Citation: Qiang Zhang, Yuanbiao Huang, Rong Cao. Imidazolium-Based Materials for CO2 Electroreduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230604. doi: 10.3866/PKU.WHXB202306040 shu

Imidazolium-Based Materials for CO2 Electroreduction

  • Corresponding author: Yuanbiao Huang, ybhuang@fjirsm.ac.cn Rong Cao, rcao@fjirsm.ac.cn
  • Received Date: 26 June 2023
    Revised Date: 28 July 2023
    Accepted Date: 28 July 2023
    Available Online: 7 August 2023

    Fund Project: the National Key Research and Development Program of China 2018YFA0704502the National Natural Science Foundation of China U22A20436the National Natural Science Foundation of China 2071245the National Natural Science Foundation of China 22033008the National Natural Science Foundation of China 22220102005the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China 2021ZZ103

  • With the increasing use of fossil energy sources, the concentration of CO2 in the atmosphere is rising, leading to environmental challenges. However, the conversion of CO2 into high value-added chemicals through catalysis presents an opportunity to address these issues and create a new pathway for fuel synthesis, ultimately helping to reduce CO2 emissions and achieve carbon neutrality. Among various methods, the CO2 electroreduction reaction (CO2RR) using renewable clean energy has garnered significant attention due to its mild reaction conditions, controlled reactions progress, environmental friendliness, and numerous value-added products it can yield. In this context, imidazolium-based materials and their derivatives have emerged as promising candidates for CO2RR. These materials have a strong affinity for CO2 and find applications as both electrolytes and electrocatalysts in CO2RR systems. So one of their key advantages, especially Im-ILs, is their ability to enrich CO2 in catalytic systems, effectively preventing the undesired hydrogen evolution reaction (HER) and enhancing the selectivity towards CO2RR products. Understanding the interaction mechanism between imidazolium-based ionic liquids (Im-ILs) and CO2 molecules under electrocatalytic conditions is crucial for gaining deeper insights into why the addition of Im-ILs can improve CO2RR performance from a molecular perspective. Furthermore, Im-ILs can serve as both surface modifier groups and trapping agents in heterogeneous electrocatalysts, which can significantly alter the surface environment and hydrophobicity of the catalysts, leading to improved CO2RR. Notably, the imidazolium groups present in Lehn-type and metal-porphyrin molecular catalysts have been found to have an impact on the performance of these catalysts in CO2RR. Lastly, N-heterocyclic carbene (NHC)-based electrocatalysts, as one of the active forms of imidazolium interaction with CO2, have demonstrated exceptional performance. When introduced into porous heterogeneous catalysts and molecular catalysts, NHC-based electrocatalysts stabilize metal nanoparticles and enhance the ability to capture CO2, thus promoting CO2RR activity. In summary, the utilization of imidazolium-based materials in CO2RR holds great promise for advancing the field of CO2 conversion and achieving more sustainable and efficient processes for high-value chemical synthesis.
  • 加载中
    1. [1]

      Shi, Y. X.; Hou, M.; Li, J. J.; Li, L.; Zhang, Z. C. Acta Phys. -Chim. Sin. 2022, 38 (11), 2206020.  doi: 10.3866/PKU.WHXB202206020

    2. [2]

      He, C.; Si, D. -H.; Huang, Y. -B.; Cao, R. Angew. Chem. Int. Ed. 2022, 61 (40), e202207478. doi: 10.1002/anie.202207478  doi: 10.1002/anie.202207478

    3. [3]

      Gong, L. -J.; Liu, L. -Y.; Zhao, S. -S.; Yang, S. -L.; Si, D. -H.; Wu, Q. -J.; Wu, Q.; Huang, Y. -B.; Cao, R. Chem. Eng. J. 2023, 458, 141360. doi: 10.1016/j.cej.2023.141360  doi: 10.1016/j.cej.2023.141360

    4. [4]

      Xue, Y.; Zhao, G.; Yang, R.; Chu, F.; Chen, J.; Wang, L.; Huang, X. Nanoscale 2021, 13 (7), 3911. doi: 10.1039/D0NR09064F  doi: 10.1039/D0NR09064F

    5. [5]

      Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Chem. Soc. Rev. 2020, 49 (11), 3565. doi: 10.1039/D0CS00017E  doi: 10.1039/D0CS00017E

    6. [6]

      Huang, Y. -B.; Liang, J.; Wang, X. -S.; Cao, R. Chem. Soc. Rev. 2017, 46 (1), 126. doi: 10.1039/C6CS00250A  doi: 10.1039/C6CS00250A

    7. [7]

      Chalkley, M. J.; Garrido-Barros, P.; Peters, J. C. Science 2020, 369 (6505), 850. doi: 10.1126/science.abc1607  doi: 10.1126/science.abc1607

    8. [8]

      Bourrez, M.; Steinmetz, R.; Ott, S.; Gloaguen, F.; Hammarström, L. Nat. Chem. 2015, 7 (2), 140. doi: 10.1038/nchem.2157  doi: 10.1038/nchem.2157

    9. [9]

      Parada, G. A.; Goldsmith, Z. K.; Kolmar, S.; Pettersson Rimgard, B.; Mercado, B. Q.; Hammarström, L.; Hammes-Schiffer, S.; Mayer, J. M. Science 2019, 364 (6439), 471. doi: 10.1126/science.aaw4675  doi: 10.1126/science.aaw4675

    10. [10]

      Neyrizi, S.; Kiewiet, J.; Hempenius, M. A.; Mul, G. ACS Energy Lett. 2022, 7 (10), 3439. doi: 10.1021/acsenergylett.2c01372  doi: 10.1021/acsenergylett.2c01372

    11. [11]

      Wu, Q. -J.; Si, D. -H.; Wu, Q.; Dong, Y. -L.; Cao, R.; Huang, Y. -B. Angew. Chem. Int. Ed. 2023, 62 (7), e202215687. doi: 10.1002/anie.202215687  doi: 10.1002/anie.202215687

    12. [12]

      Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Chem. Soc. Rev. 2021, 50 (8), 4993. doi: 10.1039/D0CS00071J  doi: 10.1039/D0CS00071J

    13. [13]

      Ye, C. Y.; Yu, X. F.; Li, W. C.; He, L.; Hao, G. P.; Lu, A. H. Acta Phys. -Chim. Sin. 2022, 38, 2004054.  doi: 10.3866/PKU.WHXB202004054

    14. [14]

      Zhang, W.; Huang, C.; Zhu, J.; Zhou, Q.; Yu, R.; Wang, Y.; An, P.; Zhang, J.; Qiu, M.; Zhou, L.; et al. Angew. Chem. Int. Ed. 2022, 61 (3), e202112116. doi: 10.1002/anie.202112116  doi: 10.1002/anie.202112116

    15. [15]

      Li, Q. -X.; Si, D. -H.; Lin, W.; Wang, Y. -B.; Zhu, H. -J.; Huang, Y. -B.; Cao, R. Sci. China Chem. 2022, 65 (8), 1584. doi: 10.1007/s11426-022-1263-5  doi: 10.1007/s11426-022-1263-5

    16. [16]

      Mota, F. M.; Kim, D. H. Chem. Soc. Rev. 2019, 48 (1), 205. doi: 10.1039/C8CS00527C  doi: 10.1039/C8CS00527C

    17. [17]

      Zhang, B.; Zhang, J.; Hua, M.; Wan, Q.; Su, Z.; Tan, X.; Liu, L.; Zhang, F.; Chen, G.; Tan, D.; et al. J. Am. Chem. Soc. 2020, 142 (31), 13606. doi: 10.1021/jacs.0c06420  doi: 10.1021/jacs.0c06420

    18. [18]

      Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2021, 4 (1), 20. doi: 10.1038/s41929-020-00547-0  doi: 10.1038/s41929-020-00547-0

    19. [19]

      Mosali, V. S. S.; Bond, A. M.; Zhang, J. Nanoscale 2022, 14 (42), 15560. doi: 10.1039/D2NR03539A  doi: 10.1039/D2NR03539A

    20. [20]

      Du, X.; Qin, Y.; Gao, B.; Jang, J. H.; Xiao, C.; Li, Y.; Ding, S.; Song, Z.; Su, Y.; Nam, K. T. J. Mater. Chem. A 2022, 10 (13), 7082. doi: 10.1039/D2TA00250G  doi: 10.1039/D2TA00250G

    21. [21]

      Bagchi, D.; Sarkar, S.; Singh, A. K.; Vinod, C. P.; Peter, S. C. ACS Nano 2022, 16 (4), 6185. doi: 10.1021/acsnano.1c11664  doi: 10.1021/acsnano.1c11664

    22. [22]

      Chen, Z. W.; Gariepy, Z.; Chen, L.; Yao, X.; Anand, A.; Liu, S. -J.; Tetsassi Feugmo, C. G.; Tamblyn, I.; Singh, C. V. ACS Catal. 2022, 12 (24), 14864. doi: 10.1021/acscatal.2c03675  doi: 10.1021/acscatal.2c03675

    23. [23]

      Cao, L.; Wu, X.; Liu, Y.; Mao, F.; Shi, Y.; Li, J.; Zhu, M.; Dai, S.; Chen, A.; Liu, P. F.; et al. J. Mater. Chem. A 2022, 10 (18), 9954. doi: 10.1039/D1TA09482C  doi: 10.1039/D1TA09482C

    24. [24]

      Zhang, Y.; Zhou, Q.; Qiu, Z. -F.; Zhang, X. -Y.; Chen, J. -Q.; Zhao, Y.; Gong, F.; Sun, W. -Y. Adv. Funct. Mater. 2022, 32 (36), 2203677. doi: 10.1002/adfm.202203677  doi: 10.1002/adfm.202203677

    25. [25]

      Cho, J. H.; Lee, C.; Hong, S. H.; Jang, H. Y.; Back, S.; Seo, M.; Lee, M.; Min, H. -K.; Choi, Y.; Jang, Y. J.; et al. Adv. Mater. 2022, 2208224. doi: 10.1002/adma.202208224  doi: 10.1002/adma.202208224

    26. [26]

      Shimoni, R.; Shi, Z.; Binyamin, S.; Yang, Y.; Liberman, I.; Ifraemov, R.; Mukhopadhyay, S.; Zhang, L.; Hod, I. Angew. Chem. Int. Ed. 2022, 61 (32), e202206085. doi: 10.1002/anie.202206085  doi: 10.1002/anie.202206085

    27. [27]

      Yu, A.; Ma, G.; Zhu, L.; Zhang, R.; Li, Y.; Yang, S.; Hsu, H. -Y.; Peng, P.; Li, F. -F. Appl. Catal. B Environ. 2022, 307, 121161. doi: 10.1016/j.apcatb.2022.121161  doi: 10.1016/j.apcatb.2022.121161

    28. [28]

      Chi, S. -Y.; Chen, Q.; Zhao, S. -S.; Si, D. -H.; Wu, Q. -J.; Huang, Y. -B.; Cao, R. J. Mater. Chem. A 2022, 10 (9), 4653. doi: 10.1039/D1TA10991J  doi: 10.1039/D1TA10991J

    29. [29]

      Derrick, J. S.; Loipersberger, M.; Nistanaki, S. K.; Rothweiler, A. V.; Head-Gordon, M.; Nichols, E. M.; Chang, C. J. J. Am. Chem. Soc. 2022, 144 (26), 11656. doi: 10.1021/jacs.2c02972  doi: 10.1021/jacs.2c02972

    30. [30]

      Siritanaratkul, B.; Forster, M.; Greenwell, F.; Sharma, P. K.; Yu, E. H.; Cowan, A. J. J. Am. Chem. Soc. 2022, 144 (17), 7551. doi: 10.1021/jacs.1c13024  doi: 10.1021/jacs.1c13024

    31. [31]

      Grammatico, D.; Bagnall, A. J.; Riccardi, L.; Fontecave, M.; Su, B. -L.; Billon, L. Angew. Chem. Int. Ed. 2022, 61 (38), e202206399. doi: 10.1002/anie.202206399  doi: 10.1002/anie.202206399

    32. [32]

      Yu, P.; Lv, X.; Wang, Q.; Huang, H.; Weng, W.; Peng, C.; Zhang, L.; Zheng, G. Small 2023, 19 (4), 2205730. doi: 10.1002/smll.202205730  doi: 10.1002/smll.202205730

    33. [33]

      Cui, Y.; He, B.; Liu, X.; Sun, J. Ind. Eng. Chem. Res. 2020, 59 (46), 20235. doi: 10.1021/acs.iecr.0c04037  doi: 10.1021/acs.iecr.0c04037

    34. [34]

      Sun, Q.; Zhao, Y.; Ren, W.; Zhao, C. Appl. Catal. B Environ. 2022, 304, 120963. doi: 10.1016/j.apcatb.2021.120963  doi: 10.1016/j.apcatb.2021.120963

    35. [35]

      Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11 (4), 893. doi: 10.1039/c7ee03245e  doi: 10.1039/c7ee03245e

    36. [36]

      Zou, Y. H. The Synthesis of Imidazolium Functionalized Metal-Organic Materials and Their Applications in Adsorption and Catalysis. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2021.

    37. [37]

      Hailu, A.; Shaw, S. K. Energy Fuels 2018, 32 (12), 12695. doi: 10.1021/acs.energyfuels.8b02750  doi: 10.1021/acs.energyfuels.8b02750

    38. [38]

      Welch, L. M.; Vijayaraghavan, M.; Greenwell, F.; Satherley, J.; Cowan, A. J. Faraday Discuss. 2021, 230 (0), 331. doi: 10.1039/D0FD00140F  doi: 10.1039/D0FD00140F

    39. [39]

      Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Chem. Rev. 2017, 117 (10), 6755. doi: 10.1021/acs.chemrev.6b00509  doi: 10.1021/acs.chemrev.6b00509

    40. [40]

      Medina-Ramos, J.; Pupillo, R. C.; Keane, T. P.; DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2015, 137 (15), 5021. doi: 10.1021/ja5121088  doi: 10.1021/ja5121088

    41. [41]

      Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Nat. Commun. 2013, 4 (1), 2819. doi: 10.1038/ncomms3819  doi: 10.1038/ncomms3819

    42. [42]

      Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126 (16), 5300. doi: 10.1021/ja039615x  doi: 10.1021/ja039615x

    43. [43]

      Zhu, Q.; Ma, J.; Kang, X.; Sun, X.; Liu, H.; Hu, J.; Liu, Z.; Han, B. Angew. Chem. Int. Ed. 2016, 55 (31), 9012. doi: 10.1002/anie.201601974  doi: 10.1002/anie.201601974

    44. [44]

      Niu, D.; Wang, H.; Li, H.; Wu, Z.; Zhang, X. Electrochim. Acta 2015, 158, 138. doi: 10.1016/j.electacta.2015.01.096  doi: 10.1016/j.electacta.2015.01.096

    45. [45]

      Zou, Y. -H.; Huang, Y. -B.; Si, D. -H.; Yin, Q.; Wu, Q. -J.; Weng, Z.; Cao, R. Angew. Chem. Int. Ed. 2021, 60 (38), 20915. doi: 10.1002/anie.202107156  doi: 10.1002/anie.202107156

    46. [46]

      Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal. Gen. 2010, 373 (1), 1. doi: 10.1016/j.apcata.2009.10.008  doi: 10.1016/j.apcata.2009.10.008

    47. [47]

      Kemna, A.; García Rey, N.; Braunschweig, B. ACS Catal. 2019, 9 (7), 6284. doi: 10.1021/acscatal.9b01033  doi: 10.1021/acscatal.9b01033

    48. [48]

      Pankhurst, J. R.; Iyengar, P.; Okatenko, V.; Buonsanti, R. Inorg. Chem. 2021, 60 (10), 6939. doi: 10.1021/acs.inorgchem.1c00287  doi: 10.1021/acs.inorgchem.1c00287

    49. [49]

      Zhao, G.; Jiang, T.; Han, B.; Li, Z.; Zhang, J.; Liu, Z.; He, J.; Wu, W. J. Supercrit. Fluid. 2004, 32 (1–3), 287. doi: 10.1016/j.supflu.2003.12.015  doi: 10.1016/j.supflu.2003.12.015

    50. [50]

      Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334 (6056), 643. doi: 10.1126/science.1209786  doi: 10.1126/science.1209786

    51. [51]

      Vasilyev, D. V.; Dyson, P. J. ACS Catal. 2021, 11 (3), 1392. doi: 10.1021/acscatal.0c04283  doi: 10.1021/acscatal.0c04283

    52. [52]

      Zhang, X.; Xia, T.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. J. Solid State Chem. 2017, 253, 277. doi: 10.1016/j.jssc.2017.06.008  doi: 10.1016/j.jssc.2017.06.008

    53. [53]

      Huan, T. N.; Simon, P.; Rousse, G.; Génois, I.; Artero, V.; Fontecave, M. Chem. Sci. 2016, 8 (1), 742. doi: 10.1039/C6SC03194C  doi: 10.1039/C6SC03194C

    54. [54]

      Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R.; et al. Science 2016, 353 (6298), 467. doi: 10.1126/science.aaf4767  doi: 10.1126/science.aaf4767

    55. [55]

      Zeng, M.; Liu, Y.; Hu, Y.; Zhang, X. Chem. Eng. J. 2021, 425, 131663. doi: 10.1016/j.cej.2021.131663  doi: 10.1016/j.cej.2021.131663

    56. [56]

      Luo, H.; Li, B.; Ma, J. -G.; Cheng, P. Angew. Chem. Int. Ed. 2022, 61 (11), e202116736. doi: 10.1002/anie.202116736  doi: 10.1002/anie.202116736

    57. [57]

      Liu, Y.; Tian, D.; Biswas, A. N.; Xie, Z.; Hwang, S.; Lee, J. H.; Meng, H.; Chen, J. G. Angew. Chem. Int. Ed. 2020, 59 (28), 11345. doi: 10.1002/anie.202003625  doi: 10.1002/anie.202003625

    58. [58]

      Min, Z.; Chang, B.; Shao, C.; Su, X.; Wang, N.; Li, Z.; Wang, H.; Zhao, Y.; Fan, M.; Wang, J. Appl. Catal. B Environ. 2023, 326, 122185. doi: 10.1016/j.apcatb.2022.122185  doi: 10.1016/j.apcatb.2022.122185

    59. [59]

      Ma, L.; Liu, N.; Mei, B.; Yang, K.; Liu, B.; Deng, K.; Zhang, Y.; Feng, H.; Liu, D.; Duan, J.; et al. ACS Catal. 2022, 12 (14), 8601. doi: 10.1021/acscatal.2c01434  doi: 10.1021/acscatal.2c01434

    60. [60]

      Jiang, M.; Zhu, M.; Wang, H.; Song, X.; Liang, J.; Lin, D.; Li, C.; Cui, J.; Li, F.; Zhang, X. L.; et al. Nano Lett. 2023, 23 (1), 291. doi: 10.1021/acs.nanolett.2c04335  doi: 10.1021/acs.nanolett.2c04335

    61. [61]

      Guo, W.; Tan, X.; Bi, J.; Xu, L.; Yang, D.; Chen, C.; Zhu, Q.; Ma, J.; Tayal, A.; Ma, J.; et al. J. Am. Chem. Soc. 2021, 143 (18), 6877. doi: 10.1021/jacs.1c00151  doi: 10.1021/jacs.1c00151

    62. [62]

      Tan, X.; Sun, X.; Han, B. Natl. Sci. Rev. 2022, 9 (4), nwab022. doi: 10.1093/nsr/nwab022  doi: 10.1093/nsr/nwab022

    63. [63]

      Yang, D.; Zhu, Q.; Sun, X.; Chen, C.; Guo, W.; Yang, G.; Han, B. Angew. Chem. 2020, 132 (6), 2374. doi: 10.1002/ange.201914831  doi: 10.1002/ange.201914831

    64. [64]

      Sharifi Golru, S.; Biddinger, E. J. Electrochim. Acta 2020, 361, 136787. doi: 10.1016/j.electacta.2020.136787  doi: 10.1016/j.electacta.2020.136787

    65. [65]

      Li, P.; Bi, J.; Liu, J.; Zhu, Q.; Chen, C.; Sun, X.; Zhang, J.; Han, B. Nat. Commun. 2022, 13 (1), 1965. doi: 10.1038/s41467-022-29698-3  doi: 10.1038/s41467-022-29698-3

    66. [66]

      Motobayashi, K.; Maeno, Y.; Ikeda, K. J. Phys. Chem. C 2022, 126 (29), 11981. doi: 10.1021/acs.jpcc.2c03012  doi: 10.1021/acs.jpcc.2c03012

    67. [67]

      Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D. D.; Masel, R. I. J. Phys. Chem. C 2012, 116 (29), 15307. doi: 10.1021/jp210542v  doi: 10.1021/jp210542v

    68. [68]

      de Robillard, G.; Devillers, C. H.; Kunz, D.; Cattey, H.; Digard, E.; Andrieu, J. Org. Lett. 2013, 15 (17), 4410. doi: 10.1021/ol401949f  doi: 10.1021/ol401949f

    69. [69]

      A. Duong, H.; N. Tekavec, T.; M. Arif, A.; Louie, J. Chem. Commun. 2004, No. 1, 112. doi: 10.1039/B311350G  doi: 10.1039/B311350G

    70. [70]

      Michez, R.; Doneux, T.; Buess-Herman, C.; Luhmer, M. ChemPhysChem 2017, 18 (16), 2208. doi: 10.1002/cphc.201700421  doi: 10.1002/cphc.201700421

    71. [71]

      Sun, L.; Ramesha, G. K.; Kamat, P. V.; Brennecke, J. F. Langmuir 2014, 30 (21), 6302. doi: 10.1021/la5009076  doi: 10.1021/la5009076

    72. [72]

      Zhao, S. -F.; Horne, M.; Bond, A. M.; Zhang, J. J. Phys. Chem. C 2016, 120 (42), 23989. doi: 10.1021/acs.jpcc.6b08182  doi: 10.1021/acs.jpcc.6b08182

    73. [73]

      Wang, Y.; Hatakeyama, M.; Ogata, K.; Wakabayashi, M.; Jin, F.; Nakamura, S. Phys. Chem. Chem. Phys. 2015, 17 (36), 23521. doi: 10.1039/C5CP02008E  doi: 10.1039/C5CP02008E

    74. [74]

      Barrosse-Antle, L. E.; Compton, R. G. Chem. Commun. 2009, 25, 3744. doi: 10.1039/B906320J  doi: 10.1039/B906320J

    75. [75]

      Snuffin, L. L.; Whaley, L. W.; Yu, L. J. Electrochem. Soc. 2011, 158 (9), F155. doi: 10.1149/1.3606487  doi: 10.1149/1.3606487

    76. [76]

      Feroci, M.; Chiarotto, I.; Orsini, M.; Sotgiu, G.; Inesi, A. Electrochim. Acta 2011, 56 (16), 5823. doi: 10.1016/j.electacta.2011.04.067  doi: 10.1016/j.electacta.2011.04.067

    77. [77]

      Matsubara, Y.; Grills, D. C.; Kuwahara, Y. ACS Catal. 2015, 5 (11), 6440. doi: 10.1021/acscatal.5b00656  doi: 10.1021/acscatal.5b00656

    78. [78]

      Lau, G. P. S.; Schreier, M.; Vasilyev, D.; Scopelliti, R.; Grätzel, M.; Dyson, P. J. J. Am. Chem. Soc. 2016, 138 (25), 7820. doi: 10.1021/jacs.6b03366  doi: 10.1021/jacs.6b03366

    79. [79]

      Parada, W. A.; Vasilyev, D. V.; Mayrhofer, K. J. J.; Katsunaros, I. ACS Appl. Mater. Interfaces 2022, 14 (12), 14193. doi: 10.1021/acsami.1c24386  doi: 10.1021/acsami.1c24386

    80. [80]

      Mehnert, C. P. Chem. -Eur. J. 2005, 11 (1), 50. doi: 10.1002/chem.200400683  doi: 10.1002/chem.200400683

    81. [81]

      Zhang, G. -R.; Straub, S. -D.; Shen, L. -L.; Hermans, Y.; Schmatz, P.; Reichert, A. M.; Hofmann, J. P.; Katsounaros, I.; Etzold, B. J. M. Angew. Chem. Int. Ed. 2020, 59 (41), 18095. doi: 10.1002/anie.202009498  doi: 10.1002/anie.202009498

    82. [82]

      Cheng, B.; Du, J.; Yuan, H.; Tao, Y.; Chen, Y.; Lei, J.; Han, Z. ACS Appl. Mater. Interfaces 2022, 14 (24), 27823. doi: 10.1021/acsami.2c03748  doi: 10.1021/acsami.2c03748

    83. [83]

      Wang, J.; Cheng, T.; Fenwick, A. Q.; Baroud, T. N.; Rosas-Hernández, A.; Ko, J. H.; Gan, Q.; Goddard Ⅲ, W. A.; Grubbs, R. H. J. Am. Chem. Soc. 2021, 143 (7), 2857. doi: 10.1021/jacs.0c12478  doi: 10.1021/jacs.0c12478

    84. [84]

      Kim, C.; Bui, J. C.; Luo, X.; Cooper, J. K.; Kusoglu, A.; Weber, A. Z.; Bell, A. T. Nat. Energy 2021, 6 (11), 1026. doi: 10.1038/s41560-021-00920-8  doi: 10.1038/s41560-021-00920-8

    85. [85]

      Hansen, K. U.; Jiao, F. Nat. Energy 2021, 6 (11), 1005. doi: 10.1038/s41560-021-00930-6  doi: 10.1038/s41560-021-00930-6

    86. [86]

      Tamura, J.; Ono, A.; Sugano, Y.; Huang, C.; Nishizawa, H.; Mikoshiba, S. Phys. Chem. Chem. Phys. 2015, 17 (39), 26072. doi: 10.1039/C5CP03028E  doi: 10.1039/C5CP03028E

    87. [87]

      Pankhurst, J. R.; Guntern, Y. T.; Mensi, M.; Buonsanti, R. Chem. Sci. 2019, 10 (44), 10356. doi: 10.1039/C9SC04439F  doi: 10.1039/C9SC04439F

    88. [88]

      Koshy, D. M.; Akhade, S. A.; Shugar, A.; Abiose, K.; Shi, J.; Liang, S.; Oakdale, J. S.; Weitzner, S. E.; Varley, J. B.; Duoss, E. B.; et al. J. Am. Chem. Soc. 2021, 143 (36), 14712. doi: 10.1021/jacs.1c06212  doi: 10.1021/jacs.1c06212

    89. [89]

      Li, N.; Si, D. -H.; Wu, Q.; Wu, Q.; Huang, Y. -B.; Cao, R. CCS Chem. 2022, 5 (5), 1130. doi: 10.31635/ccschem.022.202201943  doi: 10.31635/ccschem.022.202201943

    90. [90]

      Yi, J. -D.; Si, D. -H.; Xie, R.; Yin, Q.; Zhang, M. -D.; Wu, Q.; Chai, G. -L.; Huang, Y. -B.; Cao, R. Angew. Chem. Int. Ed. 2021, 60 (31), 17108. doi: 10.1002/anie.202104564  doi: 10.1002/anie.202104564

    91. [91]

      Zhang, M. -D.; Si, D. -H.; Yi, J. -D.; Zhao, S. -S.; Huang, Y. -B.; Cao, R. Small 2020, 16 (52), 2005254. doi: 10.1002/smll.202005254  doi: 10.1002/smll.202005254

    92. [92]

      Wu, Q.; Mao, M. -J.; Wu, Q. -J.; Liang, J.; Huang, Y. -B.; Cao, R. Small 2021, 17 (22), 2004933. doi: 10.1002/smll.202004933  doi: 10.1002/smll.202004933

    93. [93]

      Ma, C.; Hou, P.; Wang, X.; Wang, Z.; Li, W.; Kang, P. Appl. Catal. B Environ. 2019, 250, 347. doi: 10.1016/j.apcatb.2019.03.041  doi: 10.1016/j.apcatb.2019.03.041

    94. [94]

      Lamaison, S.; Wakerley, D.; Kracke, F.; Moore, T.; Zhou, L.; Lee, D. U.; Wang, L.; Hubert, M. A.; Aviles Acosta, J. E.; Gregoire, J. M.; et al. Adv. Mater. 2022, 34 (1), 2103963. doi: 10.1002/adma.202103963  doi: 10.1002/adma.202103963

    95. [95]

      Lee, J.; Lim, J.; Roh, C. -W.; Whang, H. S.; Lee, H. J. CO2 Util. 2019, 31, 244. doi: 10.1016/j.jcou.2019.03.022  doi: 10.1016/j.jcou.2019.03.022

    96. [96]

      Han, M. H.; Kim, D.; Kim, S.; Yu, S. -H.; Won, D. H.; Min, B. K.; Chae, K. H.; Lee, W. H.; Oh, H. -S. Adv. Energy Mater. 2022, 12 (35), 2201843. doi: 10.1002/aenm.202201843  doi: 10.1002/aenm.202201843

    97. [97]

      Sha, Y.; Zhang, J.; Cheng, X.; Xu, M.; Su, Z.; Wang, Y.; Hu, J.; Han, B.; Zheng, L. Angew. Chem. Int. Ed. 2022, 61 (13), e202200039. doi: 10.1002/anie.202200039  doi: 10.1002/anie.202200039

    98. [98]

      Ren, W.; Tan, X.; Chen, X.; Zhang, G.; Zhao, K.; Yang, W.; Jia, C.; Zhao, Y.; Smith, S. C.; Zhao, C. ACS Catal. 2020, 10 (22), 13171. doi: 10.1021/acscatal.0c03873  doi: 10.1021/acscatal.0c03873

    99. [99]

      Delmo, E. P.; Wang, Y.; Wang, J.; Zhu, S.; Li, T.; Qin, X.; Tian, Y.; Zhao, Q.; Jang, J.; Wang, Y.; et al. Chin. J. Catal. 2022, 43 (7), 1687. doi: 10.1016/S1872-2067(21)63970-0  doi: 10.1016/S1872-2067(21)63970-0

    100. [100]

      Ding, M.; Jiang, H. -L. ACS Catal. 2018, 8 (4), 3194. doi: 10.1021/acscatal.7b03404  doi: 10.1021/acscatal.7b03404

    101. [101]

      Johnson, B. A.; Maji, S.; Agarwala, H.; White, T. A.; Mijangos, E.; Ott, S. Angew. Chem. Int. Ed. 2016, 55 (5), 1825. doi: 10.1002/anie.201508490  doi: 10.1002/anie.201508490

    102. [102]

      Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J. J. Am. Chem. Soc. 2011, 133 (24), 9212. doi: 10.1021/ja202743r  doi: 10.1021/ja202743r

    103. [103]

      Sung, S.; Kumar, D.; Gil-Sepulcre, M.; Nippe, M. J. Am. Chem. Soc. 2017, 139 (40), 13993. doi: 10.1021/jacs.7b07709  doi: 10.1021/jacs.7b07709

    104. [104]

      Li, X.; Panetier, J. A. Phys. Chem. Chem. Phys. 2021, 23 (27), 14940. doi: 10.1039/D1CP01576A  doi: 10.1039/D1CP01576A

    105. [105]

      Liang, Y.; Nguyen, M. T.; Holliday, B. J.; Jones, R. A. Inorg. Chem. Commun. 2017, 84, 113. doi: 10.1016/j.inoche.2017.08.002  doi: 10.1016/j.inoche.2017.08.002

    106. [106]

      Hawecker, J.; Lehn, J. -M.; Ziessel, R. J. Chem. Soc. Chem. Commun. 1984, No. 6, 328. doi: 10.1039/C39840000328  doi: 10.1039/C39840000328

    107. [107]

      Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. J. Chem. Soc. Chem. Commun. 1985, No. 20, 1414. doi: 10.1039/C39850001414  doi: 10.1039/C39850001414

    108. [108]

      Sampson, M. D.; Kubiak, C. P. Inorg. Chem. 2015, 54 (14), 6674. doi: 10.1021/acs.inorgchem.5b01080  doi: 10.1021/acs.inorgchem.5b01080

    109. [109]

      Hawecker, J.; Lehn, J. -M.; Ziessel, R. J. Chem. Soc. Chem. Commun. 1983, 0 (9), 536. doi: 10.1039/C39830000536  doi: 10.1039/C39830000536

    110. [110]

      Khadhraoui, A.; Gotico, P.; Boitrel, B.; Leibl, W.; Halime, Z.; Aukauloo, A. Chem. Commun. 2018, 54 (82), 11630. doi: 10.1039/C8CC06475J  doi: 10.1039/C8CC06475J

    111. [111]

      Sung, S.; Li, X.; Wolf, L. M.; Meeder, J. R.; Bhuvanesh, N. S.; Grice, K. A.; Panetier, J. A.; Nippe, M. J. Am. Chem. Soc. 2019, 141 (16), 6569. doi: 10.1021/jacs.8b13657  doi: 10.1021/jacs.8b13657

    112. [112]

      Li, X.; Panetier, J. A. ACS Catal. 2021, 11 (21), 12989. doi: 10.1021/acscatal.1c02899  doi: 10.1021/acscatal.1c02899

    113. [113]

      Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J. -M. J. Am. Chem. Soc. 2016, 138 (51), 16639. doi: 10.1021/jacs.6b07014  doi: 10.1021/jacs.6b07014

    114. [114]

      Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J. -M. J. Phys. Chem. C 2016, 120 (51), 28951. doi: 10.1021/acs.jpcc.6b09947  doi: 10.1021/acs.jpcc.6b09947

    115. [115]

      Yang, Z. -W.; Chen, J. -M.; Qiu, L. -Q.; Xie, W. -J.; He, L. -N. Angew. Chem. Int. Ed. 2022, 61 (44), e202205301. doi: 10.1002/anie.202205301  doi: 10.1002/anie.202205301

    116. [116]

      Warshel, A. Proc. Natl. Acad. Sci. USA 1978, 75 (11), 5250. doi: 10.1073/pnas.75.11.5250  doi: 10.1073/pnas.75.11.5250

    117. [117]

      Warshel, A. Acc. Chem. Res. 1981, 14 (9), 284. doi: 10.1021/ar00069a004  doi: 10.1021/ar00069a004

    118. [118]

      Narouz, M. R.; De La Torre, P.; An, L.; Chang, C. J. Angew. Chem. 2022, 134 (37), e202207666. doi: 10.1002/ange.202207666  doi: 10.1002/ange.202207666

    119. [119]

      Saravanan, C.; Muthu Mareeswaran, P. Mater. Today Proc. 2021, 34, 408. doi: 10.1016/j.matpr.2020.02.201  doi: 10.1016/j.matpr.2020.02.201

    120. [120]

      Cao, Z.; Kim, D.; Hong, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; et al. J. Am. Chem. Soc. 2016, 138 (26), 8120. doi: 10.1021/jacs.6b02878  doi: 10.1021/jacs.6b02878

    121. [121]

      An, Y. -Y.; Yu, J. -G.; Han, Y. -F. Chin. J. Chem. 2019, 37 (1), 76. doi: 10.1002/cjoc.201800450  doi: 10.1002/cjoc.201800450

    122. [122]

      Luca, O. R.; McCrory, C. C. L.; Dalleska, N. F.; Koval, C. A. J. Electrochem. Soc. 2015, 162 (7), H473. doi: 10.1149/2.0371507jes  doi: 10.1149/2.0371507jes

    123. [123]

      Cao, Z.; Derrick, J. S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X.; Wen, X.; Copéret, C.; et al. Angew. Chem. Int. Ed. 2018, 57 (18), 4981. doi: 10.1002/anie.201800367  doi: 10.1002/anie.201800367

    124. [124]

      Amit, E.; Dery, L.; Dery, S.; Kim, S.; Roy, A.; Hu, Q.; Gutkin, V.; Eisenberg, H.; Stein, T.; Mandler, D.; et al. Nat. Commun. 2020, 11 (1), 5714. doi: 10.1038/s41467-020-19500-7  doi: 10.1038/s41467-020-19500-7

    125. [125]

      Mao, M. -J.; Zhang, M. -D.; Meng, D. -L.; Chen, J. -X.; He, C.; Huang, Y. -B.; Cao, R. ChemCatChem 2020, 12 (13), 3530. doi: 10.1002/cctc.202000387  doi: 10.1002/cctc.202000387

    126. [126]

      Jiang, Y.; Zhang, X.; Fei, H. Dalton Trans. 2020, 49 (20), 6548. doi: 10.1039/D0DT01022G  doi: 10.1039/D0DT01022G

    127. [127]

      Chen, S.; Li, W. -H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X.; et al. Angew. Chem. Int. Ed. 2022, 61 (4), e202114450. doi: 10.1002/anie.202114450  doi: 10.1002/anie.202114450

    128. [128]

      Zhang, L.; Wei, Z.; Thanneeru, S.; Meng, M.; Kruzyk, M.; Ung, G.; Liu, B.; He, J. Angew. Chem. Int. Ed. 2019, 58 (44), 15834. doi: 10.1002/anie.201909069  doi: 10.1002/anie.201909069

    129. [129]

      Agarwal, J.; Shaw, T. W.; Stanton, C. J.; Majetich, G. F.; Bocarsly, A. B.; Schaefer, H. F. Angew. Chem. Int. Ed. 2014, 53 (20), 5152. doi: 10.1002/anie.201311099  doi: 10.1002/anie.201311099

    130. [130]

      Franco, F.; Cometto, C.; Vallana, F. F.; Sordello, F.; Priola, E.; Minero, C.; Nervi, C.; Gobetto, R. Chem. Commun. 2014, 50 (93), 14670. doi: 10.1039/C4CC05563B  doi: 10.1039/C4CC05563B

    131. [131]

      Rao, G. K.; Pell, W.; Korobkov, I.; Richeson, D. Chem. Commun. 2016, 52 (51), 8010. doi: 10.1039/C6CC03827A  doi: 10.1039/C6CC03827A

    132. [132]

      Franco, F.; Pinto, M. F.; Royo, B.; Lloret-Fillol, J. Angew. Chem. 2018, 130 (17), 4693. doi: 10.1002/ange.201800705  doi: 10.1002/ange.201800705

    133. [133]

      Stanton, C. J. I.; Vandezande, J. E.; Majetich, G. F.; Schaefer, H. F. I.; Agarwal, J. Inorg. Chem. 2016, 55 (19), 9509. doi: 10.1021/acs.inorgchem.6b01657  doi: 10.1021/acs.inorgchem.6b01657

  • 加载中
    1. [1]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    4. [4]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    8. [8]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    9. [9]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    12. [12]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(2)
  • Abstract views(767)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return