Citation: Yawen Guo, Dawei Li, Yang Gao, Cuihong Li. Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230605. doi: 10.3866/PKU.WHXB202306050 shu

Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors

  • Corresponding author: Cuihong Li, licuihong@bnu.edu.cn
  • Received Date: 28 June 2023
    Revised Date: 8 August 2023
    Accepted Date: 9 August 2023
    Available Online: 21 August 2023

    Fund Project: the National Natural Science Foundation of China 21975031

  • Bulk-heterojunctions (BHJ) Organic solar cells (OSCs) have garnered considerable attention in the past two decades due to their advantages, including mechanical flexibility, lightweight, low-cost solution-processability, and semitransparency. The recent years have witnessed rapid progress in the realm of OSCs centered around non-fullerene acceptors (NFAs) thanks to the distinct merits of NFAs's stronger and broader absorption, highly adjustable energy levels, and easily modification of molecular structures. The power conversion efficiency (PCE) of single-junction OSCs has now reached high values of over 19%, which brings them closer to the threshold for commercial viability. This increase in PCE is attributed to advancements in active layer materials, device engineering, and a deeper comprehension of device physics. Nevertheless, achieving high PCE is not the only requirement for commercialization, while the stability of the devices is equally pivotal. The photovoltaic performance degradation of BHJ OSCs devices has been widely observed, however, the research on the stability of NFA-based OSCs has received less attention than efforts directed towards improving PCE through novel material development. The instability of NFA-OSCs has been one of the key obstacles limiting their transition to commercial applications. Various factors, encompassing both external and intrinsic variables, influence their stability. External factors, such as light, heat, water, and stress, exert significant impact on the stability of OSCs. Effective encapsulation can protect the devices from contact with oxygen and water, curtailing degradation. Encapsulated OSCs have demonstrated encouraging operational lifetimes of several years under certain degradation environments, in stark contrast to unencapsulated OSCs which often succumb to rapid degradation, losing their performance within a matter of minutes to days. Intrinsic degradation processes within NFA-OSCs involve material stability, morphology stability of BHJ and interface stability. The degradation of NFA based cells was not fully investigated as has been done on the fullerene based OSCs. There remains a lack of concrete molecular design rules to enhance the stability of NFA based OSCs. Therefore, it is still highly needed to further understand the intrinsic degradation processes of NFA-OSCs and to find proper ways to suppress these degradation processes. Herein, in this context, we present a comprehensive review encompassing the intrinsic fundamentals of instability including photo-oxidation of NFAs, interlayer-induced degradation of NFAs and the blend film morphology. Furthermore, we summarize recent advancements in strategies aimed at enhancing the stability of NFA-OSCs. These include stable NFA molecular design, mitigation of interfacial chemical reactions, and implementation of ternary strategies. It is our aspiration that this concise review will serve as a valuable resource for researchers interested in stability considerations, providing a guiding framework for future endeavors in achieving both efficient and stable NFA-OSCs.
  • 加载中
    1. [1]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    2. [2]

      Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv. Mater. 2010, 22, E135. doi: 10.1002/adma.200903528  doi: 10.1002/adma.200903528

    3. [3]

      Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Adv. Mater. 2013, 25, 4766. doi: 10.1002/adma.201301476  doi: 10.1002/adma.201301476

    4. [4]

      Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009, 3, 297. doi: 10.1038/nphoton.2009.69  doi: 10.1038/nphoton.2009.69

    5. [5]

      Lee, H. K. H.; Telford, A. M.; Rohr, J. A.; Wyatt, M. F.; Rice, B.; Wu, J.; Maciel, A. d. C.; Tuladhar, S. M.; Speller, E.; McGettrick, J.; et al. Energy Environ. Sci. 2018, 11, 417. doi: 10.1039/C7EE02983G  doi: 10.1039/C7EE02983G

    6. [6]

      Brumboiu, I. E.; Ericsson, L.; Hansson, R.; Moons, E.; Eriksson, O.; Brena, B. J. Chem. Phys. 2015, 142, 54306. doi: 10.1063/1.4907012  doi: 10.1063/1.4907012

    7. [7]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    8. [8]

      Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Nat. Photonics 2018, 12, 131. doi: 10.1038/s41566-018-0104-9  doi: 10.1038/s41566-018-0104-9

    9. [9]

      Zang, Y.; Li, C. Z.; Chueh, C. C.; Williams, S. T.; Jiang, W.; Wang, Z. H.; Yu, J. S.; Jen, A. K. Y. Adv. Mater. 2014, 26, 5708. doi: 10.1002/adma.201401992  doi: 10.1002/adma.201401992

    10. [10]

      Wang, J.; Zhan, X. Accounts Chem. Res. 2021, 54, 132. doi: 10.1021/acs.accounts.0c00575  doi: 10.1021/acs.accounts.0c00575

    11. [11]

      Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17, 119. doi: 10.1038/nmat5063  doi: 10.1038/nmat5063

    12. [12]

      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3, 1140. doi: 10.1016/j.joule.2019.01.004  doi: 10.1016/j.joule.2019.01.004

    13. [13]

      Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; et al. Adv. Mater. 2021, 33, 2102420. doi: 10.1002/adma.202102420  doi: 10.1002/adma.202102420

    14. [14]

      Wang, J.; Wang, Y.; Bi, P.; Chen, Z.; Qiao, J.; Li, J.; Wang, W.; Zheng, Z.; Zhang, S.; Hao, X.; et al. Adv. Mater. 2023, 35, 2301583. doi: 10.1002/adma.202301583  doi: 10.1002/adma.202301583

    15. [15]

      Fu, J.; Fong, P. W. K.; Liu, H.; Huang, C. S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C. M.; Yang, Y.; et al. Nat. Commun. 2023, 14, 1760. doi: 10.1038/s41467-023-37526-5  doi: 10.1038/s41467-023-37526-5

    16. [16]

      Meng, L.; Liang, H.; Song, G.; Li, M.; Huang, Y.; Jiang, C.; Zhang, K.; Huang, F.; Yao, Z.; Li, C.; et al. Sci. China Chem. 2023, 66, 808. doi: 10.1007/s11426-022-1479-x  doi: 10.1007/s11426-022-1479-x

    17. [17]

      Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Joule 2022, 6, 171. doi: 10.1016/j.joule.2021.12.017  doi: 10.1016/j.joule.2021.12.017

    18. [18]

      Bi, P.; Zhang, S.; Chen, Z.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J.; Qin, J.; Hong, L.; Hao, X.; et al. Joule 2021, 5, 2408. doi: 10.1016/j.joule.2021.06.020  doi: 10.1016/j.joule.2021.06.020

    19. [19]

      Zhao, F.; Wang, C.; Zhan, X. Adv. Energy Mater. 2018, 8, 1703147. doi: 10.1002/aenm.201703147  doi: 10.1002/aenm.201703147

    20. [20]

      Li, W.; Liu, D.; Wang, T. Adv. Funct. Mater. 2021, 31, 2104552. doi: 10.1002/adfm.202104552  doi: 10.1002/adfm.202104552

    21. [21]

      Li, Y.; Li, T.; Lin, Y. Mat. Chem. Front. 2021, 5, 2907. doi: 10.1039/D1QM00027F  doi: 10.1039/D1QM00027F

    22. [22]

      Jiang, P.; Hu, L.; Sun, L.; Li, Z. a.; Han, H.; Zhou, Y. Chem. Sci. 2022, 13, 4714. doi: 10.1039/D1SC07269B  doi: 10.1039/D1SC07269B

    23. [23]

      Ghosh, B. K. K.; Jha, P. K.; Ghosh, S. K. K.; Biswas, T. K. K. AIP Adv. 2023, 13, 20701. doi: 10.1063/5.0124743  doi: 10.1063/5.0124743

    24. [24]

      Speller, E. M.; Clarke, A. J.; Luke, J.; Lee, H. K. H.; Durrant, J. R.; Li, N.; Wang, T.; Wong, H. C.; Kim, J. S.; Tsoi, W. C.; et al. J. Mater. Chem. A 2019, 7, 23361. doi: 10.1039/C9TA05235F  doi: 10.1039/C9TA05235F

    25. [25]

      Sapkota, S. B.; Spies, A.; Zimmermann, B.; Duerr, I.; Wuerfel, U. Sol. Energy Mater. Sol. Cells 2014, 130, 144. doi: 10.1016/j.solmat.2014.07.004  doi: 10.1016/j.solmat.2014.07.004

    26. [26]

      Krebs, F. C.; Fyenbo, J.; Tanenbaum, D. M.; Gevorgyan, S. A.; Andriessen, R.; van Remoortere, B.; Galagan, Y.; Jorgensen, M. Energy Environ. Sci. 2011, 4, 4116. doi: 10.1039/C1EE01891D  doi: 10.1039/C1EE01891D

    27. [27]

      Yamaguchi, H.; Granstrom, J.; Nie, W.; Sojoudi, H.; Fujita, T.; Voiry, D.; Chen, M.; Gupta, G.; Mohite, A. D.; Graham, S.; et al. Adv. Energy Mater. 2014, 4, 1300986. doi: 10.1002/aenm.201300986  doi: 10.1002/aenm.201300986

    28. [28]

      Chen, N.; Kovacik, P.; Howden, R. M.; Wang, X.; Lee, S.; Gleason, K. K. Adv. Energy Mater. 2015, 5, 1401442. doi: 10.1002/aenm.201401442  doi: 10.1002/aenm.201401442

    29. [29]

      Li, D.; Guo, C.; Zhang, X.; Du, B.; Yu, C.; Wang, P.; Cheng, S.; Wang, L.; Cai, J.; Wang, H.; et al. Sci. China Chem. 2022, 65, 373. doi: 10.1007/s11426-021-1128-1  doi: 10.1007/s11426-021-1128-1

    30. [30]

      Li, D.; Deng, N.; Fu, Y.; Guo, C.; Zhou, B.; Wang, L.; Zhou, J.; Liu, D.; Li, W.; Wang, K.; et al. Adv. Mater. 2023, 35, 2208211. doi: 10.1002/adma.202208211  doi: 10.1002/adma.202208211

    31. [31]

      Grossiord, N.; Kroon, J. M.; Andriessen, R.; Blom, P. W. M. Org. Electron. 2012, 13, 432. doi: 10.1016/j.orgel.2011.11.027  doi: 10.1016/j.orgel.2011.11.027

    32. [32]

      Cheng, P.; Zhan, X. Chem. Soc. Rev. 2016, 45, 2544. doi: 10.1039/C5CS00593K  doi: 10.1039/C5CS00593K

    33. [33]

      Wang, Y.; Lee, J.; Hou, X.; Labanti, C.; Yan, J.; Mazzolini, E.; Parhar, A.; Nelson, J.; Kim, J. S.; Li, Z. Adv. Energy Mater. 2021, 11, 2003002. doi: 10.1002/aenm.202003002  doi: 10.1002/aenm.202003002

    34. [34]

      Duan, L.; Uddin, A. Adv. Sci. 2020, 7, 1903259. doi: 10.1002/advs.201903259  doi: 10.1002/advs.201903259

    35. [35]

      Xu, X.; Li, D.; Yuan, J.; Zhou, Y.; Zou, Y. EnergyChem. 2021, 3, 100046. doi: 10.1016/j.enchem.2020.100046  doi: 10.1016/j.enchem.2020.100046

    36. [36]

      Xu, X.; Wu, H.; Liang, S.; Tang, Z.; Li, M.; Wang, J.; Wang, X.; Wen, J.; Zhou, E.; Li, W.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2201039.  doi: 10.3866/PKU.WHXB202201039

    37. [37]

      Lu, Y.; Ge, Y.; Sui, M. Acta Phys. -Chim. Sin. 2022, 38, 2007088.  doi: 10.3866/PKU.WHXB202007088

    38. [38]

      Liang, Q.; Chang, Y.; Liang, C.; Zhu, H.; Guo, Z.; Liu, J. Acta Phys. -Chim. Sin. 2023, 39, 2212006.  doi: 10.3866/PKU.WHXB202212006

    39. [39]

      Manceau, M.; Gaume, J.; Rivaton, A.; Gardette, J. L.; Monier, G.; Bideux, L. Thin Solid Films 2010, 518, 7113. doi: 10.1016/j.tsf.2010.06.042  doi: 10.1016/j.tsf.2010.06.042

    40. [40]

      Liu, X.; Zheng, Z.; Wang, J.; Wang, Y.; Xu, B.; Zhang, S.; Hou, J. Adv. Mater. 2022, 34, 2106453. doi: 10.1002/adma.202106453  doi: 10.1002/adma.202106453

    41. [41]

      Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. Science 2012, 336, 327. doi: 10.1126/science.1218829  doi: 10.1126/science.1218829

    42. [42]

      Kotova, M. S.; Londi, G.; Junker, J.; Dietz, S.; Privitera, A.; Tvingstedt, K.; Beljonne, D.; Sperlich, A.; Dyakonov, V. Mater. Horizons. 2020, 7, 1641. doi: 10.1039/D0MH00286K  doi: 10.1039/D0MH00286K

    43. [43]

      Guo, J.; Wu, Y.; Sun, R.; Wang, W.; Guo, J.; Wu, Q.; Tang, X.; Sun, C.; Luo, Z.; Chang, K.; et al. J. Mater. Chem. A 2019, 7, 25088. doi: 10.1039/C9TA09961A  doi: 10.1039/C9TA09961A

    44. [44]

      Luke, J.; Speller, E. M.; Wadsworth, A.; Wyatt, M. F.; Dimitrov, S.; Lee, H. K. H.; Li, Z.; Tsoi, W. C.; McCulloch, I.; Bagnis, D.; et al. Adv. Energy Mater. 2019, 9, 1803755. doi: 10.1002/aenm.201803755  doi: 10.1002/aenm.201803755

    45. [45]

      Classen, A.; Heumueller, T.; Wabra, I.; Gerner, J.; He, Y.; Einsiedler, L.; Li, N.; Matt, G. J.; Osvet, A.; Du, X.; et al. Adv. Energy Mater. 2019, 9, 1902124. doi: 10.1002/aenm.201902124  doi: 10.1002/aenm.201902124

    46. [46]

      Doumon, N. Y.; Dryzhov, M. V.; Houard, F. V.; Le Corre, V. M.; Rahimi Chatri, A.; Christodoulis, P.; Koster, L. J. A. ACS Appl. Mater. Interfaces 2019, 11, 8310. doi: 10.1021/acsami.8b20493  doi: 10.1021/acsami.8b20493

    47. [47]

      Xu, X.; Li, Y.; Peng, Q. Adv. Mater. 2022, 34, 2107476. doi: 10.1002/adma.202107476  doi: 10.1002/adma.202107476

    48. [48]

      Zhu, Y.; Gadisa, A.; Peng, Z.; Ghasemi, M.; Ye, L.; Xu, Z.; Zhao, S.; Ade, H. Adv. Energy Mater. 2019, 9, 1900376. doi: 10.1002/aenm.201900376  doi: 10.1002/aenm.201900376

    49. [49]

      Zhao, F.; Zhang, H.; Zhang, R.; Yuan, J.; He, D.; Zou, Y.; Gao, F. Adv. Energy Mater. 2020, 10, 2002746. doi: 10.1002/aenm.202002746  doi: 10.1002/aenm.202002746

    50. [50]

      Han, J.; Wang, Y.; Zhu, F. Energy Technol. 2020, 8, 2000245. doi: 10.1002/ente.202000245  doi: 10.1002/ente.202000245

    51. [51]

      Wang, Y.; Lan, W.; Li, N.; Lan, Z.; Li, Z.; Jia, J.; Zhu, F. Adv. Energy Mater. 2019, 9, 1900157. doi: 10.1002/aenm.201900157  doi: 10.1002/aenm.201900157

    52. [52]

      Ghasemi, M.; Hu, H.; Peng, Z.; Rech, J. J.; Angunawela, I.; Carpenter, J. H.; Stuard, S. J.; Wadsworth, A.; McCulloch, I.; You, W.; et al. Joule 2019, 3, 1328. doi: 10.1016/j.joule.2019.03.020  doi: 10.1016/j.joule.2019.03.020

    53. [53]

      Kyaw, A. K. K.; Sun, X. W.; Jiang, C. Y.; Lo, G. Q.; Zhao, D. W.; Kwong, D. L. Appl. Phys. Lett. 2008, 93, 221107. doi: 10.1063/1.3039076  doi: 10.1063/1.3039076

    54. [54]

      Hadipour, A.; de Boer, B.; Wildeman, J.; Kooistra, F. B.; Hummelen, J. C.; Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J.; Blom, P. W. M. Adv. Funct. Mater. 2006, 16, 1897. doi: 10.1002/adfm.200600138  doi: 10.1002/adfm.200600138

    55. [55]

      Yin, Z.; Wei, J.; Zheng, Q. Adv. Sci. 2016, 3, 1500362. doi: 10.1002/advs.201500362  doi: 10.1002/advs.201500362

    56. [56]

      Hu, L.; Liu, Y.; Mao, L.; Xiong, S.; Sun, L.; Zhao, N.; Qin, F.; Jiang, Y.; Zhou, Y. J. Mater. Chem. A 2018, 6, 2273. doi: 10.1039/C7TA10306A  doi: 10.1039/C7TA10306A

    57. [57]

      Qin, F.; Wang, W.; Sun, L.; Jiang, X.; Hu, L.; Xiong, S.; Liu, T.; Dong, X.; Li, J.; Jiang, Y.; et al. Nat. Commun. 2020, 11, 4508. doi: 10.1038/s41467-020-18373-0  doi: 10.1038/s41467-020-18373-0

    58. [58]

      Zhu, X.; Hu, L.; Wang, W.; Jiang, X.; Hu, L.; Zhou, Y. ACS Appl. Energy Mater. 2019, 2, 7602. doi: 10.1021/acsaem.9b01591  doi: 10.1021/acsaem.9b01591

    59. [59]

      Hu, L.; Xiong, S.; Wang, W.; Sun, L.; Qin, F.; Zhou, Y. J. Phys. Chem. C 2020, 124, 2307. doi: 10.1021/acs.jpcc.9b09833  doi: 10.1021/acs.jpcc.9b09833

    60. [60]

      Jiang, Y.; Sun, L.; Jiang, F.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Liu, T.; Hu, L.; Jiang, X.; et al. Mater. Horizons. 2019, 6, 1438. doi: 10.1039/C9MH00379G  doi: 10.1039/C9MH00379G

    61. [61]

      Xiong, S.; Hu, L.; Hu, L.; Sun, L.; Qin, F.; Liu, X.; Fahlman, M.; Zhou, Y. Adv. Mater. 2019, 31, 1806616. doi: 10.1002/adma.201806616  doi: 10.1002/adma.201806616

    62. [62]

      Zeng, W.; Zhou, X.; Du, B.; Hu, L.; Xie, C.; Wang, W.; Jiang, Y.; Wang, T.; Zhou, Y. Adv. Energy Sustain. Res. 2021, 2, 2000094. doi: 10.1002/aesr.202000094  doi: 10.1002/aesr.202000094

    63. [63]

      Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J. Adv. Mater. 2011, 23, 1679. doi: 10.1002/adma.201004301  doi: 10.1002/adma.201004301

    64. [64]

      Sun, L.; Zeng, W.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Wang, W.; Liu, T.; Jiang, X.; Jiang, Y.; et al. Adv. Mater. 2020, 32, 1907840. doi: 10.1002/adma.201907840  doi: 10.1002/adma.201907840

    65. [65]

      Liu, H.; Li, Y.; Xu, S.; Zhou, Y.; Li, Z. Adv. Funct. Mater. 2021, 31, 2106735. doi: 10.1002/adfm.202106735  doi: 10.1002/adfm.202106735

    66. [66]

      Tan, J. K.; Png, R. Q.; Zhao, C.; Ho, P. K. H. Nat. Commun. 2018, 9, 3269. doi: 10.1038/s41467-018-05200-w  doi: 10.1038/s41467-018-05200-w

    67. [67]

      Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374. doi: 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W  doi: 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W

    68. [68]

      Liu, B.; Png, R. Q.; Tan, J. K.; Ho, P. K. H. Adv. Energy Mater. 2014, 4, 1200972. doi: 10.1002/aenm.201200972  doi: 10.1002/aenm.201200972

    69. [69]

      Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T. J. Appl. Phys. 2003, 94, 6849. doi: 10.1063/1.1620683  doi: 10.1063/1.1620683

    70. [70]

      Belaineh, D.; Tan, J. K.; Png, R. Q.; Dee, P. F.; Lee, Y. M.; Thi, B. N. N.; Ridzuan, N. S.; Ho, P. K. H. Adv. Funct. Mater. 2015, 25, 5504. doi: 10.1002/adfm.201500784  doi: 10.1002/adfm.201500784

    71. [71]

      Norrman, K.; Madsen, M. V.; Gevorgyan, S. A.; Krebs, F. C. J. Am. Chem. Soc. 2010, 132, 16883. doi: 10.1021/ja106299g  doi: 10.1021/ja106299g

    72. [72]

      Meng, Y.; Hu, Z.; Ai, N.; Jiang, Z.; Wang, J.; Peng, J.; Cao, Y. ACS Appl. Mater. Interfaces 2014, 6, 5122. doi: 10.1021/am500336s  doi: 10.1021/am500336s

    73. [73]

      Park, S.; Son, H. J. J. Mater. Chem. 2019, 7, 25830. doi: 10.1039/C9TA07417A  doi: 10.1039/C9TA07417A

    74. [74]

      Miao, J.; Hu, Z.; Liu, M.; Umair Ali, M.; Goto, O.; Lu, W.; Yang, T.; Liang, Y.; Meng, H. Org. Electron. 2018, 52, 200. doi: 10.1016/j.orgel.2017.10.028  doi: 10.1016/j.orgel.2017.10.028

    75. [75]

      Wu, P.; Yang, B. Catal. Sci. Technol. 2019, 9, 6102. doi: 10.1039/c9cy01242g  doi: 10.1039/c9cy01242g

    76. [76]

      Yao, J.; Qiu, B.; Zhang, Z. -G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; et al. Nat. Commun. 2020, 11, 2726. doi: 10.1038/s41467-020-16509-w  doi: 10.1038/s41467-020-16509-w

    77. [77]

      Harding, C. R.; Cann, J.; Laventure, A.; Sadeghianlemraski, M.; Abd-Ellah, M.; Rao, K. R.; Gelfand, B. S.; Aziz, H.; Kaake, L.; Risko, C.; et al. Mater. Horizons. 2020, 7, 2959. doi: 10.1039/d0mh00785d  doi: 10.1039/d0mh00785d

    78. [78]

      Sadeghianlemraski, M.; Harding, C. R.; Welch, G. C.; Aziz, H. ACS Appl. Energy Mater. 2020, 3, 11655. doi: 10.1021/acsaem.0c01587  doi: 10.1021/acsaem.0c01587

    79. [79]

      Hu, H. C.; Xu, H.; Wu, J.; Li, L.; Yue, F.; Huang, L.; Chen, L.; Zhang, X.; Ouyang, X. Adv. Funct. Mater. 2020, 30, 2001494. doi: 10.1002/adfm.202001494  doi: 10.1002/adfm.202001494

    80. [80]

      Yang, M.; Qin, F.; Wang, W.; Liu, T.; Sun, L.; Xie, C.; Dong, X.; Lu, X.; Zhou, Y. J. Mater. Chem. A 2021, 9, 3918. doi: 10.1039/d0ta12203c  doi: 10.1039/d0ta12203c

    81. [81]

      Yao, J.; Ding, S.; Zhang, R.; Bai, Y.; Zhou, Q.; Meng, L.; Solano, E.; Steele, J. A.; Roeffaers, M. B. J.; Gao, F.; et al. Adv. Mater. 2022, 34, 2203690. doi: 10.1002/adma.202203690  doi: 10.1002/adma.202203690

    82. [82]

      Song, X.; Song, Y.; Xu, H.; Gao, S.; Wang, Y.; Li, J.; Hai, J.; Liu, W.; Zhu, W. Adv. Energy Mater. 2023, 13, 2203009. doi: 10.1002/aenm.202203009  doi: 10.1002/aenm.202203009

    83. [83]

      Kumar, P.; Bilen, C.; Vaughan, B.; Zhou, X.; Dastoor, P. C.; Belcher, W. J. Sol. Energy Mater. Sol. Cells 2016, 149, 179. doi: 10.1016/j.solmat.2015.12.032  doi: 10.1016/j.solmat.2015.12.032

    84. [84]

      Bernasconi, C. F.; Leonarduzzi, G. D. J. Am. Chem. Soc. 1980, 102, 1361. doi: 10.1021/ja00524a022  doi: 10.1021/ja00524a022

    85. [85]

      Chen, S.; Liu, J.; Liu, Y.; Su, H.; Hong, Y.; Jim, C. K. W.; Kwok, R. T. K.; Zhao, N.; Qin, W.; Lam, J. W. Y.; et al. Chem. Sci. 2012, 3, 1804. doi: 10.1039/C2SC01108E  doi: 10.1039/C2SC01108E

    86. [86]

      Bunnett, J. F. Angew. Chem. Int. Ed. 1962, 1, 225. doi: 10.1002/anie.196202251  doi: 10.1002/anie.196202251

    87. [87]

      McLennan, D. J. Q. Rev. Chem. Soc. 1967, 21, 490. doi: 10.1039/QR9672100490  doi: 10.1039/QR9672100490

    88. [88]

      Ha, Y. H.; Lee, J. E.; Hwang, M. C.; Kim, Y. J.; Lee, J. H.; Park, C. E.; Kim, Y. H. Macromol. Res. 2016, 24, 457. doi: 10.1007/s13233-016-4047-z  doi: 10.1007/s13233-016-4047-z

    89. [89]

      Luponosov, Y. N.; Solodukhin, A. N.; Mannanov, A. L.; Trukhanov, V. A.; Peregudova, S. M.; Pisarev, S. A.; Bakirov, A. V.; Shcherbina, M. A.; Chvalun, S. N.; Paraschuk, D. Y.; et al. Org. Electron. 2017, 51, 180. doi: 10.1016/j.orgel.2017.09.014  doi: 10.1016/j.orgel.2017.09.014

    90. [90]

      Kalinichenko, N. K.; Balakirev, D. O.; Savchenko, P. S.; Mannanov, A. L.; Peregudova, S. M.; Paraschuk, D. Y.; Ponomarenko, S. A.; Luponosov, Y. N. Dyes Pigment 2021, 194, 109592. doi: 10.1016/j.dyepig.2021.109592  doi: 10.1016/j.dyepig.2021.109592

    91. [91]

      He, A.; Qin, Y.; Dai, W.; Zhou, D.; Zou, J. Chin. Chem. Lett. 2019, 30, 2263. doi: 10.1016/j.cclet.2019.07.018  doi: 10.1016/j.cclet.2019.07.018

    92. [92]

      Liu, Z. X.; Yu, Z. P.; Shen, Z.; He, C.; Lau, T. K.; Chen, Z.; Zhu, H.; Lu, X.; Xie, Z.; Chen, H.; et al. Nat. Commun. 2021, 12, 3049. doi: 10.1038/s41467-021-23389-1  doi: 10.1038/s41467-021-23389-1

    93. [93]

      Fan, B.; Gao, W.; Zhang, R.; Kaminsky, W.; Lin, F. R.; Xia, X.; Fan, Q.; Li, Y.; An, Y.; Wu, Y.; et al. J. Am. Chem. Soc. 2023, 145, 5909. doi: 10.1021/jacs.2c13247  doi: 10.1021/jacs.2c13247

    94. [94]

      Liu, H.; Wang, W.; Zhou, Y.; Li, Z. J. Mater. Chem. A 2021, 9, 1080. doi: 10.1039/D0TA09924D  doi: 10.1039/D0TA09924D

    95. [95]

      Zhu, X.; Liu, S.; Yue, Q.; Liu, W.; Sun, S.; Xu, S. CCS Chem. 2021, 3, 1070. doi: 10.31635/ccschem.021.202100956  doi: 10.31635/ccschem.021.202100956

    96. [96]

      Wang, Y.; Han, J.; Cai, L.; Li, N.; Li, Z.; Zhu, F. J. Mater. Chem. A 2020, 8, 21255. doi: 10.1039/D0TA08018G  doi: 10.1039/D0TA08018G

    97. [97]

      Lin, Y.; Firdaus, Y.; Isikgor, F. H.; Nugraha, M. I.; Yengel, E.; Harrison, G. T.; Hallani, R.; El-Labban, A.; Faber, H.; Ma, C.; et al. ACS Energy Lett. 2020, 5, 2935. doi: 10.1021/acsenergylett.0c01421  doi: 10.1021/acsenergylett.0c01421

    98. [98]

      Burlingame, Q.; Huang, X.; Liu, X.; Jeong, C.; Coburn, C.; Forrest, S. R. Nature 2019, 573, 394. doi: 10.1038/s41586-019-1544-1  doi: 10.1038/s41586-019-1544-1

    99. [99]

      Zhang, Y. F.; Ren, H.; Chen, J. D.; Hou, H. Y.; Liu, H. M.; Tian, S.; Chen, W. S.; Ge, H. R.; Li, Y. Q.; Mao, H.; et al. Adv. Funct. Mater. 2023, 33, 2212260. doi: 10.1002/adfm.202212260  doi: 10.1002/adfm.202212260

    100. [100]

      Xin, Y.; Zeng, G.; OuYang, J.; Zhao, X.; Yang, X. J. Mater. Chem. C 2019, 7, 9513. doi: 10.1039/C9TC02700A  doi: 10.1039/C9TC02700A

    101. [101]

      Du, X.; Heumueller, T.; Gruber, W.; Classen, A.; Unruh, T.; Li, N.; Brabec, C. J. Joule 2019, 3, 215. doi: 10.1016/j.joule.2018.09.001  doi: 10.1016/j.joule.2018.09.001

    102. [102]

      Li, N.; Perea, J. D.; Kassar, T.; Richter, M.; Heumueller, T.; Matt, G. J.; Hou, Y.; Gueldal, N. S.; Chen, H.; Chen, S.; et al. Nat. Commun. 2017, 8, 14541. doi: 10.1038/ncomms14541  doi: 10.1038/ncomms14541

    103. [103]

      Ye, L.; Li, S.; Liu, X.; Zhang, S.; Ghasemi, M.; Xiong, Y.; Hou, J.; Ade, H. Joule 2019, 3, 443. doi: 10.1016/j.joule.2018.11.006  doi: 10.1016/j.joule.2018.11.006

    104. [104]

      Bartelt, J. A.; Beiley, Z. M.; Hoke, E. T.; Mateker, W. R.; Douglas, J. D.; Collins, B. A.; Tumbleston, J. R.; Graham, K. R.; Amassian, A.; Ade, H.; et al. Adv. Energy Mater. 2013, 3, 364. doi: 10.1002/aenm.201200637  doi: 10.1002/aenm.201200637

    105. [105]

      Hu, H.; Ye, L.; Ghasemi, M.; Balar, N.; Rech, J. J.; Stuard, S. J.; You, W.; O'Connor, B. T.; Ade, H. Adv. Mater. 2019, 31, 1808279. doi: 10.1002/adma.201808279  doi: 10.1002/adma.201808279

    106. [106]

      Zhao, Q.; Xiao, Z.; Qu, J.; Liu, L.; Richter, H.; Chen, W.; Han, L.; Wang, M.; Zheng, J.; Xie, Z.; et al. ACS Energy Lett. 2019, 4, 1106. doi: 10.1021/acsenergylett.9b00534  doi: 10.1021/acsenergylett.9b00534

    107. [107]

      Gasparini, N.; Salvador, M.; Strohm, S.; Heumueller, T.; Levchuk, I.; Wadsworth, A.; Bannock, J. H.; de Mello, J. C.; Egelhaaf, H. -J.; Baran, D.; et al. Adv. Energy Mater. 2017, 7, 1700770. doi: 10.1002/aenm.201700770  doi: 10.1002/aenm.201700770

    108. [108]

      Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Rohr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Nat. Mater. 2017, 16, 363. doi: 10.1038/nmat4797  doi: 10.1038/nmat4797

    109. [109]

      Song, X.; Gasparini, N.; Nahid, M. M.; Paleti, S. H. K.; Wang, J. L.; Ade, H.; Baran, D. Joule 2019, 3, 846. doi: 10.1016/j.joule.2019.01.009  doi: 10.1016/j.joule.2019.01.009

    110. [110]

      Chen, H.; Zhang, R.; Chen, X.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.; Xu, G.; Oh, J.; et al. Nat. Energy 2021, 6, 1045. doi: 10.1038/s41560-021-00923-5  doi: 10.1038/s41560-021-00923-5

    111. [111]

      Huang, Y.; Chen, H.; Fan, Q.; Chen, Z.; Ding, J.; Yang, H.; Sun, Z.; Zhang, R.; Chen, W.; Yang, C.; et al. Chin. J. Chem. 2023, 41, 1066. doi: 10.1002/cjoc.202200770  doi: 10.1002/cjoc.202200770

    112. [112]

      Sun, W.; Chen, H.; Zhang, B.; Cheng, Q.; Yang, H.; Chen, Z.; Zeng, G.; Ding, J.; Chen, W.; Li, Y. Chin. J. Chem. 2022, 40, 2963. doi: 10.1002/cjoc.202200437  doi: 10.1002/cjoc.202200437

  • 加载中
    1. [1]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    3. [3]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    4. [4]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    5. [5]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    8. [8]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    9. [9]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    10. [10]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    13. [13]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    17. [17]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(3)
  • Abstract views(902)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return