Citation: Yuqiong Li, Bing Lan, Bin Guan, Chunlong Dai, Fan Zhang, Zifeng Lin. Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230603. doi: 10.3866/PKU.WHXB202306031 shu

Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction

  • Corresponding author: Zifeng Lin, linzifeng@scu.edu.cn
  • Received Date: 20 June 2023
    Revised Date: 19 July 2023
    Accepted Date: 19 July 2023
    Available Online: 9 August 2023

    Fund Project: the National Natural Science Foundation of China 52072252Sichuan University-Zigong City Science and Technology Cooperation Special Project 2022CDZG-16

  • MXenes are two-dimensional metal carbides, nitrides, and carbonitrides that are typically achieved by selectively etching the A-site elements from their corresponding MAX phase precursors. Thanks to the merits including high mechanical stability, excellent conductivity, and a high specific surface area, MXenes have attracted widespread attention in the field of energy storage and conversion. By far, most studies are focus on the synthesis and applications of Ti- or V-based MXenes. Mo-based MXenes, while less investigated due to the difficulty of synthesis, have shown significant potential in various fields, including electrochemical biomolecular sensing, electrocatalysis, and energy storage. The conventional method of preparing Mo-based MXenes involves etching precursors with hazardous HF-containing solutions, which is not only time-consuming but also poses safety risks. In this study, we present a Lewis molten salt synthesis approach to prepare Mo2CTx MXene by etching Mo2Ga2C precursor that eliminates the need for hazardous HF and significantly reduces the synthesis time. The impact of etching temperature and time on the phase and microstructure of Mo2CTx MXene were carefully investigated, and our findings indicate that the Mo2Ga2C precursor can be almost fully etched at 600 ℃ for just 30 min using the molten salt method, which is a challenging feat to achieve using HF etching. Furthermore, it is found that Mo2CTx MXene can be obtained in a wide temperature range from 600 to 800 ℃ with excellent structural stability. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirmed the selective etching of Ga atoms from Mo2Ga2C and the successful preparation of Mo2CTx MXene, and X-ray photoelectron spectroscopy (XPS) suggests the preservation of Mo-C bonds in the Mo2CTx layered structure. The hydrogen evolution reaction (HER) performance of Mo2CTx MXene prepared by the molten salt method was investigated in alkaline electrolytes. The molten salt derived Mo2CTx MXene displayed exceptional catalytic performance for the HER, maintaining long-term stability in alkaline conditions, and exhibiting a low overpotential of only 114 mV and a Tafel slope of 124 mV∙dec−1 at 10 mA∙cm−2. The much larger double layer capacitance of molten salt derived Mo2CTx MXene as compare to the Mo2Ga2C precursor suggests that accordion-like structure can greatly increase the electrochemical active sites and thus plays a key role in boosting the catalytic performance.
  • 加载中
    1. [1]

      VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. Science 2021, 372, eabf1581. doi: 10.1126/science.abf1581  doi: 10.1126/science.abf1581

    2. [2]

      Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi Y.; Zhi, C. Nat. Rev. Chem. 2022, 6, 389. doi: 10.1038/s41570-022-00384-8  doi: 10.1038/s41570-022-00384-8

    3. [3]

      Wang, Y.; Qu, Z.; Geng, S.; Liao, M.; Ye, L.; Shadike, Z.; Zhao, X.; Wang, S.; Xu, Q.; Yuan, B.; et al. Angew. Chem. Int. Ed. 2023, 62, e202304978. doi: 10.1002/anie.202304978  doi: 10.1002/anie.202304978

    4. [4]

      Wen, C.; Li, X.; Zhang, R.; Xu, C.; You, W.; Liu, Z.; Zhao, B.; Che, R. ACS Nano 2022, 16, 1150. doi: 10.1021/acsnano.1c08957  doi: 10.1021/acsnano.1c08957

    5. [5]

      Ma, G.; Shao, H.; Xu, J.; Liu, Y.; Huang, Q.; Taberna, P. L.; Simon, P.; Lin, Z. Nat. Commun. 2021, 12, 5085. doi: 10.1038/s41467-021-25306-y  doi: 10.1038/s41467-021-25306-y

    6. [6]

      Lin, Z.; Shao, H.; Xu, K.; Taberna, P. L.; Simon, P. Trends Chem. 2020, 2, 654. doi: 10.1016/j.trechm.2020.04.010  doi: 10.1016/j.trechm.2020.04.010

    7. [7]

      Liu, H.; Ma, Y.; Cao, B.; Zhu, Q.; Xu, B.; Acta Phys. -Chim. Sin. 2023, 39, 2210027.  doi: 10.3866/PKU.WHXB202210027

    8. [8]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306  doi: 10.1002/adma.201102306

    9. [9]

      Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Adv. Eng. Mater. 2020, 22, 1901241. doi: 10.1002/adem.201901241  doi: 10.1002/adem.201901241

    10. [10]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 982. doi: 10.1002/adma.201470041  doi: 10.1002/adma.201470041

    11. [11]

      Yang, X.; Gao, N.; Zhou, S.; Zhao, J. Phys. Chem. Chem. Phys. 2018, 20, 19390. doi: 10.1039/C8CP02635A  doi: 10.1039/C8CP02635A

    12. [12]

      Michalsky, R.; Zhang, Y. J.; Peterson, A. A. ACS Catal. 2014, 4, 1274. doi: 10.1021/cs500056u  doi: 10.1021/cs500056u

    13. [13]

      Chen, W. F.; Muckerman, J. T.; Fujita, E. Chem. Commun. 2013, 49, 8896. doi: 10.1039/C3CC44076A  doi: 10.1039/C3CC44076A

    14. [14]

      Vrubel, H.; Hu, X. Angew. Chem. Int. Ed. 2012, 51, 12703. doi: 10.1002/anie.201207111  doi: 10.1002/anie.201207111

    15. [15]

      Chang, K.; Chen, W. ACS Nano 2011, 5, 4720. doi: 10.1021/nn200659w  doi: 10.1021/nn200659w

    16. [16]

      Zribi, R.; Neri, G. Sensors 2020, 20, 5404. doi: 10.3390/s20185404  doi: 10.3390/s20185404

    17. [17]

      Zha, X. H.; Yin, J.; Zhou, Y.; Huang, Q.; Luo, K.; Lang, J.; Francisco, J. S.; He, J.; Du, S. J. Phys. Chem. C 2016, 120, 15082. doi: 10.1021/acs.jpcc.6b04192  doi: 10.1021/acs.jpcc.6b04192

    18. [18]

      Hu, C.; Lai, C. C.; Tao, Q.; Lu, J.; Halim, J.; Sun, L.; Zhang, J.; Yang, J.; Anasori, B.; Wang, J. Chem. Commun. 2015, 51, 6560. doi: 10.1039/C5CC00980D  doi: 10.1039/C5CC00980D

    19. [19]

      Meshkian, R.; Näslund, L. Å.; Halim, J.; Lu, J.; Barsoum, M. W.; Rosen, J. Scripta Mater. 2015, 108, 147. doi: 10.1016/j.scriptamat.2015.07.003  doi: 10.1016/j.scriptamat.2015.07.003

    20. [20]

      Cao, X.; Hou, C.; Li, Y.; Li, K.; Zhang, Q.; Wang, H. Acta Phys. -Chim. Sin. 2022, 38, 2204058.  doi: 10.3866/PKU.WHXB202204058

    21. [21]

      Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. Adv. Funct. Mater. 2016, 26, 3118. doi: 10.1002/adfm.201505328  doi: 10.1002/adfm.201505328

    22. [22]

      Mei, J.; Ayoko, G. A.; Hu, C.; Bell, J. M.; Sun, Z. Sustain. Mater. Technol. 2020, 25, e00156. doi: 10.1016/j.susmat.2020.e00156  doi: 10.1016/j.susmat.2020.e00156

    23. [23]

      Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.; Eklund, P.; Hultman, L.; Li, M.; et al. Nat. Mater. 2020, 19, 894. doi: 10.1038/s41563-020-0657-0  doi: 10.1038/s41563-020-0657-0

    24. [24]

      Sarma, D.; Rao, C. J. Electron. Spectrosc. 1980, 20, 25. doi: 10.1016/0368-2048(80)85003-1  doi: 10.1016/0368-2048(80)85003-1

    25. [25]

      Toby, B. H. J. Appl. Crystallogr. 2001, 34, 210. doi: 10.1107/S0021889801002242  doi: 10.1107/S0021889801002242

    26. [26]

      Song, H.; Wu, M.; Tang, Z.; Tse, J. S.; Yang, B.; Lu, S. Angew. Chem. Int. Ed. 2021, 60, 7234. doi: 10.1002/anie.202017102  doi: 10.1002/anie.202017102

    27. [27]

      Wang, C.; Shou, H.; Chen, S.; Wei, S.; Lin, Y.; Zhang, P.; Liu, Z.; Zhu, K.; Guo, X.; Wu, X. Adv. Mater. 2021, 33, 2101015. doi: 10.1002/adma.202101015  doi: 10.1002/adma.202101015

    28. [28]

      Dong, H.; Xiao, P.; Jin, N.; Wang, B.; Liu, Y.; Lin, Z. ChemElectroChem 2021, 8, 957. doi: 10.1002/celc.202100142  doi: 10.1002/celc.202100142

    29. [29]

      Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L.; Xue, J.; Wang, H. Adv. Mater. 2018, 30, 1803694. doi: 10.1002/adma.201803694  doi: 10.1002/adma.201803694

    30. [30]

      Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. J. Mater. Chem. A 2017, 5, 10591. doi: 10.1039/C7TA02655B  doi: 10.1039/C7TA02655B

    31. [31]

      Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. Appl. Surf. Sci. 2016, 362, 406. doi: 10.1016/j.apsusc.2015.11.089  doi: 10.1016/j.apsusc.2015.11.089

  • 加载中
    1. [1]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    2. [2]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    3. [3]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    4. [4]

      Gen ZhangYing GuLin LiFuli MaDan YueXiaoguang ZhouChungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110

    5. [5]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    6. [6]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    7. [7]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    8. [8]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    9. [9]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    11. [11]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    12. [12]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    13. [13]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    14. [14]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    15. [15]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    19. [19]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    20. [20]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

Metrics
  • PDF Downloads(0)
  • Abstract views(1036)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return