Citation: Wenjuan Tan, Yong Ye, Xiujuan Sun, Bei Liu, Jiajia Zhou, Hailong Liao, Xiulin Wu, Rui Ding, Enhui Liu, Ping Gao. Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230605. doi: 10.3866/PKU.WHXB202306054 shu

Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation

  • Corresponding author: Xiujuan Sun, sunxj594@xtu.edu.cn Bei Liu, liubei@xtu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 30 June 2023
    Revised Date: 13 August 2023
    Accepted Date: 13 August 2023
    Available Online: 22 August 2023

    Fund Project: the General Project of Education Department of Hunan Province, China 20C1774the Natural Science Foundation of Hunan Province, China 2021JJ40530the Natural Science Foundation of Hunan Province, China 2022JJ40428

  • Handling hydrazine/urea wastewater through electrochemical oxidation technology (HzOR/UOR) holds significant importance for sewage disposal and nitrogen recycling, as the presence of hydrazine/urea leads to severe environmental issues. On the other hand, hydrazine/urea could potentially serve as a new type of fuel. However, at present, this remains a considerable challenge. The development of a low-cost, highly efficient, and stable electrocatalyst stands as a prerequisite for achieving this goal. In this study, a novel Ni2P/CoP3-Znvac bimetallic phosphide catalyst is designed and constructed using a hydrothermal-alkali etching-phosphating three-step method. This catalyst integrates P-rich CoP3, P-poor metallic Ni2P, and abundant Zn2+ cation vacancies into a single structure for HzOR/UOR. Copious P in CoP3 provides a wealth of negative electrons, which aids in the adsorption of positive reactive intermediates. Meanwhile, P-poor metallic Ni2P exhibits excellent electrical conductivity, ensuring rapid reaction dynamics. Both physical and electrochemical experiments confirm the successful creation of the Ni2P/CoP3-Znvac heterojunction, along with the distinctive electron structure of Ni2P and CoP3. Electron paramagnetic resonance (EPR) results validate the presence of cation vacancies, which significantly enhance the density of active sites. Consequently, this innovative Ni2P/CoP3-Znvac heterojunction catalyst displays remarkable electrocatalytic activity, achieving a potential of −47 mV/1.311 V to attain 10 mA∙cm−2 for HzOR and UOR, respectively. The Tafel slopes of 54.3 and 37.24 mV∙dec−1 for HzOR and UOR are significantly smaller than those of single-phased Ni2P and CoP3, as well as the two-phased phosphide without alkali etching. Building upon the excellent HzOR/UOR performance of the Ni2P/CoP3-Znvac heterojunction, a two-electrode cell for direct hydrazine fuel cells (DHzFC) and direct urea-hydrogen peroxide fuel cells (DUHPFC) is assembled with a Ni2P/CoP3-Znvac anode. This configuration demonstrates a maximum power density of 229.01 mW∙cm−2 for DHzFC and 16.22 mW∙cm−2 for DUHPFC. Moreover, both DHzFC and DUHPFC exhibit exceptional stability for up to 24 h. A homemade aqueous Zn-Hz battery, equipped with a Ni2P/CoP3-Znvac cathode, further demonstrates its practicality for energy conversion. This work underscores a promising avenue for developing cost-effective and highly stable solutions for UOR and HzOR.
  • 加载中
    1. [1]

      Huang, K. J.; Li, L.; Olivetti, E. A. Joule 2018, 2, 1642. doi: 10.1016/j.joule.2018.07.020  doi: 10.1016/j.joule.2018.07.020

    2. [2]

      Wang, J. Y.; Ouyang, T.; Li, N.; Ma, T. Y.; Liu, Z. Q. Sci. Bull. 2018, 63, 1130. doi: 10.1016/j.scib.2018.07.008  doi: 10.1016/j.scib.2018.07.008

    3. [3]

      Huang, Y. J.; Li, M.; Pan, F.; Zhu, Z. Y.; Sun, H. M.; Tang, Y. W.; Fu, G. T. Carbon Energy 2022, 5, e279. doi: 10.1002/cey2.279  doi: 10.1002/cey2.279

    4. [4]

      Liu, Y. Y.; Wang, Y. C.; Liu, B. Y.; Amer, M.; Yan, K. Acta Phys.-Chim. Sin. 2023, 39 (2), 2205028.  doi: 10.3866/PKU.WHXB202205028

    5. [5]

      Li, M.; Pan, X. C.; Jiang, M. Q.; Zhang, Y. F.; Tang, Y. W.; Fu, G. T. Chem. Eng. J. 2020, 395, 125160. doi: 10.1016/j.cej.2020.125160  doi: 10.1016/j.cej.2020.125160

    6. [6]

      Huang, C.; Ouyang, T.; Zou, Y.; Li, N.; Liu, Z. Q. J. Mater. Chem. A 2018, 6, 7420. doi: 10.1039/c7ta11364a  doi: 10.1039/c7ta11364a

    7. [7]

      Bi, Z. H.; Zhang, H.; Zhao, X.; Wang, Y. W.; Tan, F.; Chen, S. Q.; Feng, L. G.; Zhou, Y. T.; Ma, X.; Su, Z.; et al. Energy Stor. Mater. 2023, 54, 313. doi: 10.1016/j.ensm.2022.10.045  doi: 10.1016/j.ensm.2022.10.045

    8. [8]

      Xiao, Y.; Pei, Y.; Hu, Y. F.; Ma, R. G.; Wang, D. Y.; Wang, J. C. Acta Phys.-Chim. Sin. 2021, 37 (7), 2009051.  doi: 10.3866/PKU.WHXB202009051

    9. [9]

      Liu, J.; Li, E. L.; Ruan, M. B.; Song, P.; Xu, W. L. Catalysts 2015, 5, 1167. doi: 10.3390/catal5031167  doi: 10.3390/catal5031167

    10. [10]

      Li, J. X.; Sun, S. J.; Yang, Y.; Dai, Y. R.; Zhang, B. G.; Feng, L. G. Chem. Commun. 2022, 58, 9552. doi: 10.1039/d2cc03566a  doi: 10.1039/d2cc03566a

    11. [11]

      Li, M.; Wang, S. L.; Wang, X. Z.; Tian, X. L.; Wu, X.; Zhou, Y. T.; Hu, G. Z.; Feng, L. G. Chem. Eng. J. 2022, 442, 136165. doi: 10.1016/j.cej.2022.136165  doi: 10.1016/j.cej.2022.136165

    12. [12]

      Wang, S. L.; Zhu, J. Y.; Wu, X.; Feng, L. G. Chin. Chem. Lett. 2022, 33, 1105. doi: 10.1016/j.cclet.2021.08.042  doi: 10.1016/j.cclet.2021.08.042

    13. [13]

      Wang, X. H.; Hong, Q. L.; Zhang, Z. N.; Ge, Z. X.; Zhai, Q. G.; Jiang, Y. C.; Chen, Y.; Li, S. N. Appl. Surf. Sci. 2022, 604, 154484. doi: 10.1016/j.apsusc.2022.154484  doi: 10.1016/j.apsusc.2022.154484

    14. [14]

      Song, M.; Zhang, Z. J.; Li, Q. W.; Jin, W.; Wu, Z. X.; Fu, G. T.; Liu, X. J. Mater. Chem. A 2019, 7, 3697. doi: 10.1039/c8ta10985k  doi: 10.1039/c8ta10985k

    15. [15]

      Li, M.; Wu, X. D.; Liu, K.; Zhang, Y. F.; Jiang, X. C.; Sun, D. M.; Tang, Y. W.; Huang, K.; Fu, G. T. J. Energy Chem. 2022, 69, 506. doi: 10.1016/j.jechem.2022.01.031  doi: 10.1016/j.jechem.2022.01.031

    16. [16]

      Yu, Z. Y.; Lang, C. C.; Gao, M. R.; Chen, Y.; Fu, Q. Q.; Duan, Y.; Yu, S. H. Energy Environ. Sci. 2018, 11, 1890. doi: 10.1039/c8ee00521d  doi: 10.1039/c8ee00521d

    17. [17]

      Sun, H. R.; Gao, L. Y.; Kumar, A.; Cao, Z. B.; Chang, Z.; Liu, W.; Sun, X. M. ACS Appl. Energy Mater. 2022, 5, 9455. doi: 10.1021/acsaem.2c0100  doi: 10.1021/acsaem.2c0100

    18. [18]

      Li, M.; Gu, Y.; Chang, Y. J.; Gu, X. C.; Tian, J. Q.; Wu, X.; Feng, L. G. Chem. Eng. J. 2021, 425, 130686. doi: 10.1016/j.cej.2021.130686  doi: 10.1016/j.cej.2021.130686

    19. [19]

      Babar, P.; Lokhande, A.; Karade, V.; Lee, I. J.; Lee, D.; Pawar, S.; Kim, J. H. J. Colloid Interface Sci. 2019, 557, 10. doi: 10.1016/j.jcis.2019.09.012  doi: 10.1016/j.jcis.2019.09.012

    20. [20]

      Sun, Q. Q.; Li, Y. B.; Wang, J. F.; Cao, B. Y.; Yu, Y.; Zhou, C. S.; Zhang, G. C.; Wang, Z. L.; Zhao, C. J. Mater. Chem. A 2020, 8, 21084. doi: 10.1039/d0ta08078k  doi: 10.1039/d0ta08078k

    21. [21]

      Liang, J.; Liu, Q.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Zhang, F.; Asiri, A. M.; Sun, X. P. Green Chem. 2021, 23, 2834. doi: 10.1039/d0gc03994b  doi: 10.1039/d0gc03994b

    22. [22]

      Wang, J. M.; Ma, X.; Qu, F. L.; Asiri, A. M.; Sun, X. P. Inorg. Chem. 2017, 56, 1041. doi: 10.1021/acs.inorgchem.6b02808  doi: 10.1021/acs.inorgchem.6b02808

    23. [23]

      Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Sci. Bull. 2021, 66, 1063. doi: 10.1016/j.scib.2021.02.03  doi: 10.1016/j.scib.2021.02.03

    24. [24]

      Li, T. F.; Li, S. L.; Liu, Q. Y.; Tian, Y. C.; Zhang, Y. W.; Fu, G. T.; Tang, Y. W. ACS Sustain. Chem. Eng. 2019, 7, 17950. doi: 10.1021/acssuschemeng.9b04699  doi: 10.1021/acssuschemeng.9b04699

    25. [25]

      Chen, C.; Su, H.; Lu, L. N.; Hong, Y. S.; Chen, Y. Z.; Xiao, K.; Ouyang, T.; Qin, Y. L.; Liu, Z. Q. Chem. Eng. J. 2021, 408, 127814. doi: 10.1016/j.cej.2020.127814  doi: 10.1016/j.cej.2020.127814

    26. [26]

      Fan, C.; Wu, X. D.; Li, M.; Wang, X.; Zhu, Y.; Fu, G. T.; Ma, T. Y.; Tang, Y. W. Chem. Eng. J. 2022, 431, 133829. doi: 10.1016/j.cej.2021.133829  doi: 10.1016/j.cej.2021.133829

    27. [27]

      Sha, l. N.; Yin, J. L.; Ye, K.; Wang, G.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G. L.; Cao, D. X. J. Mater. Chem. A 2019, 7, 9078. doi: 10.1039/c9ta00481e  doi: 10.1039/c9ta00481e

    28. [28]

      Zhang, S. C.; Zhang, C. H.; Zheng, X. S.; Su, G.; Wang, H. L.; Huang, M. H. Appl. Catal. B 2022, 324, 122207. doi: 10.1016/j.apcatb.2022.122207  doi: 10.1016/j.apcatb.2022.122207

    29. [29]

      Wu, D.; Wei, Y. C.; Ren, X.; Ji, X. Q.; Liu, Y. W.; Guo, X. D.; Liu, Z.; Asiri, A. M.; Wei, Q.; Sun, X. P. Adv. Mater. 2018, 30, 1705366. doi: 10.1002/adma.201705366  doi: 10.1002/adma.201705366

    30. [30]

      Wang, Y. B.; Jiang, Y.; Zhao, Y. X.; Ge, X. L.; Lu, Q.; Zhang, T.; Xie, D. S.; Li, M.; Bu, Y. F. Chem. Eng. J. 2023, 451, 138710. doi: 10.1016/j.cej.2022.138710  doi: 10.1016/j.cej.2022.138710

    31. [31]

      Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. J. Mater. Chem. A 2020, 8, 19729. doi: 10.1039/d0ta05628f  doi: 10.1039/d0ta05628f

    32. [32]

      Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Joule 2021, 5, 2164. doi: 10.1016/j.joule.2021.05.018  doi: 10.1016/j.joule.2021.05.018

    33. [33]

      Wang, S. L.; Xu, P. X.; Tian, J. Q.; Liu, Z.; Feng, L. G. Electrochim. Acta 2021, 370, 137755. doi: 10.1016/j.electacta.2021.137755  doi: 10.1016/j.electacta.2021.137755

    34. [34]

      Li, J. X.; Wang, S. L.; Sun, S. J.; Wu, X.; Zhang, B. G.; Feng, L. G. J. Mater. Chem. A 2022, 10, 9308. doi: 10.1039/d2ta00120a  doi: 10.1039/d2ta00120a

    35. [35]

      Yang, L.; Liu, Z.; Zhu, S.; Feng, L.; Xing, W. Mater. Today Phys. 2021, 16, 100292. doi: 10.1016/j.mtphys.2020.100292  doi: 10.1016/j.mtphys.2020.100292

    36. [36]

      Liu, X. J.; He, J.; Zhao, S. Z.; Liu, Y. P.; Zhao, Z.; Luo, J.; Hu, G. Z.; Sun, X. M.; Ding, Y. Nat. Commun. 2018, 9, 4365. doi: 10.1038/s41467-018-06815-9  doi: 10.1038/s41467-018-06815-9

    37. [37]

      Yin, X.; Feng, L. G.; Yang, W.; Zhang, Y. X.; Wu, H. Y.; Yang, L.; Zhou, L.; Gan, L.; Sun, S. R. Nano Res. 2022, 15, 2138. doi: 10.1007/s12274-021-3850-9  doi: 10.1007/s12274-021-3850-9

    38. [38]

      Li, X. Y.; Zhang, R.; Luo, Y. S.; Liu, Q.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Chen, S.; Sun, X. P. Sustain. Energy Fuel. 2020, 4, 3884. doi: 10.1039/d0se00240b  doi: 10.1039/d0se00240b

    39. [39]

      Zhang, Y.; Liu, Y. W.; Ma, M.; Ren, X.; Liu, Z.; Du, G.; Asiri, A. M.; Sun, X. P. Chem. Commun. 2017, 53, 11048. doi: 10.1039/c7cc06278h  doi: 10.1039/c7cc06278h

    40. [40]

      Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M.; et al. Adv. Energy Mater. 2017, 7, 1700020. doi: 10.1002/aenm.201700020  doi: 10.1002/aenm.201700020

    41. [41]

      Feng, L. G.; Ding, R. F.; Chen, Y. W.; Wang, J. W.; Xu, L. J. Power Sources 2020, 452, 227837. doi: 10.1016/j.jpowsour.2020.227837  doi: 10.1016/j.jpowsour.2020.227837

    42. [42]

      Liu, H.; Liu, Z.; Feng, L. G. Nanoscale 2019, 11, 16017. doi: 10.1039/c9nr05204f  doi: 10.1039/c9nr05204f

    43. [43]

      Liu, H.; Yang, D. W.; Bao, Y. F.; Yu, X.; Feng, L. G. J. Power Sources 2019, 434, 226754. doi: 10.1016/j.jpowsour.2019.226754  doi: 10.1016/j.jpowsour.2019.226754

    44. [44]

      Pei, C. G.; Ding, R. F.; Yu, X.; Feng, L. G. ChemCatChem 2019, 11, 4617. doi: 10.1002/cctc.201900886  doi: 10.1002/cctc.201900886

    45. [45]

      Liao, Y.; Chen, Y. Y.; Li, L.; Luo, S.; Qing, Y.; Tian, C. H.; Xu, H.; Zhang, J. X.; Wu, Y. Q. Adv. Funct. Mater. 2023, doi: 10.1002/adfm.202303300  doi: 10.1002/adfm.202303300

    46. [46]

      Chi, J. Q.; Guo, L. L.; Mao, J. Y.; Cui, T.; Zhu, J. W.; Xia, Y. N.; Lai, J. P.; Wang, L. Adv. Funct. Mater. 2023, doi: 10.1002/adfm.202300625  doi: 10.1002/adfm.202300625

    47. [47]

      Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Angew. Chem. Int. Ed. 2021, 60, 24612. doi: 10.1002/anie.202109938  doi: 10.1002/anie.202109938

    48. [48]

      Qian, J.; Wang, X. L.; Jiang, H.; Li, S. L.; Li, C. J.; Li, S. J.; Ma, R. G.; Wang, J. C. ACS Appl. Mater. Interfaces 2022, 14, 18607. doi: 10.1021/acsami.2c03380  doi: 10.1021/acsami.2c03380

    49. [49]

      Zhang, L. S.; Wang, L. P.; Lin, H. P.; Liu, Y. X.; Ye, J. Y.; Wen, Y. Z.; Chen, A.; Wang, L.; Ni, F. L.; Zhou, Z. Y.; et al. Angew. Chem. Int. Ed. 2019, 58, 16820. doi: 10.1002/anie.201909832  doi: 10.1002/anie.201909832

    50. [50]

      Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C.; et al. Angew. Chem. Int. Ed. 2016, 55, 12465. doi: 10.1002/anie.201606313  doi: 10.1002/anie.201606313

    51. [51]

      Zhu, D. D.; Guo, C. X.; Liu, J. L.; Wang, L.; Dub, Y.; Qiao, S. Z. Chem. Commun. 2017, 53, 10906. doi: 10.1039/c7cc06378d  doi: 10.1039/c7cc06378d

    52. [52]

      Singh, R. K.; Schechter, A. ChemCatChem 2017, 9, 3374. doi: 10.1002/cctc.201700451  doi: 10.1002/cctc.201700451

    53. [53]

      Xu, W.; Zhang, H. M.; Li, G.; Wu, Z. C. Sci. Rep. 2014, 4, 5863. doi: 10.1038/srep05863  doi: 10.1038/srep05863

    54. [54]

      Wang, D.; Yan, W.; Vijapur, S. H.; Botte, G. G. Electrochim. Acta 2013, 89, 732. doi: 10.1016/j.electacta.2012.11.046  doi: 10.1016/j.electacta.2012.11.046

    55. [55]

      Wang, L.; Ren, L. T.; Wang, X. R.; Feng, X.; Zhou, J. W.; Wang, B. ACS Appl. Mater. Interfaces 2018, 10, 4750. doi: 10.1021/acsami.7b18650  doi: 10.1021/acsami.7b18650

    56. [56]

      He, Q.; Wan, Y. Y.; Jiang, H. L.; Pan, Z. W.; Wu, C. Q.; Wang, M.; Wu, X. J.; Ye, B. J.; Ajayan, P. M.; Song, L. ACS Energy Lett. 2018, 3, 1373. doi: 10.1021/acsenergylett.8b00515  doi: 10.1021/acsenergylett.8b00515

    57. [57]

      Barakat, N. A. M.; Alajami, M.; Al Haj, Y.; Obaid, M.; Al-Meer, S. Catal. Commun. 2017, 97, 32. doi: 10.1016/j.catcom.2017.03.027  doi: 10.1016/j.catcom.2017.03.027

    58. [58]

      Shi, Y.; Li, H. R.; Ao, D. N.; Chang, Y.; Xu, A. J.; Jia, M. L.; Jia, J. C. J. Alloys Compd. 2021, 885, 160919. doi: 10.1016/j.jallcom.2021.160919  doi: 10.1016/j.jallcom.2021.160919

    59. [59]

      Liu, H. P.; Zhu, S. L.; Cui, Z. D.; Li, Z. Y.; Wu, S. L.; Liang, Y. Q. Nanoscale 2021, 13, 1759. doi: 10.1039/d0nr08025j  doi: 10.1039/d0nr08025j

    60. [60]

      Ding, R.; Li, X. D.; Shi, W.; Xu, Q. L.; Wang, L.; Jiang, H. X.; Yang, Z.; Liu, E. H. Electrochim. Acta 2016, 222, 455. doi: 10.1016/j.electacta.2016.10.198  doi: 10.1016/j.electacta.2016.10.198

    61. [61]

      Ji, Z. J.; Liu, J.; Deng, Y.; Zhang, S. T.; Zhang, Z.; Du, P. Y.; Zhao, Y. L.; Lu, X. Q. J. Mater. Chem. A 2020, 8, 14680. doi: 10.1039/d0ta05160h  doi: 10.1039/d0ta05160h

    62. [62]

      Ye, K.; Wang, G.; Cao, D. X.; Wang, G. X. Top. Curr. Chem. 2018, 376, 3905. doi: 10.1007/s41061-018-0219-y  doi: 10.1007/s41061-018-0219-y

    63. [63]

      Vedharathinam, V.; Botte, G. G. Electrochim. Acta 2013, 108, 660. doi: 10.1016/j.electacta.2013.06.137  doi: 10.1016/j.electacta.2013.06.137

    64. [64]

      Vedharathinam, V.; Botte, G. G. Electrochim. Acta 2012, 81, 292. doi: 10.1016/j.electacta.2012.07.007  doi: 10.1016/j.electacta.2012.07.007

    65. [65]

      Vedharathinam, V.; Botte, G. G. J. Phys. Chem. C 2014, 118, 21806. doi: 10.1021/jp5052529  doi: 10.1021/jp5052529

    66. [66]

      Wang, S. L.; Yang, X. D.; Liu, Z.; Yang, D. W.; Feng, L. G. Nanoscale 2020, 12, 10827. doi: 10.1039/d0nr01386b  doi: 10.1039/d0nr01386b

    67. [67]

      Xu, Z. Y.; Chen, Q.; Chen, Q. X.; Wang, P.; Wang, J. X.; Guo, C.; Qiu, X. Y.; Han, X.; Hao, J. H. J. Mater. Chem. A 2022, 10, 24137. doi: 10.1039/d2ta05494a  doi: 10.1039/d2ta05494a

    68. [68]

      Wang, K. L.; Hou, M. M.; Huang, W.; Cao, Q. H.; Zhao, Y. J.; Sun, X. J.; Ding, R.; Lin, W. W.; Liu, E. H.; Gao, P. J. Colloid Interface Sci. 2022, 615, 309. doi: 10.1016/j.jcis.2022.01.151  doi: 10.1016/j.jcis.2022.01.151

    69. [69]

      Wang, K.; Li, Y. Z.; Hu, J. D.; Lu, Z. J.; Xie, J.; Hao, A. Z.; Cao, Y. L. Chem. Eng. J. 2022, 447, 137540. doi: 10.1016/j.cej.2022.137540  doi: 10.1016/j.cej.2022.137540

    70. [70]

      Zhang, B.; Yang, F.; Liu, X. D.; Wu, N.; Che, S.; Li, Y. F. Appl. Catal. B 2021, 298, 120494. doi: 10.1016/j.apcatb.2021.120494  doi: 10.1016/j.apcatb.2021.120494

    71. [71]

      Feng, Y. Y.; Shi, Q. M.; Lin, J.; Chai, E. C.; Zhang, X.; Liu, Z. L.; Jiao, L.; Wang, Y. B. Adv. Mater. 2022, 34, 2207747. doi: 10.1002/adma.202207747  doi: 10.1002/adma.202207747

  • 加载中
    1. [1]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    6. [6]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    13. [13]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    14. [14]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(1)
  • Abstract views(728)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return