Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction
- Corresponding author: Wenshuai Zhu, zhuws@ujs.edu.cn Jiexiang Xia, xjx@ujs.edu.cn Huaming Li, lhm@ujs.edu.cn
Citation:
Gaopeng Liu, Lina Li, Bin Wang, Ningjie Shan, Jintao Dong, Mengxia Ji, Wenshuai Zhu, Paul K. Chu, Jiexiang Xia, Huaming Li. Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica,
;2024, 40(7): 230604.
doi:
10.3866/PKU.WHXB202306041
Liang, J. X.; Yu, H.; Shi, J. J.; Li, B.; Wu, L. X.; Wang, M. Adv. Mater. 2023, 35, 2209814. doi: 10.1002/adma.202209814
doi: 10.1002/adma.202209814
Wang, B.; Zhang, W.; Liu, G. P.; Chen, H. L.; Weng, Y. -X.; Li, H. M.; Chu, P. K.; Xia, J. X. Adv. Funct. Mater. 2022, 32, 2202885. doi: 10.1002/adfm.202202885
doi: 10.1002/adfm.202202885
Wang, J. -C.; Qiao, X.; Shi, W. N.; He, J.; Chen, J.; Zhang, W. Q. Acta Phys. -Chim. Sin. 2023, 39, 2210003. doi: 10.3866/PKU.WHXB202210003
doi: 10.3866/PKU.WHXB202210003
Yan, P. C.; Ji, F. W.; Zhang, W.; Mo, Z.; Qian, J. C.; Zhu, L. H.; Xu, L. J. Colloid Interface Sci. 2023, 634, 1005. doi: 10.1016/j.jcis.2022.12.063
doi: 10.1016/j.jcis.2022.12.063
Li, H.; Li, F.; Yu, J. G.; Cao, S. W. Acta Phys. -Chim. Sin. 2021, 37, 2010073. doi: 10.3866/PKU.WHXB202010073
doi: 10.3866/PKU.WHXB202010073
Yang, J. M.; Jing, L. Q.; Zhu, X. W.; Zhang, W.; Deng J. J.; She, Y. B.; Nie, K. Q.; Wei, Y. C.; Li, H. M.; Xu, H. Appl. Catal. B 2023, 320, 122005. doi: 10.1016/j.apcatb.2022.122005
doi: 10.1016/j.apcatb.2022.122005
Das, R.; Paul, R.; Parui, A.; Shrotri, A.; Atzori, C.; Lomachenko, K. A.; Singh, A. K.; Mondal, J.; Peter, S. C. J. Am. Chem. Soc. 2023, 145, 422. doi: 10.1021/jacs.2c10351
doi: 10.1021/jacs.2c10351
Liu, G. P.; Wang, L.; Chen, X.; Zhu, X. W.; Wang, B.; Xu, X. Y.; Chen, Z. R.; Zhu, W. S.; Li, H. M.; Xia, J. X. Green Chem. Eng. 2022, 3, 157. doi: 10.1016/j.gce.2021.11.007
doi: 10.1016/j.gce.2021.11.007
Li, J.; Yu, X. M.; Xue, W. J.; Nie, L.; Huang, H. L.; Zhong, C. L. AIChE J. 2023, 69, e17906. doi: 10.1002/aic.17906
doi: 10.1002/aic.17906
Li, S. G.; Chen, F.; Chu, S. Q.; Zhang, Z. Y.; Huang, J. D.; Wang, S. Y.; Feng, Y. B.; Wang, C.; Huang, H. W. Small 2023, 19, 2203559. doi: 10.1002/smll.202203559
doi: 10.1002/smll.202203559
Dong, Y. -L.; Liu, H. -R.; Wang, S. -M.; Guan, G. -W.; Yang, Q. -Y. ACS Catal. 2023, 13, 2547. doi: 10.1021/acscatal.2c04588
doi: 10.1021/acscatal.2c04588
Ni, M. M.; Zhu, Y. J.; Guo, C. F.; Chen, D. -L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. ACS Catal. 2023, 13, 2502. doi: 10.1021/acscatal.2c05577
doi: 10.1021/acscatal.2c05577
Wei, J. J.; Dong, H. L.; Gao, Y. X.; Su, X.; Tan, H. W.; Li, J. J.; Zhao, Q.; Guan, X. W.; Lu, Z. L.; Ouyang, J.; et al. J. Mater. Chem. A 2023, 11, 4057. doi: 10.1039/d2ta08812f
doi: 10.1039/d2ta08812f
Cheng, S. W.; Sun, Z. H.; Lim, K. H.; Zhang, T. X.; Hondo, E.; Du, T.; Liu, L. Y.; Judd, M.; Cox, N.; Yin, Z. Y.; et al. ACS Appl. Nano Mater. 2023, 6, 3608. doi: 10.1021/acsanm.2c05364
doi: 10.1021/acsanm.2c05364
Kong, B.; Zeng, T. X.; Wang, W. T. Phys. Chem. Chem. Phys. 2021, 23, 19841. doi: 10.1039/d1cp02794h
doi: 10.1039/d1cp02794h
Chen, C. Y.; Jiang, T.; Hou, J. H.; Zhang, T. T.; Zhang, G. S.; Zhang, Y. C.; Wang, X. Z. J. Mater. Sci. Technol. 2022, 114, 240. doi: 10.1016/j.jmst.2021.12.006
doi: 10.1016/j.jmst.2021.12.006
Song, Y.; Ye, C. C.; Yu, X.; Tang, J. Y.; Zhao, Y. X.; Cai, W. Appl. Surf. Sci. 2022, 583, 152463. doi: 10.1016/j.apsusc.2022.152463
doi: 10.1016/j.apsusc.2022.152463
Wang, S. -S.; Liang, X.; Lv, Y. -K.; Li, Y. -Y.; Zhou, R. -H.; Yao, H. -C.; Li, Z. -J. ACS Appl. Energy Mater. 2022, 5, 1149. doi: 10.1021/acsaem.1c03531
doi: 10.1021/acsaem.1c03531
Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B 2019, 243, 734. doi: 10.1016/j.apcatb.2018.11.020
doi: 10.1016/j.apcatb.2018.11.020
Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Nano Res. 2015, 8, 821. doi: 10.1007/s12274-014-0564-2
doi: 10.1007/s12274-014-0564-2
Gong, S. W.; Rao, F.; Zhang, W. B.; Hassan, Q. -U.; Liu, Z. Q.; Gao, J. Z.; Lu, J. B.; Hojamberdiev, M.; Zhu, G. Q. Chin. Chem. Lett. 2022, 33, 4385. doi: 10.1016/j.cclet.2021.12.039
doi: 10.1016/j.cclet.2021.12.039
Yao, D. F.; Liang, K. J.; Chen, G. L.; Qu, Y. D.; Liu, J. Y.; Chilivery, R.; Li, S.; Ji, M. W.; Li, Z.; Zhong, Z. Y.; et al. J. Catal. 2023, 422, 56. doi: 10.1016/j.jcat.2023.04.004
doi: 10.1016/j.jcat.2023.04.004
Li, Y. -L.; Liu, Y.; Mu, H. -Y.; Liu, R. -H.; Hao, Y. -J.; Wang, X. -J.; Hildebrandt, D.; Liu, X. Y.; Li, F. -T. Nanoscale 2021, 13, 2585. doi: 10.1039/D0NR08314C
doi: 10.1039/D0NR08314C
Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. J. Mater. Chem. A 2018, 6, 24245. doi: 10.1039/c8ta09661a
doi: 10.1039/c8ta09661a
Yan, F. P.; Wu, Y. H.; Jiang, L. Q.; Xue, X. G.; Lv, J. Q.; Lin, L. Y.; Yu, Y. L.; Zhang, J. Y.; Yang, F. G.; Qiu, Y. ChemSusChem 2020, 13, 876. doi: 10.1002/cssc.201903437
doi: 10.1002/cssc.201903437
Pan, C.; Mao, Z.; Yuan, X.; Zhang, H. J.; Mei, L.; Ji, X. Y. Adv. Sci. 2022, 9, 2105747. doi: 10.1002/advs.202105747
doi: 10.1002/advs.202105747
Wang, S. M.; Guan, Y.; Lu, L.; Shi, Z.; Yan, S. C.; Zou, Z. G. Appl. Catal. B 2018, 224, 10. doi: 10.1016/j.apcatb.2017.10.043
doi: 10.1016/j.apcatb.2017.10.043
Li, Z.; Huang, F.; Xu, Y. F.; Yan, A. H.; Dong, H. M.; Xiong, X.; Zhao, X. H. Chem. Eng. J. 2022, 429, 132476. doi: 10.1016/j.cej.2021.132476
doi: 10.1016/j.cej.2021.132476
Yang, Q.; Luo, M. L.; Liu, K. W.; Cao, H. M.; Yan, H. J. Chem. Commun. 2019, 55, 5728. doi: 10.1039/c9cc01732a
doi: 10.1039/c9cc01732a
Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Motaghedifard, M. H.; Hosseinpour-Mashkani, S. M. New J. Chem. 2015, 39, 4676. doi: 10.1039/c5nj00532a
doi: 10.1039/c5nj00532a
Li, X. B.; Hu Y.; Dong, F.; Huang, J. T.; Han, L.; Deng, F.; Luo, Y. D.; Xie, Y.; He, C. Z.; Feng, Z. J.; et al. Appl. Catal. B 2023, 325, 122341. doi: 10.1016/j.apcatb.2022.122341
doi: 10.1016/j.apcatb.2022.122341
Li, X. B.; Kang, B. B.; Dong, F.; Deng, F.; Han, L.; Gao, X. M.; Xu, J. L.; Hou, X. F.; Feng, Z. J.; Chen, Z.; et al. Appl. Surf. Sci. 2022, 593, 153422. doi: 10.1016/j.apsusc.2022.153422
doi: 10.1016/j.apsusc.2022.153422
Huang, Y. W.; Zhu, Y. S.; Chen, S. J.; Xie, X. Q.; Wu, Z. J.; Zhang, N. Adv. Sci. 2021, 8, 2003626. doi: 10.1002/advs.202003626
doi: 10.1002/advs.202003626
Gao, F. D.; Zeng, D. W.; Huang, Q. W.; Tian, S. Q.; Xie, C. S. Phys. Chem. Chem. Phys. 2012, 14, 10572. doi: 10.1039/c2cp41045a
doi: 10.1039/c2cp41045a
Peng, Y.; Mao, Y. G.; Kan, P. F.; Liu, J. Y.; Fang, Z. New J. Chem. 2018, 42, 16911. doi: 10.1039/c8nj03323d
doi: 10.1039/c8nj03323d
Wang, B.; Zhu, X. W.; Huang, F. C.; Quan, Y.; Liu, G. P.; Zhang, X. L.; Xiong, F. Y.; Huang, C.; Ji, M. X.; Li, H. M.; et al. Appl. Catal. B 2023, 325, 122304. doi: 10.1016/j.apcatb.2022.122304
doi: 10.1016/j.apcatb.2022.122304
Wang, L.; Lv, D. D.; Yue, Z. J.; Zhu, H.; Wang, L.; Wang, D. F.; Xu, X.; Hao, W. C.; Dou, S. X.; Du, Y. Nano Energy 2019, 57, 398. doi: 10.1016/j.nanoen.2018.12.071
doi: 10.1016/j.nanoen.2018.12.071
Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Angew. Chem. Int. Ed. 2021, 60, 12554. doi: 10.1002/anie.202102832
doi: 10.1002/anie.202102832
Dong, J. T.; Ji, S. N.; Zhang, Y.; Ji, M. X.; Wang, B.; Li, Y. J.; Chen, Z. G.; Xia, J. X.; Li, H. M. Acta Phys. -Chim. Sin. 2023, 39, 2212011. [] doi: 10.3866/PKU.WHXB202212011
doi: 10.3866/PKU.WHXB202212011
Liu, G. P.; Wang, L.; Wang, B.; Zhu, X. W.; Yang, J. M.; Liu, P. J.; Zhu, W. S.; Chen, Z. R.; Xia, J. X. Chin. Chem. Lett. 2023, 34, 107962. doi: 10.1016/j.cclet.2022.107962
doi: 10.1016/j.cclet.2022.107962
Liu, J. Y.; Zhu, S. M.; Wang, B.; Yang, R. Z.; Wang, R.; Zhu, X. W.; Song, Y. H.; Yuan, J. J.; Xu, H.; Li., H. M. Chin. Chem. Lett. 2023, 34, 107749. doi: 10.1016/j.cclet.2022.107749
doi: 10.1016/j.cclet.2022.107749
Zan, Z. Q.; Li, X. B.; Gao, X. M.; Huang, J. T.; Luo, Y. D.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016
doi: 10.3866/PKU.WHXB202209016
Yan, X. W.; Wang, B.; Ji, M. X.; Jiang, Q.; Liu, G. P.; Liu, P. J.; Yin, S.; Li, H. M.; Xia, J. X. Chin. J. Struct. Chem. 2022, 41, 2208044. doi: 10.14102/j.cnki.0254-5861.2022-0141
doi: 10.14102/j.cnki.0254-5861.2022-0141
Yang, J. H.; Hou, Y. P.; Sun, J. L.; Liang, J. X.; Yu, Z. B.; Zhu, H. X.; Wang, S. F. Sep. Purif. Technol. 2022, 299, 121701. doi: 10.1016/j.seppur.2022.121701
doi: 10.1016/j.seppur.2022.121701
Bai, S.; Li, X. Y.; Kong, Q.; Long, R.; Wang, C. M.; Jiang, J.; Xiong, Y. J. Adv. Mater. 2015, 27, 3444. doi: 10.1002/adma.201501200
doi: 10.1002/adma.201501200
Gong, S. W.; Zhu, G. Q.; Wang, R.; Rao, F.; Shi, X. J.; Gao, J. Z.; Huang, Y.; He, C. Z.; Hojamberdiev, M. Appl. Catal. B 2021, 297, 120413. doi: 10.1016/j.apcatb.2021.120413
doi: 10.1016/j.apcatb.2021.120413
Zhu, X. W.; Wang, Z. L.; Zhong, K.; Li, Q. D.; Ding, P. H.; Feng, Z. Y.; Yang, J. M.; Du, Y. S.; Song, Y. H.; Hua, Y. J.; et al. Chem. Eng. J. 2022, 429, 132204. doi: 10.1016/j.cej.2021.132204
doi: 10.1016/j.cej.2021.132204
Yang, J. M.; Zhu, X. W.; Yu, Q.; He, M. Q.; Zhang, W.; Mo, Z.; Yuan, J. J.; She, Y. B.; Xu, H.; Li, H. M. Chin. J. Catal. 2022, 43, 1286. doi: 10.1016/s1872-2067[21]63954-2
doi: 10.1016/s1872-2067[21]63954-2
Cai, X. Y.; Du, J. H.; Zhong, G. M.; Zhang, Y. M.; Mao, L.; Lou, Z. Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. doi: 10.3866/PKU.WHXB202302017
doi: 10.3866/PKU.WHXB202302017
Mo, Z.; Miao, Z. H.; Yan, P. C.; Sun, P. P.; Wu, G. Y.; Zhu, X. W.; Ding, C.; Zhu, Q.; Lei, Y. C.; Xu, H. J. Colloid Interface Sci. 2023, 645, 525. doi: 10.1016/j.jcis.2023.04.123
doi: 10.1016/j.jcis.2023.04.123
Li, X. W.; Wang, B.; Yin, W. X.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Acta Phys. -Chim. Sin. 2020, 36, 1902001. doi: 10.3866/PKU.WHXB201902001
doi: 10.3866/PKU.WHXB201902001
Zhang, Y.; Guo, F. Y.; Wang, K. K.; Di, J.; Min, B.; Zhu, H. Y.; Chen, H. L.; Weng, Y. -X.; Dai, J. Y.; She, Y. B.; et al. Chem. Eng. J. 2023, 465, 142663. doi: 10.1016/j.cej.2023.142663
doi: 10.1016/j.cej.2023.142663
Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F. ACS Nano 2021, 15, 14453. doi: 10.1021/acsnano.1c03961
doi: 10.1021/acsnano.1c03961
Li, D. S.; Zhu, B. C.; Sun, Z. T.; Liu, Q. Q.; Wang, L. L.; Tang, H. Front. Chem. 2021, 9, 804204. doi: 10.3389/fchem.2021.804204
doi: 10.3389/fchem.2021.804204
Yu, H. B.; Huang, J. H.; Jiang, L. B.; Leng, L. J.; Yi, K. X.; Zhang, W.; Zhang, C. Y.; Yuan, X. Z. Appl. Catal. 2021, 298, 120618. doi: 10.1016/j.apcatb.2021.120618
doi: 10.1016/j.apcatb.2021.120618
Xu, Y. X.; Jin, X. L.; Ge, T.; Xie, H. Q.; Sun, R. X.; Su, F. Y.; Li, X.; Ye, L. Q. Chem. Eng. J. 2021, 409, 128178. doi: 10.1016/j.cej.2020.128178
doi: 10.1016/j.cej.2020.128178
Jin, X. L.; Cao, J.; Wang, H. Q.; Lv, C. D.; Xie, H. Q.; Su, F. Y.; Li, X.; Sun, R. X.; Shi, S. K.; Dang, M. F.; et al. Appl. Surf. Sci. 2022, 598, 153758. doi: 10.1016/j.apsusc.2022.153758
doi: 10.1016/j.apsusc.2022.153758
Meng, J. Z.; Duan, Y. Y.; Jing, S. J.; Ma, J. P.; Wang, K. W.; Zhou, K.; Ban, C. G.; Wang, Y.; Hu, B. H.; Yu, D. M.; et al. Nano Energy 2022, 92, 106671. doi: 10.1016/j.nanoen.2021.106671
doi: 10.1016/j.nanoen.2021.106671
Sun, Z.; Liu, T. W.; Shen, Q. Q.; Li, H. M.; Liu, X. G.; Jia, H. S.; Xue, J. B. Appl. Surf. Sci. 2023, 616, 156530. doi: 10.1016/j.apsusc.2023.156530
doi: 10.1016/j.apsusc.2023.156530
Li, X. F.; Li, K. M.; Ding, D.; Yan, J. T.; Wang, C. L.; Carabineiro, S. A. C.; Liu, Y.; Lv, K. L. Sep. Purif. Technol. 2023, 309, 123054. doi: 10.1016/j.seppur.2022.123054
doi: 10.1016/j.seppur.2022.123054
Di, J.; Zhao, X. X.; Lian, C.; Ji, M. X.; Xia, J. X.; Xiong, J.; Zhou, W.; Cao, X. Z.; She, Y. B.; Liu, H. L.; et al. Nano Energy 2019, 61, 54. doi: 10.1016/j.nanoen.2019.04.029
doi: 10.1016/j.nanoen.2019.04.029
Wang, J. Q.; Cheng, H.; Wei, D. Q.; Li, Z. H. Chin. J. Catal. 2022, 43, 2606. doi: 10.1016/S1872-2067[22]64091-9
doi: 10.1016/S1872-2067[22]64091-9
Si, S. H.; Shou, H. W.; Mao, Y. Y.; Bao, X. L.; Zhai, G. Y.; Song, K. P.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Zheng, Z. K.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209446. doi: 10.1002/anie.202209446
doi: 10.1002/anie.202209446
Ji, M. X.; Feng, J.; Zhao, J. Z.; Zhang, Y.; Wang, B.; Di, J.; Xu, X. Y.; Chen, Z. R.; Xia, J. X.; Li, H. M. ACS Appl. Nano Mater. 2022, 5, 17226. doi: 10.1021/acsanm.2c04232
doi: 10.1021/acsanm.2c04232
Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019, 4, 690. doi: 10.1038/s41560-019-0431-1
doi: 10.1038/s41560-019-0431-1
Wang, J. Y.; Bo, T. T.; Shao, B. Y.; Zhang, Y. Z.; Jia, L. X.; Tan, X.; Zhou, W.; Yu, T. Appl. Catal. B 2021, 297, 120498. doi: 10.1016/j.apcatb.2021.120498
doi: 10.1016/j.apcatb.2021.120498
Xu, J. Q.; Ju, Z. Y.; Zhang, W.; Pan, Y.; Zhu, J. F.; Mao, J. W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Chen, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 8705. doi:10.1002/anie.202017041
doi: 10.1002/anie.202017041
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016