Citation: Gaopeng Liu, Lina Li, Bin Wang, Ningjie Shan, Jintao Dong, Mengxia Ji, Wenshuai Zhu, Paul K. Chu, Jiexiang Xia, Huaming Li. Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230604. doi: 10.3866/PKU.WHXB202306041 shu

Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction

  • Corresponding author: Wenshuai Zhu, zhuws@ujs.edu.cn Jiexiang Xia, xjx@ujs.edu.cn Huaming Li, lhm@ujs.edu.cn
  • Received Date: 26 June 2023
    Revised Date: 13 August 2023
    Accepted Date: 29 August 2023
    Available Online: 1 December 2023

    Fund Project: the China Postdoctoral Science Foundation 2022M721380the China Postdoctoral Science Foundation 2020M680065Jiangsu Funding Program for Excellent Postdoctoral Talent 2023ZB214National Natural Science Foundation of China 22108106National Natural Science Foundation of China 22108108Hong Kong Scholar Program XJ2021021City University of Hong Kong Donation Research Grant DON-RMG, 9229021City University of Hong Kong Strategic Research Grant SRG, 7005505City University of Hong Kong Donation Grant 9220061

  • The continuous increase in the consumption of coal, oil, and natural gas has not only led to the depletion of unsustainable energy sources, but has also caused excessive CO2 emissions, thus resulting in serious energy crises and climate issues. In such a scenario, it is imperative to explore clean and sustainable energy conversion technologies to address the escalating energy demands and environmental crises. Photocatalytic CO2 conversion, inspired by natural photosynthesis, utilizes solar energy to convert CO2 and water into valuable chemicals. After decades of development, artificial photosynthesis has emerged as a green, cost-effective, and sustainable approach to achieving carbon neutrality. However, the challenges of low carrier separation efficiency and insufficient active sites in photocatalysts remain significant hurdles in achieving high-performance CO2 photoreduction. To address this challenge, the integration of metal nanoparticles with semiconductors to create an Ohmic junction can enhance electron-hole migration by the assist of interfacial electric field (IEF). In this study, an Ohmic junction photocatalyst is constructed by in situ formation of Bi nanoparticles on the surface of BiOCl nanosheets through a solvothermal process. The composition and morphology of the photocatalysts were analyzed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) was employed to assess the light absorption performance of the photocatalyst. Transient photocurrent response, electrochemical impedance spectroscopy (EIS), and electron spin resonance (ESR) were utilized to evaluate the efficiency of electron-hole transfer. The distinct work function difference between Bi nanoparticles and BiOCl nanosheets leads to favorable charge transfer characteristics within the formed Ohmic junction, significantly improving the utilization efficiency of photogenerated carriers. Besides, the Bi nanoparticles serve as co-catalysts, enhancing the activation of inert CO2. As a result, the optimized Bi/BiOCl composite (Bi/BiOCl-2) exhibits enhanced generation rates of CO (34.31 µmol·g-1) and CH4 (1.57 µmol g-1) during 4-h of irradiation, which is 2.55 and 4.76 times compared to pristine BiOCl nanosheets, respectively. Isotope tracer experiments suggest that the obtained carbon-based products are generated through CO2 photoreduction in the presence of water molecule under irradiation. Moreover, in situ Fourier-transform infrared spectroscopy (in situ FTIR) results indicate the formation of *CHO, *CH3O, b-CO32-, m-CO32-, HCO3-, HCOOH, *COOH, and HCOO- species during the CO2 reduction process and a possible mechanism for CO2 photoreduction into CO and CH4 is proposed based on these findings. After 25-h of CO2 photoreduction reaction, the yields of CO and CH4 continue to increase. Furthermore, the stability of the prepared material is confirmed by XRD pattern, XPS analysis, and TEM image. These outcomes underscore an effective strategy for constructing advanced photocatalysts tailored for high-performance solar-driven CO2 reduction.
  • 加载中
    1. [1]

      Liang, J. X.; Yu, H.; Shi, J. J.; Li, B.; Wu, L. X.; Wang, M. Adv. Mater. 2023, 35, 2209814. doi: 10.1002/adma.202209814  doi: 10.1002/adma.202209814

    2. [2]

      Wang, B.; Zhang, W.; Liu, G. P.; Chen, H. L.; Weng, Y. -X.; Li, H. M.; Chu, P. K.; Xia, J. X. Adv. Funct. Mater. 2022, 32, 2202885. doi: 10.1002/adfm.202202885  doi: 10.1002/adfm.202202885

    3. [3]

      Wang, J. -C.; Qiao, X.; Shi, W. N.; He, J.; Chen, J.; Zhang, W. Q. Acta Phys. -Chim. Sin. 2023, 39, 2210003. doi: 10.3866/PKU.WHXB202210003  doi: 10.3866/PKU.WHXB202210003

    4. [4]

      Yan, P. C.; Ji, F. W.; Zhang, W.; Mo, Z.; Qian, J. C.; Zhu, L. H.; Xu, L. J. Colloid Interface Sci. 2023, 634, 1005. doi: 10.1016/j.jcis.2022.12.063  doi: 10.1016/j.jcis.2022.12.063

    5. [5]

      Li, H.; Li, F.; Yu, J. G.; Cao, S. W. Acta Phys. -Chim. Sin. 2021, 37, 2010073. doi: 10.3866/PKU.WHXB202010073  doi: 10.3866/PKU.WHXB202010073

    6. [6]

      Yang, J. M.; Jing, L. Q.; Zhu, X. W.; Zhang, W.; Deng J. J.; She, Y. B.; Nie, K. Q.; Wei, Y. C.; Li, H. M.; Xu, H. Appl. Catal. B 2023, 320, 122005. doi: 10.1016/j.apcatb.2022.122005  doi: 10.1016/j.apcatb.2022.122005

    7. [7]

      Das, R.; Paul, R.; Parui, A.; Shrotri, A.; Atzori, C.; Lomachenko, K. A.; Singh, A. K.; Mondal, J.; Peter, S. C. J. Am. Chem. Soc. 2023, 145, 422. doi: 10.1021/jacs.2c10351  doi: 10.1021/jacs.2c10351

    8. [8]

      Liu, G. P.; Wang, L.; Chen, X.; Zhu, X. W.; Wang, B.; Xu, X. Y.; Chen, Z. R.; Zhu, W. S.; Li, H. M.; Xia, J. X. Green Chem. Eng. 2022, 3, 157. doi: 10.1016/j.gce.2021.11.007  doi: 10.1016/j.gce.2021.11.007

    9. [9]

      Li, J.; Yu, X. M.; Xue, W. J.; Nie, L.; Huang, H. L.; Zhong, C. L. AIChE J. 2023, 69, e17906. doi: 10.1002/aic.17906  doi: 10.1002/aic.17906

    10. [10]

      Li, S. G.; Chen, F.; Chu, S. Q.; Zhang, Z. Y.; Huang, J. D.; Wang, S. Y.; Feng, Y. B.; Wang, C.; Huang, H. W. Small 2023, 19, 2203559. doi: 10.1002/smll.202203559  doi: 10.1002/smll.202203559

    11. [11]

      Dong, Y. -L.; Liu, H. -R.; Wang, S. -M.; Guan, G. -W.; Yang, Q. -Y. ACS Catal. 2023, 13, 2547. doi: 10.1021/acscatal.2c04588  doi: 10.1021/acscatal.2c04588

    12. [12]

      Ni, M. M.; Zhu, Y. J.; Guo, C. F.; Chen, D. -L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. ACS Catal. 2023, 13, 2502. doi: 10.1021/acscatal.2c05577  doi: 10.1021/acscatal.2c05577

    13. [13]

      Wei, J. J.; Dong, H. L.; Gao, Y. X.; Su, X.; Tan, H. W.; Li, J. J.; Zhao, Q.; Guan, X. W.; Lu, Z. L.; Ouyang, J.; et al. J. Mater. Chem. A 2023, 11, 4057. doi: 10.1039/d2ta08812f  doi: 10.1039/d2ta08812f

    14. [14]

      Cheng, S. W.; Sun, Z. H.; Lim, K. H.; Zhang, T. X.; Hondo, E.; Du, T.; Liu, L. Y.; Judd, M.; Cox, N.; Yin, Z. Y.; et al. ACS Appl. Nano Mater. 2023, 6, 3608. doi: 10.1021/acsanm.2c05364  doi: 10.1021/acsanm.2c05364

    15. [15]

      Kong, B.; Zeng, T. X.; Wang, W. T. Phys. Chem. Chem. Phys. 2021, 23, 19841. doi: 10.1039/d1cp02794h  doi: 10.1039/d1cp02794h

    16. [16]

      Chen, C. Y.; Jiang, T.; Hou, J. H.; Zhang, T. T.; Zhang, G. S.; Zhang, Y. C.; Wang, X. Z. J. Mater. Sci. Technol. 2022, 114, 240. doi: 10.1016/j.jmst.2021.12.006  doi: 10.1016/j.jmst.2021.12.006

    17. [17]

      Song, Y.; Ye, C. C.; Yu, X.; Tang, J. Y.; Zhao, Y. X.; Cai, W. Appl. Surf. Sci. 2022, 583, 152463. doi: 10.1016/j.apsusc.2022.152463  doi: 10.1016/j.apsusc.2022.152463

    18. [18]

      Wang, S. -S.; Liang, X.; Lv, Y. -K.; Li, Y. -Y.; Zhou, R. -H.; Yao, H. -C.; Li, Z. -J. ACS Appl. Energy Mater. 2022, 5, 1149. doi: 10.1021/acsaem.1c03531  doi: 10.1021/acsaem.1c03531

    19. [19]

      Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B 2019, 243, 734. doi: 10.1016/j.apcatb.2018.11.020  doi: 10.1016/j.apcatb.2018.11.020

    20. [20]

      Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Nano Res. 2015, 8, 821. doi: 10.1007/s12274-014-0564-2  doi: 10.1007/s12274-014-0564-2

    21. [21]

      Gong, S. W.; Rao, F.; Zhang, W. B.; Hassan, Q. -U.; Liu, Z. Q.; Gao, J. Z.; Lu, J. B.; Hojamberdiev, M.; Zhu, G. Q. Chin. Chem. Lett. 2022, 33, 4385. doi: 10.1016/j.cclet.2021.12.039  doi: 10.1016/j.cclet.2021.12.039

    22. [22]

      Yao, D. F.; Liang, K. J.; Chen, G. L.; Qu, Y. D.; Liu, J. Y.; Chilivery, R.; Li, S.; Ji, M. W.; Li, Z.; Zhong, Z. Y.; et al. J. Catal. 2023, 422, 56. doi: 10.1016/j.jcat.2023.04.004  doi: 10.1016/j.jcat.2023.04.004

    23. [23]

      Li, Y. -L.; Liu, Y.; Mu, H. -Y.; Liu, R. -H.; Hao, Y. -J.; Wang, X. -J.; Hildebrandt, D.; Liu, X. Y.; Li, F. -T. Nanoscale 2021, 13, 2585. doi: 10.1039/D0NR08314C  doi: 10.1039/D0NR08314C

    24. [24]

      Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. J. Mater. Chem. A 2018, 6, 24245. doi: 10.1039/c8ta09661a  doi: 10.1039/c8ta09661a

    25. [25]

      Yan, F. P.; Wu, Y. H.; Jiang, L. Q.; Xue, X. G.; Lv, J. Q.; Lin, L. Y.; Yu, Y. L.; Zhang, J. Y.; Yang, F. G.; Qiu, Y. ChemSusChem 2020, 13, 876. doi: 10.1002/cssc.201903437  doi: 10.1002/cssc.201903437

    26. [26]

      Pan, C.; Mao, Z.; Yuan, X.; Zhang, H. J.; Mei, L.; Ji, X. Y. Adv. Sci. 2022, 9, 2105747. doi: 10.1002/advs.202105747  doi: 10.1002/advs.202105747

    27. [27]

      Wang, S. M.; Guan, Y.; Lu, L.; Shi, Z.; Yan, S. C.; Zou, Z. G. Appl. Catal. B 2018, 224, 10. doi: 10.1016/j.apcatb.2017.10.043  doi: 10.1016/j.apcatb.2017.10.043

    28. [28]

      Li, Z.; Huang, F.; Xu, Y. F.; Yan, A. H.; Dong, H. M.; Xiong, X.; Zhao, X. H. Chem. Eng. J. 2022, 429, 132476. doi: 10.1016/j.cej.2021.132476  doi: 10.1016/j.cej.2021.132476

    29. [29]

      Yang, Q.; Luo, M. L.; Liu, K. W.; Cao, H. M.; Yan, H. J. Chem. Commun. 2019, 55, 5728. doi: 10.1039/c9cc01732a  doi: 10.1039/c9cc01732a

    30. [30]

      Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Motaghedifard, M. H.; Hosseinpour-Mashkani, S. M. New J. Chem. 2015, 39, 4676. doi: 10.1039/c5nj00532a  doi: 10.1039/c5nj00532a

    31. [31]

      Li, X. B.; Hu Y.; Dong, F.; Huang, J. T.; Han, L.; Deng, F.; Luo, Y. D.; Xie, Y.; He, C. Z.; Feng, Z. J.; et al. Appl. Catal. B 2023, 325, 122341. doi: 10.1016/j.apcatb.2022.122341  doi: 10.1016/j.apcatb.2022.122341

    32. [32]

      Li, X. B.; Kang, B. B.; Dong, F.; Deng, F.; Han, L.; Gao, X. M.; Xu, J. L.; Hou, X. F.; Feng, Z. J.; Chen, Z.; et al. Appl. Surf. Sci. 2022, 593, 153422. doi: 10.1016/j.apsusc.2022.153422  doi: 10.1016/j.apsusc.2022.153422

    33. [33]

      Huang, Y. W.; Zhu, Y. S.; Chen, S. J.; Xie, X. Q.; Wu, Z. J.; Zhang, N. Adv. Sci. 2021, 8, 2003626. doi: 10.1002/advs.202003626  doi: 10.1002/advs.202003626

    34. [34]

      Gao, F. D.; Zeng, D. W.; Huang, Q. W.; Tian, S. Q.; Xie, C. S. Phys. Chem. Chem. Phys. 2012, 14, 10572. doi: 10.1039/c2cp41045a  doi: 10.1039/c2cp41045a

    35. [35]

      Peng, Y.; Mao, Y. G.; Kan, P. F.; Liu, J. Y.; Fang, Z. New J. Chem. 2018, 42, 16911. doi: 10.1039/c8nj03323d  doi: 10.1039/c8nj03323d

    36. [36]

      Wang, B.; Zhu, X. W.; Huang, F. C.; Quan, Y.; Liu, G. P.; Zhang, X. L.; Xiong, F. Y.; Huang, C.; Ji, M. X.; Li, H. M.; et al. Appl. Catal. B 2023, 325, 122304. doi: 10.1016/j.apcatb.2022.122304  doi: 10.1016/j.apcatb.2022.122304

    37. [37]

      Wang, L.; Lv, D. D.; Yue, Z. J.; Zhu, H.; Wang, L.; Wang, D. F.; Xu, X.; Hao, W. C.; Dou, S. X.; Du, Y. Nano Energy 2019, 57, 398. doi: 10.1016/j.nanoen.2018.12.071  doi: 10.1016/j.nanoen.2018.12.071

    38. [38]

      Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Angew. Chem. Int. Ed. 2021, 60, 12554. doi: 10.1002/anie.202102832  doi: 10.1002/anie.202102832

    39. [39]

      Dong, J. T.; Ji, S. N.; Zhang, Y.; Ji, M. X.; Wang, B.; Li, Y. J.; Chen, Z. G.; Xia, J. X.; Li, H. M. Acta Phys. -Chim. Sin. 2023, 39, 2212011. [] doi: 10.3866/PKU.WHXB202212011  doi: 10.3866/PKU.WHXB202212011

    40. [40]

      Liu, G. P.; Wang, L.; Wang, B.; Zhu, X. W.; Yang, J. M.; Liu, P. J.; Zhu, W. S.; Chen, Z. R.; Xia, J. X. Chin. Chem. Lett. 2023, 34, 107962. doi: 10.1016/j.cclet.2022.107962  doi: 10.1016/j.cclet.2022.107962

    41. [41]

      Liu, J. Y.; Zhu, S. M.; Wang, B.; Yang, R. Z.; Wang, R.; Zhu, X. W.; Song, Y. H.; Yuan, J. J.; Xu, H.; Li., H. M. Chin. Chem. Lett. 2023, 34, 107749. doi: 10.1016/j.cclet.2022.107749  doi: 10.1016/j.cclet.2022.107749

    42. [42]

      Zan, Z. Q.; Li, X. B.; Gao, X. M.; Huang, J. T.; Luo, Y. D.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    43. [43]

      Yan, X. W.; Wang, B.; Ji, M. X.; Jiang, Q.; Liu, G. P.; Liu, P. J.; Yin, S.; Li, H. M.; Xia, J. X. Chin. J. Struct. Chem. 2022, 41, 2208044. doi: 10.14102/j.cnki.0254-5861.2022-0141  doi: 10.14102/j.cnki.0254-5861.2022-0141

    44. [44]

      Yang, J. H.; Hou, Y. P.; Sun, J. L.; Liang, J. X.; Yu, Z. B.; Zhu, H. X.; Wang, S. F. Sep. Purif. Technol. 2022, 299, 121701. doi: 10.1016/j.seppur.2022.121701  doi: 10.1016/j.seppur.2022.121701

    45. [45]

      Bai, S.; Li, X. Y.; Kong, Q.; Long, R.; Wang, C. M.; Jiang, J.; Xiong, Y. J. Adv. Mater. 2015, 27, 3444. doi: 10.1002/adma.201501200  doi: 10.1002/adma.201501200

    46. [46]

      Gong, S. W.; Zhu, G. Q.; Wang, R.; Rao, F.; Shi, X. J.; Gao, J. Z.; Huang, Y.; He, C. Z.; Hojamberdiev, M. Appl. Catal. B 2021, 297, 120413. doi: 10.1016/j.apcatb.2021.120413  doi: 10.1016/j.apcatb.2021.120413

    47. [47]

      Zhu, X. W.; Wang, Z. L.; Zhong, K.; Li, Q. D.; Ding, P. H.; Feng, Z. Y.; Yang, J. M.; Du, Y. S.; Song, Y. H.; Hua, Y. J.; et al. Chem. Eng. J. 2022, 429, 132204. doi: 10.1016/j.cej.2021.132204  doi: 10.1016/j.cej.2021.132204

    48. [48]

      Yang, J. M.; Zhu, X. W.; Yu, Q.; He, M. Q.; Zhang, W.; Mo, Z.; Yuan, J. J.; She, Y. B.; Xu, H.; Li, H. M. Chin. J. Catal. 2022, 43, 1286. doi: 10.1016/s1872-2067[21]63954-2  doi: 10.1016/s1872-2067[21]63954-2

    49. [49]

      Cai, X. Y.; Du, J. H.; Zhong, G. M.; Zhang, Y. M.; Mao, L.; Lou, Z. Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. doi: 10.3866/PKU.WHXB202302017  doi: 10.3866/PKU.WHXB202302017

    50. [50]

      Mo, Z.; Miao, Z. H.; Yan, P. C.; Sun, P. P.; Wu, G. Y.; Zhu, X. W.; Ding, C.; Zhu, Q.; Lei, Y. C.; Xu, H. J. Colloid Interface Sci. 2023, 645, 525. doi: 10.1016/j.jcis.2023.04.123  doi: 10.1016/j.jcis.2023.04.123

    51. [51]

      Li, X. W.; Wang, B.; Yin, W. X.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Acta Phys. -Chim. Sin. 2020, 36, 1902001. doi: 10.3866/PKU.WHXB201902001  doi: 10.3866/PKU.WHXB201902001

    52. [52]

      Zhang, Y.; Guo, F. Y.; Wang, K. K.; Di, J.; Min, B.; Zhu, H. Y.; Chen, H. L.; Weng, Y. -X.; Dai, J. Y.; She, Y. B.; et al. Chem. Eng. J. 2023, 465, 142663. doi: 10.1016/j.cej.2023.142663  doi: 10.1016/j.cej.2023.142663

    53. [53]

      Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F. ACS Nano 2021, 15, 14453. doi: 10.1021/acsnano.1c03961  doi: 10.1021/acsnano.1c03961

    54. [54]

      Li, D. S.; Zhu, B. C.; Sun, Z. T.; Liu, Q. Q.; Wang, L. L.; Tang, H. Front. Chem. 2021, 9, 804204. doi: 10.3389/fchem.2021.804204  doi: 10.3389/fchem.2021.804204

    55. [55]

      Yu, H. B.; Huang, J. H.; Jiang, L. B.; Leng, L. J.; Yi, K. X.; Zhang, W.; Zhang, C. Y.; Yuan, X. Z. Appl. Catal. 2021, 298, 120618. doi: 10.1016/j.apcatb.2021.120618  doi: 10.1016/j.apcatb.2021.120618

    56. [56]

      Xu, Y. X.; Jin, X. L.; Ge, T.; Xie, H. Q.; Sun, R. X.; Su, F. Y.; Li, X.; Ye, L. Q. Chem. Eng. J. 2021, 409, 128178. doi: 10.1016/j.cej.2020.128178  doi: 10.1016/j.cej.2020.128178

    57. [57]

      Jin, X. L.; Cao, J.; Wang, H. Q.; Lv, C. D.; Xie, H. Q.; Su, F. Y.; Li, X.; Sun, R. X.; Shi, S. K.; Dang, M. F.; et al. Appl. Surf. Sci. 2022, 598, 153758. doi: 10.1016/j.apsusc.2022.153758  doi: 10.1016/j.apsusc.2022.153758

    58. [58]

      Meng, J. Z.; Duan, Y. Y.; Jing, S. J.; Ma, J. P.; Wang, K. W.; Zhou, K.; Ban, C. G.; Wang, Y.; Hu, B. H.; Yu, D. M.; et al. Nano Energy 2022, 92, 106671. doi: 10.1016/j.nanoen.2021.106671  doi: 10.1016/j.nanoen.2021.106671

    59. [59]

      Sun, Z.; Liu, T. W.; Shen, Q. Q.; Li, H. M.; Liu, X. G.; Jia, H. S.; Xue, J. B. Appl. Surf. Sci. 2023, 616, 156530. doi: 10.1016/j.apsusc.2023.156530  doi: 10.1016/j.apsusc.2023.156530

    60. [60]

      Li, X. F.; Li, K. M.; Ding, D.; Yan, J. T.; Wang, C. L.; Carabineiro, S. A. C.; Liu, Y.; Lv, K. L. Sep. Purif. Technol. 2023, 309, 123054. doi: 10.1016/j.seppur.2022.123054  doi: 10.1016/j.seppur.2022.123054

    61. [61]

      Di, J.; Zhao, X. X.; Lian, C.; Ji, M. X.; Xia, J. X.; Xiong, J.; Zhou, W.; Cao, X. Z.; She, Y. B.; Liu, H. L.; et al. Nano Energy 2019, 61, 54. doi: 10.1016/j.nanoen.2019.04.029  doi: 10.1016/j.nanoen.2019.04.029

    62. [62]

      Wang, J. Q.; Cheng, H.; Wei, D. Q.; Li, Z. H. Chin. J. Catal. 2022, 43, 2606. doi: 10.1016/S1872-2067[22]64091-9  doi: 10.1016/S1872-2067[22]64091-9

    63. [63]

      Si, S. H.; Shou, H. W.; Mao, Y. Y.; Bao, X. L.; Zhai, G. Y.; Song, K. P.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Zheng, Z. K.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209446. doi: 10.1002/anie.202209446  doi: 10.1002/anie.202209446

    64. [64]

      Ji, M. X.; Feng, J.; Zhao, J. Z.; Zhang, Y.; Wang, B.; Di, J.; Xu, X. Y.; Chen, Z. R.; Xia, J. X.; Li, H. M. ACS Appl. Nano Mater. 2022, 5, 17226. doi: 10.1021/acsanm.2c04232  doi: 10.1021/acsanm.2c04232

    65. [65]

      Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019, 4, 690. doi: 10.1038/s41560-019-0431-1  doi: 10.1038/s41560-019-0431-1

    66. [66]

      Wang, J. Y.; Bo, T. T.; Shao, B. Y.; Zhang, Y. Z.; Jia, L. X.; Tan, X.; Zhou, W.; Yu, T. Appl. Catal. B 2021, 297, 120498. doi: 10.1016/j.apcatb.2021.120498  doi: 10.1016/j.apcatb.2021.120498

    67. [67]

      Xu, J. Q.; Ju, Z. Y.; Zhang, W.; Pan, Y.; Zhu, J. F.; Mao, J. W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Chen, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 8705. doi:10.1002/anie.202017041  doi: 10.1002/anie.202017041

  • 加载中
    1. [1]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    3. [3]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    6. [6]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    10. [10]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    11. [11]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    13. [13]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    18. [18]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

Metrics
  • PDF Downloads(1)
  • Abstract views(236)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return