Citation: Zhiyang Li, Hui Deng, Xinqi Cai, Zhuo Chen. Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230605. doi: 10.3866/PKU.WHXB202306051 shu

Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics

  • Corresponding author: Xinqi Cai, xinqicai@hnu.edu.cn Zhuo Chen, zhuochen@hnu.edu.cn
  • Received Date: 30 June 2023
    Revised Date: 23 August 2023
    Accepted Date: 24 August 2023
    Available Online: 1 September 2023

    Fund Project: the National Key Research and Development Program of China 2022YFC2403500the National Natural Science Foundation of China 22225401

  • In recent years, there has been significant interest in the potential of probiotics to inhibit the growth of Helicobacter pylori (H. pylori), a bacterium known to cause gastric infections. However, the effectiveness of probiotics in combating H. pylori is often hindered by their susceptibility to gastric acid, making it challenging for them to survive and remain active in the stomach. To address this issue, researchers have turned to hydrogel encapsulation as a promising strategy to protect probiotics. Therefore, we designed a hydrogel-probiotic capsules possessed both acid resistance and magnetic drive properties to protect and targeted-deliver probiotics in gastric conditions. The probiotic capsules with core-shell structure prepared by the electrostatic spray method can encapsule the probiotic without damaging the activity of probiotic. The probiotic capsule was composed of a calcium alginate/CaCO3/FeCo@G (iron-cobalt magnetic graphitic nanocapsule) shell and a Laj (Lactobacillus Johnsonii, a kind of probiotics) core (Alg/CaCO3/FeCo@G-Laj, ACFL). The capsules were thoroughly characterized using field emission scanning electron microscopy and cell microscopic imaging to verify their morphology and their ability to encapsulate probiotics. The results indicated that ACFL capsules maintained their integrity during a 2-h incubation in DPBS (Dulbecco's Phosphate-Buffered Saline) without releasing the probiotics, underscoring their robust encapsulation capacity. Moreover, ACFL could sustain the activity of Laj in SGF (simulated gastric fluid) for a long time by locally neutralizing the gastric acid through CaCO3. It's worth noting that Laj exhibits considerable H. pylori inhibition properties by secreting lactic acid to damage H. pylori and by competing adsorption for gastric epithelial cells with H. pylori. ACFL capsules demonstrated significant H. pylori inhibition properties even after exposure to SGF, further supporting the protective effect of the encapsulation strategy on probiotic activity. Moreover, in order to achieve efficient bactericidal performance in the real system, it is necessary to design a power device to give the capsule active propulsion ability to realize targeted delivery of Laj. FeCo@G, which possesses brilliant stability in acid environment on account of the protective graphitic shell, was integrated in ACFL for efficient magnetically navigated delivery. The results show that ACFL can reach a velocity of 3 cm·s-1 under the guidance of an external magnetic field, which confirms the ability of ACFL capsule to be potent tool for target delivery of probiotics. In conclusion, ACFL capsules hold promise for effectively targeting the gastric wall and releasing active probiotics to combat H. pylori infections. The combination of acid-neutralizing properties and magnetic navigation not only maintains the viability of the probiotics but also minimizes disruption to gastric homeostasis. This innovative approach offers a new avenue for protecting and controlling the release of active agents in the challenging gastric environment, opening up possibilities for improved treatments and interventions.
  • 加载中
    1. [1]

      Miehlke, S.; Hackelsberger, A.; Meining, A.; Hatz, R.; Lehn, N.; Malfertheiner, P.; Stolte, M.; Bayerdorffer, E. Br. J. Cancer 1998, 78 (2), 263. doi: 10.1038/bjc.1998.475  doi: 10.1038/bjc.1998.475

    2. [2]

      Kao, C. Y.; Sheu, B. S.; Wu, J. J. Biomed. J. 2016, 39 (1), 14. doi: 10.1016/j.bj.2015.06.002  doi: 10.1016/j.bj.2015.06.002

    3. [3]

      Yazbek, P. B.; Trindade, A. B.; Chin, C. M.; Dos Santos, J. L. Dig. Dis. Sci. 2015, 60 (10), 2901. doi: 10.1007/s10620-015-3712-y  doi: 10.1007/s10620-015-3712-y

    4. [4]

      Poulsen, A. H.; Christensen, S.; McLaughlin, J. K.; Thomsen, R. W.; Sorensen, H. T.; Olsen, J. H.; Friis, S. Br. J. Cancer 2009, 100 (9), 1503. doi: 10.1038/sj.bjc.6605024  doi: 10.1038/sj.bjc.6605024

    5. [5]

      Smith, S. M.; O'Morain, C.; McNamara, D. World J. Gastroenterol. 2014, 20 (29), 9912. doi: 10.3748/wjg.v20.i29.9912  doi: 10.3748/wjg.v20.i29.9912

    6. [6]

      Mestre, A.; Sathiya Narayanan, R.; Rivas, D.; John, J.; Abdulqader, M. A.; Khanna, T.; Chakinala, R. C.; Gupta, S. Cureus 2022, 14 (6), e26463. doi: 10.7759/cureus.26463  doi: 10.7759/cureus.26463

    7. [7]

      Felley, C.; Michetti, P. Res. Clin. Gastroenterol. 2003, 17 (5), 785. doi: 10.1016/s1521-6918[03]00070-2  doi: 10.1016/s1521-6918[03]00070-2

    8. [8]

      Midolo, P. D.; Lambert, J. R.; Hull, R.; Luo, F.; Grayson, M. L. J. Appl. Bacteriol. 1995, 79 (4), 475. doi: 10.1111/j.13652672.1995.tb03164.x  doi: 10.1111/j.13652672.1995.tb03164.x

    9. [9]

      Kim, J. E.; Kim, M. S.; Yoon, Y. S.; Chung, M. J.; Yum, D. Y. J. Microbiol. 2014, 52 (11), 955. doi: 10.1007/s12275-014-4355-y  doi: 10.1007/s12275-014-4355-y

    10. [10]

      Lin, W. H.; Wu, C. R.; Fang, T. J.; Guo, J. T.; Huang, S. Y.; Lee, M. S.; Yang, H. L. J. Sci. Food Agric. 2011, 91 (8), 1424. doi: 10.1002/jsfa.4327  doi: 10.1002/jsfa.4327

    11. [11]

      Dore, M. P.; Cuccu, M.; Pes, G. M.; Manca, A.; Graham, D. Y. Intern. Emerg. Med. 2013, 9 (6), 649. doi: 10.1007/s11739-013-1013-z  doi: 10.1007/s11739-013-1013-z

    12. [12]

      Xu, C.; Ban, Q.; Wang, W.; Hou, J.; Jiang, Z. J. Control. Release 2022, 349, 184. doi: 10.1016/j.jconrel.2022.06.061  doi: 10.1016/j.jconrel.2022.06.061

    13. [13]

      Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D. L.; Hoorfar, M. Food Hydrocoll. 2021, 120, 106882. doi: 10.1016/j.foodhyd.2021.106882  doi: 10.1016/j.foodhyd.2021.106882

    14. [14]

      Ghibaudo, F.; Gerbino, E.; Viviana, C. D. O.; Gómez-Zavaglia, A. J. Funct. Foods 2017, 39, 299. doi: 10.1016/j.jff.2017.10.028  doi: 10.1016/j.jff.2017.10.028

    15. [15]

      Liu, H.; Xie, M.; Nie, S. Food Front. 2020, 1 (1), 45. doi: 10.1002/fft2.11  doi: 10.1002/fft2.11

    16. [16]

      Ni, F.; Luo, X.; Zhao, Z.; Yuan, J.; Song, Y.; Liu, C.; Huang, M.; Dong, L.; Xie, H.; Cai, L.; Ren, G.; Gu, Q. Int. J. Biol. Macromol. 2023, 224, 94. doi: 10.1016/j.ijbiomac.2022.10.106  doi: 10.1016/j.ijbiomac.2022.10.106

    17. [17]

      Singu, B. D.; Bhushette, P. R.; Annapure, U. S. Food Biosci. 2020, 36, 100668. doi: 10.1016/j.fbio.2020.100668  doi: 10.1016/j.fbio.2020.100668

    18. [18]

      Dong, Q. Y.; Chen, M. Y.; Xin, Y.; Qin, X. Y.; Cheng, Z.; Shi, L. E.; Tang, Z. X. Int. J. Food Sci. Technol. 2013, 48 (7), 1339. doi: 10.1111/ijfs.12078  doi: 10.1111/ijfs.12078

    19. [19]

      Doherty, S. B.; Gee, V. L.; Ross, R. P.; Stanton, C.; Fitzgerald, G. F.; Brodkorb, A. Food Hydrocoll. 2011, 25 (6), 1604. doi: 10.1016/j.foodhyd.2010.12.012  doi: 10.1016/j.foodhyd.2010.12.012

    20. [20]

      Liu, S.; Zhou, Y.; Chen, F.; Zhu, S.; Su, F.; Li, S. Acta Chim. Sin. 2015, 73, 47. doi: 10.6023/A14100710  doi: 10.6023/A14100710

    21. [21]

      Jiang, T.; Lu, W.; Cui, S.; Zhang, H.; Zhao, J. Food Ferment. Ind. 2021, 47, 7. doi: 10.13386/j.issn1002-0306.2020100241  doi: 10.13386/j.issn1002-0306.2020100241

    22. [22]

      Zhang, W.; He, X. J. Biomech. Eng. 2009, 131 (7), 074515. doi: 10.1115/1.3153326  doi: 10.1115/1.3153326

    23. [23]

      Xu, C.; Ma, J.; Liu, Z.; Wang, W.; Liu, X.; Qian, S.; Chen, L.; Gu, L.; Sun, C.; Hou, J.; Jiang, Z. Food Chem. 2023, 402, 134253. doi: 10.1016/j.foodchem.2022.134253  doi: 10.1016/j.foodchem.2022.134253

    24. [24]

      Yao, M.; Xie, J.; Du, H.; McClements, D. J.; Xiao, H.; Li, L. Compr. Rev. Food Sci. Food Safety 2020, 19 (2), 857. doi: 10.1111/1541-4337.12532  doi: 10.1111/1541-4337.12532

    25. [25]

      Etchepare, M. d. A.; Raddatz, G. C.; Cichoski, A. J.; Flores, É. M. M.; Barin, J. S.; Queiroz Zepka, L.; Jacob-Lopes, E.; Grosso, C. R. F.; de Menezes, C. R. J. Funct. Foods 2016, 21, 321. doi: 10.1016/j.jff.2015.12.025  doi: 10.1016/j.jff.2015.12.025

    26. [26]

      Peñalva, R.; Martínez-López, A. L.; Gamazo, C.; Gonzalez-Navarro, C. J.; González-Ferrero, C.; Virto-Resano, R.; Brotons-Canto, A.; Vitas, A. I.; Collantes, M.; Peñuelas, I.; et al. Food Hydrocoll. 2023, 136, 108213. doi: 10.1016/j.foodhyd.2022.108213  doi: 10.1016/j.foodhyd.2022.108213

    27. [27]

      Hlaing, S. P.; Kim, J.; Lee, J.; Kwak, D.; Kim, H.; Yoo, J. W. Pharmaceutics 2020, 12 (7), 662. doi: 10.3390/pharmaceutics12070662  doi: 10.3390/pharmaceutics12070662

    28. [28]

      Fu, Q.; Zhang, X.; Zhang, S.; Fan, C.; Cai, Z.; Wang, L. Appl. Bionics Biomech. 2022, 2022, 2233417. doi: 10.1155/2022/2233417  doi: 10.1155/2022/2233417

    29. [29]

      Song, X. J.; Liu, Z. Acta Phys. -Chim. Sin. 2018, 34, 123. doi: 10.3866/PKU.WHXB201707042  doi: 10.3866/PKU.WHXB201707042

    30. [30]

      Kadiri, V. M.; Bussi, C.; Holle, A. W.; Son, K.; Kwon, H.; Schutz, G.; Gutierrez, M. G.; Fischer, P. Adv. Mater. 2020, 32 (25), e2001114. doi: 10.1002/adma.202001114  doi: 10.1002/adma.202001114

    31. [31]

      Xing, J.; Yin, T.; Li, S.; Xu, T.; Ma, A.; Chen, Z.; Luo, Y.; Lai, Z.; Lv, Y.; Pan, H.; et al. Adv. Funct. Mater. 2020, 31 (11), 2008262. doi: 10.1002/adfm.202008262  doi: 10.1002/adfm.202008262

    32. [32]

      Chatzipirpiridis, G.; Ergeneman, O.; Pokki, J.; Ullrich, F.; Fusco, S.; Ortega, J. A.; Sivaraman, K. M.; Nelson, B. J.; Pane, S. Adv. Healthc. Mater. 2015, 4 (2), 209. doi: 10.1002/adhm.201400256  doi: 10.1002/adhm.201400256

    33. [33]

      Xie, H.; Sun, M.; Fan, X.; Lin, Z.; Chen, W.; Wang, L.; Dong, L.; He, Q. Sci. Robot 2019, 4, eaav8006. doi: 10.1126/scirobotics.aav8006  doi: 10.1126/scirobotics.aav8006

    34. [34]

      Zhang, L.; Zhang, L.; Deng, H.; Li, H.; Tang, W.; Guan, L.; Qiu, Y.; Donovan, M. J.; Chen, Z.; Tan, W. Nat. Commun. 2021, 12, 2002. doi: 10.1038/s41467-021-22286-x  doi: 10.1038/s41467-021-22286-x

    35. [35]

      Cai, X.; Xu, Y.; Zhao, L.; Xu, J.; Li, S.; Wen, C.; Xia, X.; Dong, Q.; Hu, X.; Wang, X.; et al. Nano Today 2021, 36, 101032. doi: 10.1016/j.nantod.2020.101032  doi: 10.1016/j.nantod.2020.101032

    36. [36]

      Li, Y.; Hu, X.; Ding, D.; Zou, Y.; Xu, Y.; Wang, X.; Zhang, Y.; Chen, L.; Chen, Z.; Tan, W. Nat. Commun. 2017, 8, 15653. doi: 10.1038/ncomms15653  doi: 10.1038/ncomms15653

    37. [37]

  • 加载中
    1. [1]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    6. [6]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    10. [10]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    13. [13]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    14. [14]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    15. [15]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    16. [16]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    17. [17]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    18. [18]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    19. [19]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    20. [20]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

Metrics
  • PDF Downloads(2)
  • Abstract views(225)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return