.orglett.8b00674
doi: 10.1021/acs.orglett.8b00674
Dindarloo Inaloo, I.; Majnooni, S.; Eslahi, H.; Esmaeilpour, M. ACS Omega 2020, 5, 7406. doi: 10.1021/acsomega.9b04450
doi: 10.1021/acsomega.9b04450
Tanaka, J.; Shibata, Y.; Joseph, A.; Nogami, J.; Terasawa, J.; Yoshimura R.; Tanaka, K. Chem. -Eur. J. 2020, 26, 5774. doi: 10.1002/chem.202000253
doi: 10.1002/chem.202000253
Tanaka, J.; Nagashima, Y.; Tanaka, K. Org. Lett. 2020, 22, 7181. doi: 10.1021/acs.orglett.0c02499
doi: 10.1021/acs.orglett.0c02499
Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837. doi: 10.1021/ja100783c
doi: 10.1021/ja100783c
Lo, H.-J.; Lin, C.-Y.; Tseng, M.-C.; Chein, R.-J. Angew. Chem. Int. Ed. 2014, 53, 9026. doi: 10.1002/anie.201404495
doi: 10.1002/anie.201404495
Sun, X.; Sun, Y.; Zhang, C.; Rao, Y. Chem. Commun. 2014, 50, 1262. doi: 10.1039/C3CC47431C
doi: 10.1039/C3CC47431C
Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52. doi: 10.1002/cssc.201402837
doi: 10.1002/cssc.201402837
Vessally, E.; Mohammadi, R.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. J. CO2 Util. 2018, 24, 361. doi: 10.1016/j.jcou.2018.01.015
doi: 10.1016/j.jcou.2018.01.015
Schilling, W.; Das, S. ChemSusChem 2020, 13, 6246. doi: 10.1002/cssc.202002073
doi: 10.1002/cssc.202002073
Xiong, T.-K.; Li, X.-J.; Zhang, M.; Liang, Y. Org. Biomol. Chem. 2020, 18, 7774. doi: 10.1039/D0OB01590C
doi: 10.1039/D0OB01590C
Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598. doi: 10.1016/S1872-2067(21)64029-9
doi: 10.1016/S1872-2067(21)64029-9
Leino, E.; Mäki-Arvela, P.; Eränen, K.; Tenho, M.; Murzina, D. Y.; Salmi, T.; Mikkolaa, J.-P. Chem. Eng. J. 2011, 176, 124. doi: 10.1016/j.cej.2011.07.054
doi: 10.1016/j.cej.2011.07.054
Ma, J.; Song, J. L.; Liu, H. Z.; Liu, J. L.; Zhang, Z. F.; Jiang, T.; Fan, H. L.; Han, B. X. Green Chem. 2012, 14, 1743. doi: 10.1039/C2GC35150A
doi: 10.1039/C2GC35150A
Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519. doi: 10.1039/C2GC16039K
doi: 10.1039/C2GC16039K
Roeser, J.; Kailasam, K.; Thomas, A. ChemSusChem 2012, 5, 1793. doi: 10.1002/cssc.201200091
doi: 10.1002/cssc.201200091
Wang, B. S.; Elageed, E. H. M.; Zhang, D.; Yang, S. J.; Wu, S.; Zhang, G. R.; Gao, G. H. ChemCatChem 2014, 6, 278. doi: 10.1002/cctc.201300801
doi: 10.1002/cctc.201300801
Wang, B.; Luo, Z.; Elageed, E. H.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. ChemCatChem 2016, 8, 830. doi: 10.1002/cctc.201500928
doi: 10.1002/cctc.201500928
Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S. Catal. Lett. 2018, 148, 119. doi: 10.1007/s10562-017-2217-z
doi: 10.1007/s10562-017-2217-z
Zhang, W.; Xia, T.; Yang, X.; Lu, X. Chem. Commun. 2015, 51, 6175. doi: 10.1039/C5CC01530H
doi: 10.1039/C5CC01530H
Niemi, T.; Fernandez, I.; Steadman, B.; Mannisto, J. K.; Repo, T. Chem. Commun. 2018, 54, 3166. doi: 10.1039/C8CC00636A
doi: 10.1039/C8CC00636A
Yousefi, R.; Struble, T. J.; Payne, J. L.; Vishe, M.; Schley, N. D.; Johnston, J. N. J. Am. Chem. Soc. 2019, 141, 618. doi: 10.1021/jacs.8b11793
doi: 10.1021/jacs.8b11793
Kumar, N.; Kulsoom, M.; Shukla, V.; Kumar, D.; Kumar, S.; Tiwari, J.; Dwivedi, N. Environ. Sci. Pollut. Res. 2018, 25, 29505. doi: 10.1007/s11356-018-2993-z
doi: 10.1007/s11356-018-2993-z
Kovaleva, E. L.; Belanova, A. I.; Panova, L. I.; Zakharchenko, A. A. Pharm. Chem. J. 2018, 52, 84. doi: 10.1007/s11094-018-1769-6
doi: 10.1007/s11094-018-1769-6
Bezrodnykh, E. A.; Vyshivannaya, O. V.; Polezhaev, A. V.; Abramchuk, S. S.; Blagodatskikh, I. V.; Tikhonov, V. E. Int. J. Biol. Macromol. 2020, 155, 979. doi: 10.1016/j.ijbiomac.2019.11.059
doi: 10.1016/j.ijbiomac.2019.11.059
Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J. Org. Lett. 2010, 12, 1340. doi: 10.1021/ol100259j
doi: 10.1021/ol100259j
Zhang, W.-Z.; Ren, X.; Lu, X.-B. Chin. J. Chem. 2015, 33, 610. doi: 10.1002/cjoc.201500011
doi: 10.1002/cjoc.201500011
Xiong, W.; Qi, C.; Peng, Y.; Guo, T.; Zhang, M.; Jiang, H. Chem. Eur. J. 2015, 21, 14314. doi: 10.1002/chem.201502689
doi: 10.1002/chem.201502689
Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.; Jiang, H. Angew. Chem. Int. Ed. 2015, 54, 3084. doi: 10.1002/anie.201410605
doi: 10.1002/anie.201410605
Riemer, D.; Hirapara, P.; Das, S. ChemSusChem 2016, 9, 1916. doi: 10.1002/cssc.201600521
doi: 10.1002/cssc.201600521
Peng, Y.; Liu, J.; Qi, C.; Yuan, G.; Li, J.; Jiang, H. Chem. Commun. 2017, 53, 2665. doi: 10.1039/C6CC09762F
doi: 10.1039/C6CC09762F
Wang, S.; Zhang, X.; Cao, C.; Chen, C.; Xi, C. Green Chem. 2017, 19, 4515. doi: 10.1039/c7gc01992k
doi: 10.1039/c7gc01992k
Zhang, Q.; Yuan, H.-Y.; Fukaya, N.; Choi, J.-C. ACS Sustain. Chem. Eng. 2018, 6, 6675. doi: 10.1021/acssuschemeng.8b00449
doi: 10.1021/acssuschemeng.8b00449
Xiong, W.; Qi, C.; Cheng, R.; Zhang, H.; Wang, L.; Yan, D.; Jiang, H. Chem. Commun. 2018, 54, 5835. doi: 10.1039/C8CC01732H
doi: 10.1039/C8CC01732H
Franz, M.; Stalling, T.; Steinert, H.; Martens, J. Org. Biomol. Chem. 2018, 16, 8292. doi: 10.1039/C8OB01865K
doi: 10.1039/C8OB01865K
Zhang, Q.; Yuan, H.-Y.; Lin, X.-T.; Fukaya, N.; Fujitani, T.; Sato, K.; Choi, J.-C. Green Chem. 2020, 22, 4231. doi: 10.1039/D0GC01402H
doi: 10.1039/D0GC01402H
Sharma, S.; Singh, A. K.; Singh, D.; Kim, D. Green Chem. 2015, 17, 1404. doi: 10.1039/C4GC02089H
doi: 10.1039/C4GC02089H
Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022. doi: 10.1002/anie.201603352
doi: 10.1002/anie.201603352
Xiong, W.; Qi, C.; Guo, T.; Zhang, M.; Chen, K.; Jiang, H. Green Chem. 2017, 19, 1642. doi: 10.1039/C6GC03465A
doi: 10.1039/C6GC03465A
Bernoud, E.; Company, A.; Ribas, X. J. Organometal. Chem. 2017, 845, 44. doi: 10.1016/j.jorganchem.2017.02.004
doi: 10.1016/j.jorganchem.2017.02.004
Luo, X.; Song, X.; Xiong, W.; Li, J.; Li, M.; Zhu, Z.; Wei, S.; Chan, A. S. C.; Zou, Y. Org. Lett. 2019, 21, 2013. doi: 10.1021/acs.orglett.9b00122
doi: 10.1021/acs.orglett.9b00122
Wang, L.; Qi, C.; Cheng, R.; Liu, H.; Xiong, W.; Jiang, H. Org. Lett. 2019, 21, 7386. doi: 10.1021/acs.orglett.9b02698
doi: 10.1021/acs.orglett.9b02698
Ran, C.-K.; Huang, H.; Li, X.-H.; Wang, W.; Ye, J.-H.; Yan, S.-S.; Wang, B.-Q.; Feng, C.; Yu, D.-G. Chin. J. Chem. 2020, 38, 69. doi: 10.1002/cjoc.201900384
doi: 10.1002/cjoc.201900384
Wang, L.; Wang, P.; Guo, T.; Xiong, W.; Kang, B.; Qi, C.; Luo, G.; Luo, Y.; Jiang, H. Org. Chem. Front. 2021, 8, 1851. doi: 10.1039/D0QO01607A
doi: 10.1039/D0QO01607A
Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450. doi: 10.1016/j.tet.2013.09.087
doi: 10.1016/j.tet.2013.09.087
Cai, J.; Zhang, M.; Zhao, X. Eur. J. Org. Chem. 2015, 2015, 5925. doi: 10.1002/ejoc.201500769
doi: 10.1002/ejoc.201500769
García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914. doi: 10.1039/C6SC00419A
doi: 10.1039/C6SC00419A
Xiong, W.; Yan, D.; Qi, C.; Jiang, H. Org. Lett. 2018, 20, 672. doi: 10.1021/acs.orglett.7b03808
doi: 10.1021/acs.orglett.7b03808
Zhou, C.; Dong, Y.; Yu, J.-T.; Sun, S.; Cheng, J. Chem. Commun. 2019, 55, 13685. doi: 10.1039/C9CC07027C
doi: 10.1039/C9CC07027C
Xiong, W.; Cheng, R.; Wu, B.; Wu, W.; Qi, C.; Jiang, H. Sci. China Chem. 2020, 63, 331. doi: 10.1007/s11426-019-9679-6
doi: 10.1007/s11426-019-9679-6
Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967. doi: 10.1002/cssc.201501176
doi: 10.1002/cssc.201501176
Sekine, K.; Kobayashi, R.; Yamada, T. Chem. Lett. 2015, 44, 1407. doi: 10.1246/cl.150584
doi: 10.1246/cl.150584
Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588. doi: 10.1021/acscatal.7b03370
doi: 10.1021/acscatal.7b03370
Qi, C.; Yan, D.; Xiong, W.; Jiang, H. Chin. J. Chem. 2018, 36, 399. doi: 10.1002/cjoc.201700808
doi: 10.1002/cjoc.201700808
Qi, C.; Yan, D.; Xiong, W.; Jiang, H. J. CO2 Util. 2018, 24, 120. doi: 10.1016/j.jcou.2017.12.013
doi: 10.1016/j.jcou.2017.12.013
Zhang, M.; Zhao, X.; Zheng, S. Chem. Commun. 2014, 50, 4455. doi: 10.1039/C4CC00413B
doi: 10.1039/C4CC00413B
Watile, R.A.; Bhanage, B.M. RSC Adv. 2014, 4, 23022. doi: 10.1039/C4RA03836C
doi: 10.1039/C4RA03836C
Shang, J.; Guo, X.; Li, Z.; Deng, Y. Green Chem. 2016, 18, 3082. doi: 10.1039/C5GC02772A
doi: 10.1039/C5GC02772A
Jiang, H.; Zhang, H.; Xiong, W.; Qi, C.; Wu, W.; Wang, L.; Cheng, R. Org. Lett. 2019, 21, 1125. doi: 10.1021/acs.orglett.9b00072
doi: 10.1021/acs.orglett.9b00072
Wang, J.; Quian, P.; Hu, K.; Zha, Z.; Wang, Z. ChemElectroChem 2019, 6, 4292. doi: 10.1002/celc.201801724
doi: 10.1002/celc.201801724
Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328. doi: 10.1039/D1GC00949D
doi: 10.1039/D1GC00949D
Fu, Z. Y.; Yang, Q.; Liu, Z.; Chen, F.; Yao, F. B.; Xie, T.; Wang, D. B.; Li, J.; Li, X. M.; Zeng, G. M.; et al. J. CO2 Util. 2019, 34, 63. doi: 10.1016/j.jcou.2019.05.032
doi: 10.1016/j.jcou.2019.05.032
Wang, C. L.; Sun, Z. X.; Zheng, Y.; Hu, Y. H. J. Mater. Chem. A 2019, 7, 865. doi: 10.1039/c8ta09865d
doi: 10.1039/c8ta09865d
Schwalbe, M.; Huang, H.; Li, G. H. ChemPhotoChem 2022, 6, e20210021. doi: 10.1002/cptc.202100217
doi: 10.1002/cptc.202100217
Huang, W.; Lin, J. Y.; Deng, F.; Zhong, H. Asian J. Org. Chem. 2022, 11, e202200220. doi: 10.1002/ajoc.202200220
doi: 10.1002/ajoc.202200220
Qiu, L.-Q.; Yao, X. Y.; Zhang, Y.-K.; Li, H.-R.; He, L.-N. J. Org. Chem. 2023, 88, 4942. doi: 10.1021/acs.joc.2c02179
doi: 10.1021/acs.joc.2c02179
Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H.; Green Chem. 2017, 19, 1240. doi: 10.1039/C6GC03200A
doi: 10.1039/C6GC03200A
Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190. doi: 10.1021/acs.orglett.7b03551
doi: 10.1021/acs.orglett.7b03551
Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049. doi: 10.1021/acs.orglett.8b01079
doi: 10.1021/acs.orglett.8b01079
Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6579. doi: 10.1021/acs.orglett.9b02700
doi: 10.1021/acs.orglett.9b02700
Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890. doi: 10.1039/D0GC00910E
doi: 10.1039/D0GC00910E
Wang, L.; Shi, F.; Qi, C.; Xu, W.; Xiong, W.; Kang, B.; Jiang, H. Chem. Sci. 2021, 12, 11821. doi: 10.1039/D1SC03366B
doi: 10.1039/D1SC03366B
Guo, Y. H.; Wei, L.; Wen, Z. L.; Jiang, H.; Qi, C. Chem. Commun. 2023, 59, 764. doi: 10.1039/D2CC06033G
doi: 10.1039/D2CC06033G
Sahari, A.; Puumi, J.; Mannisto, J. K.; Repo, T. J. Org. Chem. 2023, 88, 3822. doi: 10.1021/acs.joc.3c00023
doi: 10.1021/acs.joc.3c00023
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070