Imidazolium-Based Materials for CO2 Electroreduction
- Corresponding author: Yuanbiao Huang, ybhuang@fjirsm.ac.cn Rong Cao, rcao@fjirsm.ac.cn
Citation:
Qiang Zhang, Yuanbiao Huang, Rong Cao. Imidazolium-Based Materials for CO2 Electroreduction[J]. Acta Physico-Chimica Sinica,
;2024, 40(4): 230604.
doi:
10.3866/PKU.WHXB202306040
Shi, Y. X.; Hou, M.; Li, J. J.; Li, L.; Zhang, Z. C. Acta Phys. -Chim. Sin. 2022, 38 (11), 2206020.
doi: 10.3866/PKU.WHXB202206020
He, C.; Si, D. -H.; Huang, Y. -B.; Cao, R. Angew. Chem. Int. Ed. 2022, 61 (40), e202207478. doi: 10.1002/anie.202207478
doi: 10.1002/anie.202207478
Gong, L. -J.; Liu, L. -Y.; Zhao, S. -S.; Yang, S. -L.; Si, D. -H.; Wu, Q. -J.; Wu, Q.; Huang, Y. -B.; Cao, R. Chem. Eng. J. 2023, 458, 141360. doi: 10.1016/j.cej.2023.141360
doi: 10.1016/j.cej.2023.141360
Xue, Y.; Zhao, G.; Yang, R.; Chu, F.; Chen, J.; Wang, L.; Huang, X. Nanoscale 2021, 13 (7), 3911. doi: 10.1039/D0NR09064F
doi: 10.1039/D0NR09064F
Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Chem. Soc. Rev. 2020, 49 (11), 3565. doi: 10.1039/D0CS00017E
doi: 10.1039/D0CS00017E
Huang, Y. -B.; Liang, J.; Wang, X. -S.; Cao, R. Chem. Soc. Rev. 2017, 46 (1), 126. doi: 10.1039/C6CS00250A
doi: 10.1039/C6CS00250A
Chalkley, M. J.; Garrido-Barros, P.; Peters, J. C. Science 2020, 369 (6505), 850. doi: 10.1126/science.abc1607
doi: 10.1126/science.abc1607
Bourrez, M.; Steinmetz, R.; Ott, S.; Gloaguen, F.; Hammarström, L. Nat. Chem. 2015, 7 (2), 140. doi: 10.1038/nchem.2157
doi: 10.1038/nchem.2157
Parada, G. A.; Goldsmith, Z. K.; Kolmar, S.; Pettersson Rimgard, B.; Mercado, B. Q.; Hammarström, L.; Hammes-Schiffer, S.; Mayer, J. M. Science 2019, 364 (6439), 471. doi: 10.1126/science.aaw4675
doi: 10.1126/science.aaw4675
Neyrizi, S.; Kiewiet, J.; Hempenius, M. A.; Mul, G. ACS Energy Lett. 2022, 7 (10), 3439. doi: 10.1021/acsenergylett.2c01372
doi: 10.1021/acsenergylett.2c01372
Wu, Q. -J.; Si, D. -H.; Wu, Q.; Dong, Y. -L.; Cao, R.; Huang, Y. -B. Angew. Chem. Int. Ed. 2023, 62 (7), e202215687. doi: 10.1002/anie.202215687
doi: 10.1002/anie.202215687
Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Chem. Soc. Rev. 2021, 50 (8), 4993. doi: 10.1039/D0CS00071J
doi: 10.1039/D0CS00071J
Ye, C. Y.; Yu, X. F.; Li, W. C.; He, L.; Hao, G. P.; Lu, A. H. Acta Phys. -Chim. Sin. 2022, 38, 2004054.
doi: 10.3866/PKU.WHXB202004054
Zhang, W.; Huang, C.; Zhu, J.; Zhou, Q.; Yu, R.; Wang, Y.; An, P.; Zhang, J.; Qiu, M.; Zhou, L.; et al. Angew. Chem. Int. Ed. 2022, 61 (3), e202112116. doi: 10.1002/anie.202112116
doi: 10.1002/anie.202112116
Li, Q. -X.; Si, D. -H.; Lin, W.; Wang, Y. -B.; Zhu, H. -J.; Huang, Y. -B.; Cao, R. Sci. China Chem. 2022, 65 (8), 1584. doi: 10.1007/s11426-022-1263-5
doi: 10.1007/s11426-022-1263-5
Mota, F. M.; Kim, D. H. Chem. Soc. Rev. 2019, 48 (1), 205. doi: 10.1039/C8CS00527C
doi: 10.1039/C8CS00527C
Zhang, B.; Zhang, J.; Hua, M.; Wan, Q.; Su, Z.; Tan, X.; Liu, L.; Zhang, F.; Chen, G.; Tan, D.; et al. J. Am. Chem. Soc. 2020, 142 (31), 13606. doi: 10.1021/jacs.0c06420
doi: 10.1021/jacs.0c06420
Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2021, 4 (1), 20. doi: 10.1038/s41929-020-00547-0
doi: 10.1038/s41929-020-00547-0
Mosali, V. S. S.; Bond, A. M.; Zhang, J. Nanoscale 2022, 14 (42), 15560. doi: 10.1039/D2NR03539A
doi: 10.1039/D2NR03539A
Du, X.; Qin, Y.; Gao, B.; Jang, J. H.; Xiao, C.; Li, Y.; Ding, S.; Song, Z.; Su, Y.; Nam, K. T. J. Mater. Chem. A 2022, 10 (13), 7082. doi: 10.1039/D2TA00250G
doi: 10.1039/D2TA00250G
Bagchi, D.; Sarkar, S.; Singh, A. K.; Vinod, C. P.; Peter, S. C. ACS Nano 2022, 16 (4), 6185. doi: 10.1021/acsnano.1c11664
doi: 10.1021/acsnano.1c11664
Chen, Z. W.; Gariepy, Z.; Chen, L.; Yao, X.; Anand, A.; Liu, S. -J.; Tetsassi Feugmo, C. G.; Tamblyn, I.; Singh, C. V. ACS Catal. 2022, 12 (24), 14864. doi: 10.1021/acscatal.2c03675
doi: 10.1021/acscatal.2c03675
Cao, L.; Wu, X.; Liu, Y.; Mao, F.; Shi, Y.; Li, J.; Zhu, M.; Dai, S.; Chen, A.; Liu, P. F.; et al. J. Mater. Chem. A 2022, 10 (18), 9954. doi: 10.1039/D1TA09482C
doi: 10.1039/D1TA09482C
Zhang, Y.; Zhou, Q.; Qiu, Z. -F.; Zhang, X. -Y.; Chen, J. -Q.; Zhao, Y.; Gong, F.; Sun, W. -Y. Adv. Funct. Mater. 2022, 32 (36), 2203677. doi: 10.1002/adfm.202203677
doi: 10.1002/adfm.202203677
Cho, J. H.; Lee, C.; Hong, S. H.; Jang, H. Y.; Back, S.; Seo, M.; Lee, M.; Min, H. -K.; Choi, Y.; Jang, Y. J.; et al. Adv. Mater. 2022, 2208224. doi: 10.1002/adma.202208224
doi: 10.1002/adma.202208224
Shimoni, R.; Shi, Z.; Binyamin, S.; Yang, Y.; Liberman, I.; Ifraemov, R.; Mukhopadhyay, S.; Zhang, L.; Hod, I. Angew. Chem. Int. Ed. 2022, 61 (32), e202206085. doi: 10.1002/anie.202206085
doi: 10.1002/anie.202206085
Yu, A.; Ma, G.; Zhu, L.; Zhang, R.; Li, Y.; Yang, S.; Hsu, H. -Y.; Peng, P.; Li, F. -F. Appl. Catal. B Environ. 2022, 307, 121161. doi: 10.1016/j.apcatb.2022.121161
doi: 10.1016/j.apcatb.2022.121161
Chi, S. -Y.; Chen, Q.; Zhao, S. -S.; Si, D. -H.; Wu, Q. -J.; Huang, Y. -B.; Cao, R. J. Mater. Chem. A 2022, 10 (9), 4653. doi: 10.1039/D1TA10991J
doi: 10.1039/D1TA10991J
Derrick, J. S.; Loipersberger, M.; Nistanaki, S. K.; Rothweiler, A. V.; Head-Gordon, M.; Nichols, E. M.; Chang, C. J. J. Am. Chem. Soc. 2022, 144 (26), 11656. doi: 10.1021/jacs.2c02972
doi: 10.1021/jacs.2c02972
Siritanaratkul, B.; Forster, M.; Greenwell, F.; Sharma, P. K.; Yu, E. H.; Cowan, A. J. J. Am. Chem. Soc. 2022, 144 (17), 7551. doi: 10.1021/jacs.1c13024
doi: 10.1021/jacs.1c13024
Grammatico, D.; Bagnall, A. J.; Riccardi, L.; Fontecave, M.; Su, B. -L.; Billon, L. Angew. Chem. Int. Ed. 2022, 61 (38), e202206399. doi: 10.1002/anie.202206399
doi: 10.1002/anie.202206399
Yu, P.; Lv, X.; Wang, Q.; Huang, H.; Weng, W.; Peng, C.; Zhang, L.; Zheng, G. Small 2023, 19 (4), 2205730. doi: 10.1002/smll.202205730
doi: 10.1002/smll.202205730
Cui, Y.; He, B.; Liu, X.; Sun, J. Ind. Eng. Chem. Res. 2020, 59 (46), 20235. doi: 10.1021/acs.iecr.0c04037
doi: 10.1021/acs.iecr.0c04037
Sun, Q.; Zhao, Y.; Ren, W.; Zhao, C. Appl. Catal. B Environ. 2022, 304, 120963. doi: 10.1016/j.apcatb.2021.120963
doi: 10.1016/j.apcatb.2021.120963
Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11 (4), 893. doi: 10.1039/c7ee03245e
doi: 10.1039/c7ee03245e
Zou, Y. H. The Synthesis of Imidazolium Functionalized Metal-Organic Materials and Their Applications in Adsorption and Catalysis. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2021.
Hailu, A.; Shaw, S. K. Energy Fuels 2018, 32 (12), 12695. doi: 10.1021/acs.energyfuels.8b02750
doi: 10.1021/acs.energyfuels.8b02750
Welch, L. M.; Vijayaraghavan, M.; Greenwell, F.; Satherley, J.; Cowan, A. J. Faraday Discuss. 2021, 230 (0), 331. doi: 10.1039/D0FD00140F
doi: 10.1039/D0FD00140F
Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Chem. Rev. 2017, 117 (10), 6755. doi: 10.1021/acs.chemrev.6b00509
doi: 10.1021/acs.chemrev.6b00509
Medina-Ramos, J.; Pupillo, R. C.; Keane, T. P.; DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2015, 137 (15), 5021. doi: 10.1021/ja5121088
doi: 10.1021/ja5121088
Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Nat. Commun. 2013, 4 (1), 2819. doi: 10.1038/ncomms3819
doi: 10.1038/ncomms3819
Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126 (16), 5300. doi: 10.1021/ja039615x
doi: 10.1021/ja039615x
Zhu, Q.; Ma, J.; Kang, X.; Sun, X.; Liu, H.; Hu, J.; Liu, Z.; Han, B. Angew. Chem. Int. Ed. 2016, 55 (31), 9012. doi: 10.1002/anie.201601974
doi: 10.1002/anie.201601974
Niu, D.; Wang, H.; Li, H.; Wu, Z.; Zhang, X. Electrochim. Acta 2015, 158, 138. doi: 10.1016/j.electacta.2015.01.096
doi: 10.1016/j.electacta.2015.01.096
Zou, Y. -H.; Huang, Y. -B.; Si, D. -H.; Yin, Q.; Wu, Q. -J.; Weng, Z.; Cao, R. Angew. Chem. Int. Ed. 2021, 60 (38), 20915. doi: 10.1002/anie.202107156
doi: 10.1002/anie.202107156
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal. Gen. 2010, 373 (1), 1. doi: 10.1016/j.apcata.2009.10.008
doi: 10.1016/j.apcata.2009.10.008
Kemna, A.; García Rey, N.; Braunschweig, B. ACS Catal. 2019, 9 (7), 6284. doi: 10.1021/acscatal.9b01033
doi: 10.1021/acscatal.9b01033
Pankhurst, J. R.; Iyengar, P.; Okatenko, V.; Buonsanti, R. Inorg. Chem. 2021, 60 (10), 6939. doi: 10.1021/acs.inorgchem.1c00287
doi: 10.1021/acs.inorgchem.1c00287
Zhao, G.; Jiang, T.; Han, B.; Li, Z.; Zhang, J.; Liu, Z.; He, J.; Wu, W. J. Supercrit. Fluid. 2004, 32 (1–3), 287. doi: 10.1016/j.supflu.2003.12.015
doi: 10.1016/j.supflu.2003.12.015
Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334 (6056), 643. doi: 10.1126/science.1209786
doi: 10.1126/science.1209786
Vasilyev, D. V.; Dyson, P. J. ACS Catal. 2021, 11 (3), 1392. doi: 10.1021/acscatal.0c04283
doi: 10.1021/acscatal.0c04283
Zhang, X.; Xia, T.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. J. Solid State Chem. 2017, 253, 277. doi: 10.1016/j.jssc.2017.06.008
doi: 10.1016/j.jssc.2017.06.008
Huan, T. N.; Simon, P.; Rousse, G.; Génois, I.; Artero, V.; Fontecave, M. Chem. Sci. 2016, 8 (1), 742. doi: 10.1039/C6SC03194C
doi: 10.1039/C6SC03194C
Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R.; et al. Science 2016, 353 (6298), 467. doi: 10.1126/science.aaf4767
doi: 10.1126/science.aaf4767
Zeng, M.; Liu, Y.; Hu, Y.; Zhang, X. Chem. Eng. J. 2021, 425, 131663. doi: 10.1016/j.cej.2021.131663
doi: 10.1016/j.cej.2021.131663
Luo, H.; Li, B.; Ma, J. -G.; Cheng, P. Angew. Chem. Int. Ed. 2022, 61 (11), e202116736. doi: 10.1002/anie.202116736
doi: 10.1002/anie.202116736
Liu, Y.; Tian, D.; Biswas, A. N.; Xie, Z.; Hwang, S.; Lee, J. H.; Meng, H.; Chen, J. G. Angew. Chem. Int. Ed. 2020, 59 (28), 11345. doi: 10.1002/anie.202003625
doi: 10.1002/anie.202003625
Min, Z.; Chang, B.; Shao, C.; Su, X.; Wang, N.; Li, Z.; Wang, H.; Zhao, Y.; Fan, M.; Wang, J. Appl. Catal. B Environ. 2023, 326, 122185. doi: 10.1016/j.apcatb.2022.122185
doi: 10.1016/j.apcatb.2022.122185
Ma, L.; Liu, N.; Mei, B.; Yang, K.; Liu, B.; Deng, K.; Zhang, Y.; Feng, H.; Liu, D.; Duan, J.; et al. ACS Catal. 2022, 12 (14), 8601. doi: 10.1021/acscatal.2c01434
doi: 10.1021/acscatal.2c01434
Jiang, M.; Zhu, M.; Wang, H.; Song, X.; Liang, J.; Lin, D.; Li, C.; Cui, J.; Li, F.; Zhang, X. L.; et al. Nano Lett. 2023, 23 (1), 291. doi: 10.1021/acs.nanolett.2c04335
doi: 10.1021/acs.nanolett.2c04335
Guo, W.; Tan, X.; Bi, J.; Xu, L.; Yang, D.; Chen, C.; Zhu, Q.; Ma, J.; Tayal, A.; Ma, J.; et al. J. Am. Chem. Soc. 2021, 143 (18), 6877. doi: 10.1021/jacs.1c00151
doi: 10.1021/jacs.1c00151
Tan, X.; Sun, X.; Han, B. Natl. Sci. Rev. 2022, 9 (4), nwab022. doi: 10.1093/nsr/nwab022
doi: 10.1093/nsr/nwab022
Yang, D.; Zhu, Q.; Sun, X.; Chen, C.; Guo, W.; Yang, G.; Han, B. Angew. Chem. 2020, 132 (6), 2374. doi: 10.1002/ange.201914831
doi: 10.1002/ange.201914831
Sharifi Golru, S.; Biddinger, E. J. Electrochim. Acta 2020, 361, 136787. doi: 10.1016/j.electacta.2020.136787
doi: 10.1016/j.electacta.2020.136787
Li, P.; Bi, J.; Liu, J.; Zhu, Q.; Chen, C.; Sun, X.; Zhang, J.; Han, B. Nat. Commun. 2022, 13 (1), 1965. doi: 10.1038/s41467-022-29698-3
doi: 10.1038/s41467-022-29698-3
Motobayashi, K.; Maeno, Y.; Ikeda, K. J. Phys. Chem. C 2022, 126 (29), 11981. doi: 10.1021/acs.jpcc.2c03012
doi: 10.1021/acs.jpcc.2c03012
Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D. D.; Masel, R. I. J. Phys. Chem. C 2012, 116 (29), 15307. doi: 10.1021/jp210542v
doi: 10.1021/jp210542v
de Robillard, G.; Devillers, C. H.; Kunz, D.; Cattey, H.; Digard, E.; Andrieu, J. Org. Lett. 2013, 15 (17), 4410. doi: 10.1021/ol401949f
doi: 10.1021/ol401949f
A. Duong, H.; N. Tekavec, T.; M. Arif, A.; Louie, J. Chem. Commun. 2004, No. 1, 112. doi: 10.1039/B311350G
doi: 10.1039/B311350G
Michez, R.; Doneux, T.; Buess-Herman, C.; Luhmer, M. ChemPhysChem 2017, 18 (16), 2208. doi: 10.1002/cphc.201700421
doi: 10.1002/cphc.201700421
Sun, L.; Ramesha, G. K.; Kamat, P. V.; Brennecke, J. F. Langmuir 2014, 30 (21), 6302. doi: 10.1021/la5009076
doi: 10.1021/la5009076
Zhao, S. -F.; Horne, M.; Bond, A. M.; Zhang, J. J. Phys. Chem. C 2016, 120 (42), 23989. doi: 10.1021/acs.jpcc.6b08182
doi: 10.1021/acs.jpcc.6b08182
Wang, Y.; Hatakeyama, M.; Ogata, K.; Wakabayashi, M.; Jin, F.; Nakamura, S. Phys. Chem. Chem. Phys. 2015, 17 (36), 23521. doi: 10.1039/C5CP02008E
doi: 10.1039/C5CP02008E
Barrosse-Antle, L. E.; Compton, R. G. Chem. Commun. 2009, 25, 3744. doi: 10.1039/B906320J
doi: 10.1039/B906320J
Snuffin, L. L.; Whaley, L. W.; Yu, L. J. Electrochem. Soc. 2011, 158 (9), F155. doi: 10.1149/1.3606487
doi: 10.1149/1.3606487
Feroci, M.; Chiarotto, I.; Orsini, M.; Sotgiu, G.; Inesi, A. Electrochim. Acta 2011, 56 (16), 5823. doi: 10.1016/j.electacta.2011.04.067
doi: 10.1016/j.electacta.2011.04.067
Matsubara, Y.; Grills, D. C.; Kuwahara, Y. ACS Catal. 2015, 5 (11), 6440. doi: 10.1021/acscatal.5b00656
doi: 10.1021/acscatal.5b00656
Lau, G. P. S.; Schreier, M.; Vasilyev, D.; Scopelliti, R.; Grätzel, M.; Dyson, P. J. J. Am. Chem. Soc. 2016, 138 (25), 7820. doi: 10.1021/jacs.6b03366
doi: 10.1021/jacs.6b03366
Parada, W. A.; Vasilyev, D. V.; Mayrhofer, K. J. J.; Katsunaros, I. ACS Appl. Mater. Interfaces 2022, 14 (12), 14193. doi: 10.1021/acsami.1c24386
doi: 10.1021/acsami.1c24386
Mehnert, C. P. Chem. -Eur. J. 2005, 11 (1), 50. doi: 10.1002/chem.200400683
doi: 10.1002/chem.200400683
Zhang, G. -R.; Straub, S. -D.; Shen, L. -L.; Hermans, Y.; Schmatz, P.; Reichert, A. M.; Hofmann, J. P.; Katsounaros, I.; Etzold, B. J. M. Angew. Chem. Int. Ed. 2020, 59 (41), 18095. doi: 10.1002/anie.202009498
doi: 10.1002/anie.202009498
Cheng, B.; Du, J.; Yuan, H.; Tao, Y.; Chen, Y.; Lei, J.; Han, Z. ACS Appl. Mater. Interfaces 2022, 14 (24), 27823. doi: 10.1021/acsami.2c03748
doi: 10.1021/acsami.2c03748
Wang, J.; Cheng, T.; Fenwick, A. Q.; Baroud, T. N.; Rosas-Hernández, A.; Ko, J. H.; Gan, Q.; Goddard Ⅲ, W. A.; Grubbs, R. H. J. Am. Chem. Soc. 2021, 143 (7), 2857. doi: 10.1021/jacs.0c12478
doi: 10.1021/jacs.0c12478
Kim, C.; Bui, J. C.; Luo, X.; Cooper, J. K.; Kusoglu, A.; Weber, A. Z.; Bell, A. T. Nat. Energy 2021, 6 (11), 1026. doi: 10.1038/s41560-021-00920-8
doi: 10.1038/s41560-021-00920-8
Hansen, K. U.; Jiao, F. Nat. Energy 2021, 6 (11), 1005. doi: 10.1038/s41560-021-00930-6
doi: 10.1038/s41560-021-00930-6
Tamura, J.; Ono, A.; Sugano, Y.; Huang, C.; Nishizawa, H.; Mikoshiba, S. Phys. Chem. Chem. Phys. 2015, 17 (39), 26072. doi: 10.1039/C5CP03028E
doi: 10.1039/C5CP03028E
Pankhurst, J. R.; Guntern, Y. T.; Mensi, M.; Buonsanti, R. Chem. Sci. 2019, 10 (44), 10356. doi: 10.1039/C9SC04439F
doi: 10.1039/C9SC04439F
Koshy, D. M.; Akhade, S. A.; Shugar, A.; Abiose, K.; Shi, J.; Liang, S.; Oakdale, J. S.; Weitzner, S. E.; Varley, J. B.; Duoss, E. B.; et al. J. Am. Chem. Soc. 2021, 143 (36), 14712. doi: 10.1021/jacs.1c06212
doi: 10.1021/jacs.1c06212
Li, N.; Si, D. -H.; Wu, Q.; Wu, Q.; Huang, Y. -B.; Cao, R. CCS Chem. 2022, 5 (5), 1130. doi: 10.31635/ccschem.022.202201943
doi: 10.31635/ccschem.022.202201943
Yi, J. -D.; Si, D. -H.; Xie, R.; Yin, Q.; Zhang, M. -D.; Wu, Q.; Chai, G. -L.; Huang, Y. -B.; Cao, R. Angew. Chem. Int. Ed. 2021, 60 (31), 17108. doi: 10.1002/anie.202104564
doi: 10.1002/anie.202104564
Zhang, M. -D.; Si, D. -H.; Yi, J. -D.; Zhao, S. -S.; Huang, Y. -B.; Cao, R. Small 2020, 16 (52), 2005254. doi: 10.1002/smll.202005254
doi: 10.1002/smll.202005254
Wu, Q.; Mao, M. -J.; Wu, Q. -J.; Liang, J.; Huang, Y. -B.; Cao, R. Small 2021, 17 (22), 2004933. doi: 10.1002/smll.202004933
doi: 10.1002/smll.202004933
Ma, C.; Hou, P.; Wang, X.; Wang, Z.; Li, W.; Kang, P. Appl. Catal. B Environ. 2019, 250, 347. doi: 10.1016/j.apcatb.2019.03.041
doi: 10.1016/j.apcatb.2019.03.041
Lamaison, S.; Wakerley, D.; Kracke, F.; Moore, T.; Zhou, L.; Lee, D. U.; Wang, L.; Hubert, M. A.; Aviles Acosta, J. E.; Gregoire, J. M.; et al. Adv. Mater. 2022, 34 (1), 2103963. doi: 10.1002/adma.202103963
doi: 10.1002/adma.202103963
Lee, J.; Lim, J.; Roh, C. -W.; Whang, H. S.; Lee, H. J. CO2 Util. 2019, 31, 244. doi: 10.1016/j.jcou.2019.03.022
doi: 10.1016/j.jcou.2019.03.022
Han, M. H.; Kim, D.; Kim, S.; Yu, S. -H.; Won, D. H.; Min, B. K.; Chae, K. H.; Lee, W. H.; Oh, H. -S. Adv. Energy Mater. 2022, 12 (35), 2201843. doi: 10.1002/aenm.202201843
doi: 10.1002/aenm.202201843
Sha, Y.; Zhang, J.; Cheng, X.; Xu, M.; Su, Z.; Wang, Y.; Hu, J.; Han, B.; Zheng, L. Angew. Chem. Int. Ed. 2022, 61 (13), e202200039. doi: 10.1002/anie.202200039
doi: 10.1002/anie.202200039
Ren, W.; Tan, X.; Chen, X.; Zhang, G.; Zhao, K.; Yang, W.; Jia, C.; Zhao, Y.; Smith, S. C.; Zhao, C. ACS Catal. 2020, 10 (22), 13171. doi: 10.1021/acscatal.0c03873
doi: 10.1021/acscatal.0c03873
Delmo, E. P.; Wang, Y.; Wang, J.; Zhu, S.; Li, T.; Qin, X.; Tian, Y.; Zhao, Q.; Jang, J.; Wang, Y.; et al. Chin. J. Catal. 2022, 43 (7), 1687. doi: 10.1016/S1872-2067(21)63970-0
doi: 10.1016/S1872-2067(21)63970-0
Ding, M.; Jiang, H. -L. ACS Catal. 2018, 8 (4), 3194. doi: 10.1021/acscatal.7b03404
doi: 10.1021/acscatal.7b03404
Johnson, B. A.; Maji, S.; Agarwala, H.; White, T. A.; Mijangos, E.; Ott, S. Angew. Chem. Int. Ed. 2016, 55 (5), 1825. doi: 10.1002/anie.201508490
doi: 10.1002/anie.201508490
Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J. J. Am. Chem. Soc. 2011, 133 (24), 9212. doi: 10.1021/ja202743r
doi: 10.1021/ja202743r
Sung, S.; Kumar, D.; Gil-Sepulcre, M.; Nippe, M. J. Am. Chem. Soc. 2017, 139 (40), 13993. doi: 10.1021/jacs.7b07709
doi: 10.1021/jacs.7b07709
Li, X.; Panetier, J. A. Phys. Chem. Chem. Phys. 2021, 23 (27), 14940. doi: 10.1039/D1CP01576A
doi: 10.1039/D1CP01576A
Liang, Y.; Nguyen, M. T.; Holliday, B. J.; Jones, R. A. Inorg. Chem. Commun. 2017, 84, 113. doi: 10.1016/j.inoche.2017.08.002
doi: 10.1016/j.inoche.2017.08.002
Hawecker, J.; Lehn, J. -M.; Ziessel, R. J. Chem. Soc. Chem. Commun. 1984, No. 6, 328. doi: 10.1039/C39840000328
doi: 10.1039/C39840000328
Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. J. Chem. Soc. Chem. Commun. 1985, No. 20, 1414. doi: 10.1039/C39850001414
doi: 10.1039/C39850001414
Sampson, M. D.; Kubiak, C. P. Inorg. Chem. 2015, 54 (14), 6674. doi: 10.1021/acs.inorgchem.5b01080
doi: 10.1021/acs.inorgchem.5b01080
Hawecker, J.; Lehn, J. -M.; Ziessel, R. J. Chem. Soc. Chem. Commun. 1983, 0 (9), 536. doi: 10.1039/C39830000536
doi: 10.1039/C39830000536
Khadhraoui, A.; Gotico, P.; Boitrel, B.; Leibl, W.; Halime, Z.; Aukauloo, A. Chem. Commun. 2018, 54 (82), 11630. doi: 10.1039/C8CC06475J
doi: 10.1039/C8CC06475J
Sung, S.; Li, X.; Wolf, L. M.; Meeder, J. R.; Bhuvanesh, N. S.; Grice, K. A.; Panetier, J. A.; Nippe, M. J. Am. Chem. Soc. 2019, 141 (16), 6569. doi: 10.1021/jacs.8b13657
doi: 10.1021/jacs.8b13657
Li, X.; Panetier, J. A. ACS Catal. 2021, 11 (21), 12989. doi: 10.1021/acscatal.1c02899
doi: 10.1021/acscatal.1c02899
Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J. -M. J. Am. Chem. Soc. 2016, 138 (51), 16639. doi: 10.1021/jacs.6b07014
doi: 10.1021/jacs.6b07014
Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J. -M. J. Phys. Chem. C 2016, 120 (51), 28951. doi: 10.1021/acs.jpcc.6b09947
doi: 10.1021/acs.jpcc.6b09947
Yang, Z. -W.; Chen, J. -M.; Qiu, L. -Q.; Xie, W. -J.; He, L. -N. Angew. Chem. Int. Ed. 2022, 61 (44), e202205301. doi: 10.1002/anie.202205301
doi: 10.1002/anie.202205301
Warshel, A. Proc. Natl. Acad. Sci. USA 1978, 75 (11), 5250. doi: 10.1073/pnas.75.11.5250
doi: 10.1073/pnas.75.11.5250
Warshel, A. Acc. Chem. Res. 1981, 14 (9), 284. doi: 10.1021/ar00069a004
doi: 10.1021/ar00069a004
Narouz, M. R.; De La Torre, P.; An, L.; Chang, C. J. Angew. Chem. 2022, 134 (37), e202207666. doi: 10.1002/ange.202207666
doi: 10.1002/ange.202207666
Saravanan, C.; Muthu Mareeswaran, P. Mater. Today Proc. 2021, 34, 408. doi: 10.1016/j.matpr.2020.02.201
doi: 10.1016/j.matpr.2020.02.201
Cao, Z.; Kim, D.; Hong, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; et al. J. Am. Chem. Soc. 2016, 138 (26), 8120. doi: 10.1021/jacs.6b02878
doi: 10.1021/jacs.6b02878
An, Y. -Y.; Yu, J. -G.; Han, Y. -F. Chin. J. Chem. 2019, 37 (1), 76. doi: 10.1002/cjoc.201800450
doi: 10.1002/cjoc.201800450
Luca, O. R.; McCrory, C. C. L.; Dalleska, N. F.; Koval, C. A. J. Electrochem. Soc. 2015, 162 (7), H473. doi: 10.1149/2.0371507jes
doi: 10.1149/2.0371507jes
Cao, Z.; Derrick, J. S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X.; Wen, X.; Copéret, C.; et al. Angew. Chem. Int. Ed. 2018, 57 (18), 4981. doi: 10.1002/anie.201800367
doi: 10.1002/anie.201800367
Amit, E.; Dery, L.; Dery, S.; Kim, S.; Roy, A.; Hu, Q.; Gutkin, V.; Eisenberg, H.; Stein, T.; Mandler, D.; et al. Nat. Commun. 2020, 11 (1), 5714. doi: 10.1038/s41467-020-19500-7
doi: 10.1038/s41467-020-19500-7
Mao, M. -J.; Zhang, M. -D.; Meng, D. -L.; Chen, J. -X.; He, C.; Huang, Y. -B.; Cao, R. ChemCatChem 2020, 12 (13), 3530. doi: 10.1002/cctc.202000387
doi: 10.1002/cctc.202000387
Jiang, Y.; Zhang, X.; Fei, H. Dalton Trans. 2020, 49 (20), 6548. doi: 10.1039/D0DT01022G
doi: 10.1039/D0DT01022G
Chen, S.; Li, W. -H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X.; et al. Angew. Chem. Int. Ed. 2022, 61 (4), e202114450. doi: 10.1002/anie.202114450
doi: 10.1002/anie.202114450
Zhang, L.; Wei, Z.; Thanneeru, S.; Meng, M.; Kruzyk, M.; Ung, G.; Liu, B.; He, J. Angew. Chem. Int. Ed. 2019, 58 (44), 15834. doi: 10.1002/anie.201909069
doi: 10.1002/anie.201909069
Agarwal, J.; Shaw, T. W.; Stanton, C. J.; Majetich, G. F.; Bocarsly, A. B.; Schaefer, H. F. Angew. Chem. Int. Ed. 2014, 53 (20), 5152. doi: 10.1002/anie.201311099
doi: 10.1002/anie.201311099
Franco, F.; Cometto, C.; Vallana, F. F.; Sordello, F.; Priola, E.; Minero, C.; Nervi, C.; Gobetto, R. Chem. Commun. 2014, 50 (93), 14670. doi: 10.1039/C4CC05563B
doi: 10.1039/C4CC05563B
Rao, G. K.; Pell, W.; Korobkov, I.; Richeson, D. Chem. Commun. 2016, 52 (51), 8010. doi: 10.1039/C6CC03827A
doi: 10.1039/C6CC03827A
Franco, F.; Pinto, M. F.; Royo, B.; Lloret-Fillol, J. Angew. Chem. 2018, 130 (17), 4693. doi: 10.1002/ange.201800705
doi: 10.1002/ange.201800705
Stanton, C. J. I.; Vandezande, J. E.; Majetich, G. F.; Schaefer, H. F. I.; Agarwal, J. Inorg. Chem. 2016, 55 (19), 9509. doi: 10.1021/acs.inorgchem.6b01657
doi: 10.1021/acs.inorgchem.6b01657
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014