Citation: Lutian Zhao, Yangge Guo, Liuxuan Luo, Xiaohui Yan, Shuiyun Shen, Junliang Zhang. Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230602. doi: 10.3866/PKU.WHXB202306029 shu

Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge

  • Corresponding author: Shuiyun Shen, shuiyun_shen@sjtu.edu.cn
  • Received Date: 14 June 2023
    Revised Date: 30 July 2023
    Accepted Date: 23 August 2023
    Available Online: 29 August 2023

    Fund Project: the National Key Research and Development Program of China 2021YFB4001301the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University SL2021ZD105

  • Nanoscale metallic catalysts are garnering increased attention in the advancement of electrochemical energy conversion technologies. The precise control of nanocrystal morphology, size, and crystalline structures offers the ability to manipulate electronic properties and enhance intrinsic catalytic performance. Consequently, a profound understanding of the nanocrystal growth mechanism becomes imperative for the design and production of highly active catalysts. However, mechanism studies in colloidal methods generally depend on operando technics and the development is hindered by expensive cost and limited resources. And high-temperature or high-pressure reaction conditions always bring trouble for the application of the equipment, so the in situ methods have been widely used. While ex situ methods need to detach the samples from the reaction environment, which might lose information about the process and thus fail to reflect the real situation. Furthermore, in conventional methods, the use of macromolecular organics to regulate crystal morphology results in intricate post-treatment processes, and any residual substances can adversely affect catalyst performance. Electrochemical synthesis offers a clean and controllable protocol for producing metallic nanocrystals and supported heterogeneous nanoparticle catalysts. In this review, building upon the classic principles of crystal growth in chemical colloidal methods and electrodeposition, it is proposed that the processes occurring during crystal formation could be visualized or monitored through electrochemical tests. By fine-tuning electrochemical parameters and refining deposition procedures, nucleation density and growth rates along specific facet orientations of nanocrystals can be precisely managed. Electrochemical signals provide insights into in situ reduction and deposition behaviors at the electrode-electrolyte interfaces through professional analysis. The direct loading of nanocrystals onto substrates amplifies their synergistic effects, mitigates exfoliation issues, and consequently enhances catalytic activity and stability. Additionally, due to its broader potential window compared to H2O, non-aqueous liquids hold promise as a solution for preparing active metals and alloys that exhibit distinctive catalytic performance. Furthermore, electrochemical methods facilitate the synthesis of compounds composed of metallic and nonmetal elements, including metal oxides and phosphides. Thus, electrochemical techniques are poised to offer potential high-performance nanoscale metallic catalysts along with profound insights into the crystal growth mechanism. Nevertheless, a critical challenge hindering the application of electrochemical methods lies in bridging the considerable gap between catalysts and the preparation of electrode-level catalyst layers. The electrochemical signal proves highly sensitive to variations in the reaction environment, and discrepancies in electrode and system properties can lead to distinct electrochemical responses. Consequently, thorough investigations are imperative to address these issues.
  • 加载中
    1. [1]

      Yan, Y.; Chen, G.; She, P.; Zhong, G.; Yan, W.; Guan, B. Y.; Yamauchi, Y. Adv. Mater. 2020, 32, e2004654. doi: 10.1002/adma.202004654  doi: 10.1002/adma.202004654

    2. [2]

      Wang, J.; Dou, S.; Wang, X. Sci. Adv. 2021, 7, eabf3989. doi: 10.1126/sciadv.abf3989  doi: 10.1126/sciadv.abf3989

    3. [3]

      Donaldson, L. Mater. Today 2020, 41, 8. doi: 10.1016/j.mattod.2020.09.024  doi: 10.1016/j.mattod.2020.09.024

    4. [4]

      Wu, H. B.; Lou, X. W. Sci. Adv. 2017, 3, eaap9252. doi: 10.1126/sciadv.aap9252  doi: 10.1126/sciadv.aap9252

    5. [5]

      Wang, H.; Li, F.; Zhu, X. Fuel Cells 2021, 21, 2. doi: 10.1002/fuce.2021701012  doi: 10.1002/fuce.2021701012

    6. [6]

      Brinkert, K.; Mandin, P. NPJ Microgravity 2022, 8, 52. doi: 10.1038/s41526-022-00242-3  doi: 10.1038/s41526-022-00242-3

    7. [7]

      Li, M.; Irtem, E.; Iglesias van Montfort, H. P.; Abdinejad, M.; Burdyny, T. Nat. Commun. 2022, 13, 5398. doi: 10.1038/s41467-022-33145-8  doi: 10.1038/s41467-022-33145-8

    8. [8]

      Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F. Y.; et al. Nat. Commun. 2021, 12, 2870. doi: 10.1038/s41467-021-23115-x  doi: 10.1038/s41467-021-23115-x

    9. [9]

      Leow, W. R.; Volker, S.; Meys, R.; Huang, J. E.; Jaffer, S. A.; Bardow, A.; Sargent, E. H. Nat. Commun. 2023, 14, 1954. doi: 10.1038/s41467-023-37382-3  doi: 10.1038/s41467-023-37382-3

    10. [10]

      Huang, Z.; Zhu, L.; Li, A.; Gao, Z. Front. Energy 2022, 16, 145. doi: 10.1007/s11708-022-0828-6  doi: 10.1007/s11708-022-0828-6

    11. [11]

      Ma, H.; Sun, Z.; Xue, Z.; Zhang, C.; Chen, Z. Front. Energy 2023, 17, 102. doi: 10.1007/s11708-023-0861-0  doi: 10.1007/s11708-023-0861-0

    12. [12]

      Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. ACS Catal. 2018, 8, 6665. doi: 10.1021/acscatal.8b00689  doi: 10.1021/acscatal.8b00689

    13. [13]

      Kulkarni, A.; Siahrostami, S.; Patel, A.; Norskov, J. K. Chem. Rev. 2018, 118, 2302. doi: 10.1021/acs.chemrev.7b00488  doi: 10.1021/acs.chemrev.7b00488

    14. [14]

      Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Adv. Mater. 2019, 31, e1802234. doi: 10.1002/adma.201802234  doi: 10.1002/adma.201802234

    15. [15]

      Wang, Y. J.; Long, W.; Wang, L.; Yuan, R.; Ignaszak, A.; Fang, B.; Wilkinson, D. P. Energy Environ. Sci. 2018, 11, 258. doi: 10.1039/c7ee02444d  doi: 10.1039/c7ee02444d

    16. [16]

      Badreldin, A.; Youssef, E.; Djire, A.; Abdala, A.; Abdel-Wahab, A. Cell Rep. Phys. Sci. 2023, 4, 1011427. doi: 10.1016/j.xcrp.2023.101427  doi: 10.1016/j.xcrp.2023.101427

    17. [17]

      Mu, X.; Liu, S.; Chen, L.; Mu, S. Small Struct. 2023, 4, 2200281. doi: 10.1002/sstr.202200281  doi: 10.1002/sstr.202200281

    18. [18]

      Sahoo, S.; Dekel, D. R.; Maric, R.; Alpay, S. P. ACS Catal. 2021, 11, 2561. doi: 10.1021/acscatal.0c04646  doi: 10.1021/acscatal.0c04646

    19. [19]

      Luo, Z.; Zhang, H.; Yang, Y.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C.; Xing, W.; Ge, J. Nat. Commun. 2020, 11, 1116. doi: 10.1038/s41467-020-14980-z  doi: 10.1038/s41467-020-14980-z

    20. [20]

      McCrum, I. T.; Koper, M. T. M. Nat. Energy 2020, 5, 891. doi: 10.1038/s41560-020-00710-8  doi: 10.1038/s41560-020-00710-8

    21. [21]

      Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. Angew. Chem. Int. Ed. 2018, 57, 7568. doi: 10.1002/anie.201710556  doi: 10.1002/anie.201710556

    22. [22]

      Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. Y. Chem. Rev. 2020, 120, 851. doi: 10.1021/acs.chemrev.9b00248  doi: 10.1021/acs.chemrev.9b00248

    23. [23]

      Chen, F.-Y.; Wu, Z.-Y.; Adler, Z.; Wang, H. Joule 2021, 5, 1704. doi: 10.1016/j.joule.2021.05.005  doi: 10.1016/j.joule.2021.05.005

    24. [24]

      Fabbri, E.; Schmidt, T. J. ACS Catal. 2018, 8, 9765. doi: 10.1021/acscatal.8b02712  doi: 10.1021/acscatal.8b02712

    25. [25]

      Kou, Z.; Li, X.; Zhang, L.; Zang, W.; Gao, X.; Wang, J. Small Sci. 2021, 1, 2100011. doi: 10.1002/smsc.202100011  doi: 10.1002/smsc.202100011

    26. [26]

      Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Adv. Funct. Mater. 2022, 32, 2110036. doi: 10.1002/adfm.202110036  doi: 10.1002/adfm.202110036

    27. [27]

      Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García de Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z.; Zheng, X.; Zhang, L.; et al. Nat. Catal. 2020, 3, 985. doi: 10.1038/s41929-020-00525-6  doi: 10.1038/s41929-020-00525-6

    28. [28]

      Matheu, R.; Garrido-Barros, P.; Gil-Sepulcre, M.; Ertem, M. Z.; Sala, X.; Gimbert-Suriñach, C.; Llobet, A. Nat. Rev. Chem. 2019, 3, 331. doi: 10.1038/s41570-019-0096-0  doi: 10.1038/s41570-019-0096-0

    29. [29]

      Todorova, T. K.; Schreiber, M. W.; Fontecave, M. ACS Catal. 2019, 10, 1754. doi: 10.1021/acscatal.9b04746  doi: 10.1021/acscatal.9b04746

    30. [30]

      Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi: 10.1016/j.ccr.2021.214340  doi: 10.1016/j.ccr.2021.214340

    31. [31]

      Xue, Y.; Guo, Y.; Cui, H.; Zhou, Z. Small Methods 2021, 5, e2100736. doi: 10.1002/smtd.202100736  doi: 10.1002/smtd.202100736

    32. [32]

      Wang, C.; Zhang, Y.; Luo, H.; Zhang, H.; Li, W.; Zhang, W. X.; Yang, J. Small Methods 2022, 6, e2200790. doi: 10.1002/smtd.202200790  doi: 10.1002/smtd.202200790

    33. [33]

      Han, S.; Li, H.; Li, T.; Chen, F.; Yang, R.; Yu, Y.; Zhang, B. Nat. Catal. 2023, 6, 402. doi: 10.1038/s41929-023-00951-2  doi: 10.1038/s41929-023-00951-2

    34. [34]

      Zhao, Y.; Liu, Y.; Zhang, Z.; Mo, Z.; Wang, C.; Gao, S. Nano Energy 2022, 97, 107124. doi: 10.1016/j.nanoen.2022.107124  doi: 10.1016/j.nanoen.2022.107124

    35. [35]

      Fang, L.; Wang, S.; Song, C.; Yang, X.; Li, Y.; Liu, H. J. Hazard. Mater. 2022, 421, 126628. doi: 10.1016/j.jhazmat.2021.126628  doi: 10.1016/j.jhazmat.2021.126628

    36. [36]

      Liang, H. W.; Cao, X.; Zhou, F.; Cui, C. H.; Zhang, W. J.; Yu, S. H. Adv. Mater. 2011, 23, 1467. doi: 10.1002/adma.201004377  doi: 10.1002/adma.201004377

    37. [37]

      Wan, Z. M.; Wei, X.; Peng, W.; Yin, Z.-L.; Xiao, L.; Zhuang, L. Acta Phys. -Chim. Sin. 2016, 32, 1467.  doi: 10.3866/PKU.WHXB201604144

    38. [38]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    39. [39]

      Kwon, T.; Kim, T.; Son, Y.; Lee, K. Adv. Energy Mater. 2021, 11, 2100265. doi: 10.1002/aenm.202100265  doi: 10.1002/aenm.202100265

    40. [40]

      Qin, R.; Zheng, N. Chem 2019, 5, 1935. doi: 10.1016/j.chempr.2019.07.011  doi: 10.1016/j.chempr.2019.07.011

    41. [41]

      Zhang, L.; Xie, Z.; Gong, J. Chem. Soc. Rev. 2016, 45, 3916. doi: 10.1039/c5cs00958h  doi: 10.1039/c5cs00958h

    42. [42]

      Marinkovic, N. S.; Sasaki, K.; Adzic, R. R. Front. Energy 2017, 11, 236. doi: 10.1007/s11708-017-0487-1  doi: 10.1007/s11708-017-0487-1

    43. [43]

      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346. doi: 10.1021/acs.chemrev.5b00703  doi: 10.1021/acs.chemrev.5b00703

    44. [44]

      Kwon, S. G.; Hyeon, T. Small 2011, 7, 2685. doi: 10.1002/smll.201002022  doi: 10.1002/smll.201002022

    45. [45]

      Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. Angew. Chem. Int. Ed. 2006, 118, 7988. doi: 10.1002/ange.200603068  doi: 10.1002/ange.200603068

    46. [46]

      Sun, Y. Chem. Soc. Rev. 2013, 42, 2497. doi: 10.1039/c2cs35289c  doi: 10.1039/c2cs35289c

    47. [47]

      You, H.; Fang, J. Nano Today 2016, 11, 145. doi: 10.1016/j.nantod.2016.04.003  doi: 10.1016/j.nantod.2016.04.003

    48. [48]

      Peng, Z.; Yang, H. Nano Today 2009, 4, 143. doi: 10.1016/j.nantod.2008.10.010  doi: 10.1016/j.nantod.2008.10.010

    49. [49]

      Wang, Y.; He, J.; Liu, C.; Chong, W. H.; Chen, H. Angew. Chem. Int. Ed. 2015, 54, 2022. doi: 10.1002/anie.201402986  doi: 10.1002/anie.201402986

    50. [50]

      Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60. doi: 10.1002/anie.200802248  doi: 10.1002/anie.200802248

    51. [51]

      Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Nat. Mater. 2007, 6, 692. doi: 10.1038/nmat1957  doi: 10.1038/nmat1957

    52. [52]

      Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; et al. J. Phys. Chem. Lett. 2013, 4, 2209. doi: 10.1021/jz401269w  doi: 10.1021/jz401269w

    53. [53]

      Kamrani Moghaddam, L.; Ramezani Paschepari, S.; Zaimy, M. A.; Abdalaian, A.; Jebali, A. Cancer Gene Therapy 2016, 23, 321. doi: 10.1038/cgt.2016.38  doi: 10.1038/cgt.2016.38

    54. [54]

      Li, Q.; Rellan-Pineiro, M.; Almora-Barrios, N.; Garcia-Rates, M.; Remediakis, I. N.; Lopez, N. Nanoscale 2017, 9, 13089. doi: 10.1039/c7nr03889e  doi: 10.1039/c7nr03889e

    55. [55]

      Chen, T.; Rodionov, V. O. ACS Catal. 2016, 6, 4025. doi: 10.1021/acscatal.6b00714  doi: 10.1021/acscatal.6b00714

    56. [56]

      Li, Q.; Sun, S. Nano Energy 2016, 29, 178. doi: 10.1016/j.nanoen.2016.02.030  doi: 10.1016/j.nanoen.2016.02.030

    57. [57]

      Tao, A. R.; Habas, S.; Yang, P. D. Small 2008, 4, 310. doi: 10.1002/smll.200701295  doi: 10.1002/smll.200701295

    58. [58]

      Zhao, Q.; Li, H.; Zhang, X.; Yu, S.; Wang, S.; Sun, G. J. Energy Chem. 2020, 41, 120. doi: 10.1016/j.jechem.2019.05.006  doi: 10.1016/j.jechem.2019.05.006

    59. [59]

      Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. J. Am. Chem. Soc. 2011, 133, 998. doi: 10.1021/ja108948z  doi: 10.1021/ja108948z

    60. [60]

      Mamme, M. H.; Kohn, C.; Deconinck, J.; Ustarroz, J. Nanoscale 2018, 10, 7194. doi: 10.1039/c7nr08529j  doi: 10.1039/c7nr08529j

    61. [61]

      Lai, S. C. S.; Lazenby, R. A.; Kirkman, P. M.; Unwin, P. R. Chem. Sci. 2015, 6, 1126. doi: 10.1039/c4sc02792b  doi: 10.1039/c4sc02792b

    62. [62]

      Scharifker, B. R.; Mostany, J. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 13. doi: 10.1016/0022-0728(84)80207-7  doi: 10.1016/0022-0728(84)80207-7

    63. [63]

      Altimari, P.; Pagnanelli, F. Electrochim. Acta 2016, 206, 116. doi: 10.1016/j.electacta.2016.04.094  doi: 10.1016/j.electacta.2016.04.094

    64. [64]

      Mostany, J.; Mozota, J.; Scharifker, B. R. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 25. doi: 10.1016/0022-0728(84)80208-9  doi: 10.1016/0022-0728(84)80208-9

    65. [65]

      Zhang, C.; Shen, X.; Pan, Y.; Peng, Z. Front. Energy 2017, 11, 268. doi: 10.1007/s11708-017-0466-6  doi: 10.1007/s11708-017-0466-6

    66. [66]

      Shen, S. Y.; Guo, Y. G.; Wei, G. H.; Luo, L. X.; Li, F.; Zhang, J. L. Front. Energy 2018, 12, 501. doi: 10.1007/s11708-018-0586-7  doi: 10.1007/s11708-018-0586-7

    67. [67]

      Chang, Q.; Xu, Y.; Zhu, S.; Xiao, F.; Shao, M. Front. Energy 2017, 11, 254. doi: 10.1007/s11708-017-0493-3  doi: 10.1007/s11708-017-0493-3

    68. [68]

      Peng, X.; Omasta, T. J.; Roller, J. M.; Mustain, W. E. Front. Energy 2017, 11, 299. doi: 10.1007/s11708-017-0495-1  doi: 10.1007/s11708-017-0495-1

    69. [69]

      Ye, R.; Liu, Y.; Peng, Z.; Wang, T.; Jalilov, A. S.; Yakobson, B. I.; Wei, S. H.; Tour, J. M. ACS Appl. Mater. Interfaces 2017, 9, 3785. doi: 10.1021/acsami.6b15725  doi: 10.1021/acsami.6b15725

    70. [70]

      Gloag, L.; Benedetti, T. M.; Cheong, S.; Li, Y.; Chan, X. H.; Lacroix, L. M.; Chang, S. L. Y.; Arenal, R.; Florea, I.; Barron, H.; et al. Angew. Chem. Int. Ed. 2018, 57, 10241. doi: 10.1002/anie.201806300  doi: 10.1002/anie.201806300

    71. [71]

      Liu, Z.; Zeng, L.; Yu, J.; Yang, L.; Zhang, J.; Zhang, X.; Han, F.; Zhao, L.; Li, X.; Liu, H.; et al. Nano Energy 2021, 85, 105940. doi: 10.1016/j.nanoen.2021.105940  doi: 10.1016/j.nanoen.2021.105940

    72. [72]

      Chen, W.; Tang, Y. W.; Lu, T. Electrochemistry 2008, 14, 235. doi: 10.1016/S1872-2067(08)60075-3  doi: 10.1016/S1872-2067(08)60075-3

    73. [73]

      Visintin, A.; Triaca, W. E.; Arvia, A. J. J. Electroanal. Chem. 1987, 221, 239. doi: 10.1016/0022-0728(87)80260-7  doi: 10.1016/0022-0728(87)80260-7

    74. [74]

      Egli, W. A.; Visintin, A.; Triaca, W. E.; Arvia, A. J. Appl. Surf. Sci. 1993, 68, 583. doi: 10.1016/0169-4332(93)90240-C  doi: 10.1016/0169-4332(93)90240-C

    75. [75]

      Triaca, W. E.; Kessler, T.; Canullo, J. C.; Arvia, A. J. J. Electrochem. Soc. 1987, 134, 1165. doi: 10.1149/1.2100636  doi: 10.1149/1.2100636

    76. [76]

      Zinola, C. F.; Castro Luna, A. M.; Triaca, W. E.; Arvia, A. J. J. Appl. Electrochem. 1994, 24, 119. doi: 10.1007/BF00247782  doi: 10.1007/BF00247782

    77. [77]

      Tran, D. S.; Park, H.; Kim, H.; Kim, S. K. Int. J. Energy Res. 2020, 45, 5325. doi: 10.1002/er.6155  doi: 10.1002/er.6155

    78. [78]

      Chen, Y. N.; Zhang, X.; Zhou, Z. Small Methods 2019, 3, 1900050. doi: 10.1002/smtd.201900050  doi: 10.1002/smtd.201900050

    79. [79]

      Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skala, T.; Bruix, A.; Illas, F.; Prince, K. C.; et al. Nat. Mater. 2011, 10, 310. doi: 10.1038/nmat2976  doi: 10.1038/nmat2976

    80. [80]

      Xiao, F.; Wang, Q.; Xu, G.-L.; Qin, X.; Hwang, I.; Sun, C.-J.; Liu, M.; Hua, W.; Wu, H.-W.; Zhu, S.; et al. Nat. Catal. 2022, 5, 503. doi: 10.1038/s41929-022-00796-1  doi: 10.1038/s41929-022-00796-1

    81. [81]

      Campbell, C. T. Nat. Chem. 2012, 4, 597. doi: 10.1038/nchem.1412  doi: 10.1038/nchem.1412

    82. [82]

      Jackson, C.; Smith, G. T.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Callisti, M.; Polcar, T.; Russell, A. E.; Levecque, P.; Kramer, D. Nat. Commun. 2017, 8, 15802. doi: 10.1038/ncomms15802  doi: 10.1038/ncomms15802

    83. [83]

      van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi: 10.1038/s41929-019-0364-x  doi: 10.1038/s41929-019-0364-x

    84. [84]

      Sun, N.; Wang, M.; Chang, J.; Ge, J.; Xing, W.; Shao, G. Front. Energy 2017, 11, 310. doi: 10.1007/s11708-017-0491-5  doi: 10.1007/s11708-017-0491-5

    85. [85]

      Liu, Y.; You, H.; Kimmel, Y. C.; Esposito, D. V.; Chen, J. G.; Moffat, T. P. Chem. Mater. 2020, 504, 144472. doi: 10.1016/j.apsusc.2019.144472  doi: 10.1016/j.apsusc.2019.144472

    86. [86]

      Quinn, B. M.; Dekker, C.; Lemay, S. G. J. Am. Chem. Soc. 2005, 127, 6146. doi: 10.1021/ja0508828  doi: 10.1021/ja0508828

    87. [87]

      Shinde, D. V.; Kokumai, T. M.; Buha, J.; Prato, M.; De Trizio, L.; Manna, L. J. Mater. Chem. A 2020, 8, 10787. doi: 10.1039/d0ta03475d  doi: 10.1039/d0ta03475d

    88. [88]

      Mavrokefalos, C. K.; Hasan, M.; Khunsin, W.; Schmidt, M.; Maier, S. A.; Rohan, J. F.; Compton, R. G.; Foord, J. S. Electrochim. Acta 2017, 243, 310. doi: 10.1016/j.electacta.2017.05.039  doi: 10.1016/j.electacta.2017.05.039

    89. [89]

      Li, C.; Luo, M.; Xia, Z.; Guo, S. Nano Mater. Sci. 2020, 2, 309. doi: 10.1016/j.nanoms.2019.11.005  doi: 10.1016/j.nanoms.2019.11.005

    90. [90]

      Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484  doi: 10.1126/science.1140484

    91. [91]

      Xiao, C.; Lu, B. A.; Xue, P.; Tian, N.; Zhou, Z. Y.; Lin, X.; Lin, W. F.; Sun, S. G. Joule 2020, 4, 2562. doi: 10.1016/j.joule.2020.10.002  doi: 10.1016/j.joule.2020.10.002

    92. [92]

      Yu, N. F.; Tian, N.; Zhou, Z. Y.; Huang, L.; Xiao, J.; Wen, Y. H.; Sun, S. G. Angew. Chem. Int. Ed. 2014, 53, 5097. doi: 10.1002/anie.201310597  doi: 10.1002/anie.201310597

    93. [93]

      Russell, A. E. Faraday Discuss 2008, 140, 9. doi: 10.1039/b814058h  doi: 10.1039/b814058h

    94. [94]

      Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G. J. Am. Chem. Soc. 2010, 132, 7580. doi: 10.1021/ja102177r  doi: 10.1021/ja102177r

    95. [95]

      Tian, N.; Zhou, Z. Y.; Sun, S. G. Chem. Commun. 2009, 1502. doi: 10.1039/b819751b  doi: 10.1039/b819751b

    96. [96]

      Wei, L.; Mao, Y. J.; Wei, Y. S.; Li, J. W.; Nie, X. M.; Zhao, X. S.; Fan, Y. J.; Sun, S. G. Cryst. Growth Des. 2019, 19, 1532. doi: 10.1021/acs.cgd.8b00892  doi: 10.1021/acs.cgd.8b00892

    97. [97]

      Cheng, Q.; Jiang, Y. X.; Tian, N.; Zhou, Z. Y.; Sun, S. G. Electrochim. Acta 2010, 55, 8273. doi: 10.1016/j.electacta.2010.06.045  doi: 10.1016/j.electacta.2010.06.045

    98. [98]

      Tian, N.; Zhou, Z. Y.; Sun, S. G.; Cui, L.; Ren, B.; Tian, Z. Q. Chem. Commun. 2006, 4090. doi: 10.1039/b609164d  doi: 10.1039/b609164d

    99. [99]

      Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. Angew. Chem. Int. Ed. 2010, 49, 411. doi: 10.1002/anie.200905413  doi: 10.1002/anie.200905413

    100. [100]

      Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. J. Am. Chem. Soc. 2016, 138, 5753. doi: 10.1021/jacs.5b13473  doi: 10.1021/jacs.5b13473

    101. [101]

      Chen, Q. S.; Zhou, Z. Y.; Vidal-Iglesias, F. J.; Solla-Gullon, J.; Feliu, J. M.; Sun, S. G. J. Am. Chem. Soc. 2011, 133, 12930. doi: 10.1021/ja2042029  doi: 10.1021/ja2042029

    102. [102]

      Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S.; Mirkin, C. A. J. Am. Chem. Soc. 2010, 132, 14012. doi: 10.1021/ja106394k  doi: 10.1021/ja106394k

    103. [103]

      Wu, J.; Zhang, J.; Peng, Z.; Yang, S.; Wagner, F. T.; Yang, H. J. Am. Chem. Soc. 2010, 132, 4984. doi: 10.1021/ja100571h  doi: 10.1021/ja100571h

    104. [104]

      Zhao, Q.; Martirez, J. M. P.; Carter, E. A. J. Am. Chem. Soc. 2021, 143, 6152. doi: 10.1021/jacs.1c00880  doi: 10.1021/jacs.1c00880

    105. [105]

      Wang, Z.; Yuan, Q.; Shan, J.; Jiang, Z.; Xu, P.; Hu, Y.; Zhou, J.; Wu, L.; Niu, Z.; Sun, J.; et al. J. Phys. Chem. Lett. 2020, 11, 7261. doi: 10.1021/acs.jpclett.0c01261  doi: 10.1021/acs.jpclett.0c01261

    106. [106]

      Xia, D.; Yu, H.; Xie, H.; Huang, P.; Menzel, R.; Titirici, M. M.; Chai, G. Nanoscale 2022, 14, 7957. doi: 10.1039/d2nr01900k  doi: 10.1039/d2nr01900k

    107. [107]

      Wang, J.; Cheng, T.; Fenwick, A. Q.; Baroud, T. N.; Rosas-Hernandez, A.; Ko, J. H.; Gan, Q.; Goddard, W. A., III; Grubbs, R. H. J. Am. Chem. Soc. 2021, 143, 2857. doi: 10.1021/jacs.0c12478  doi: 10.1021/jacs.0c12478

    108. [108]

      Li, D.; Huang, L.; Tian, Y.; Liu, T.; Zhen, L.; Feng, Y. Appl. Catal. B 2021, 292, 120119. doi: 10.1016/j.apcatb.2021.120119  doi: 10.1016/j.apcatb.2021.120119

    109. [109]

      Hu, S.; Feng, C.; Wang, S.; Liu, J.; Wu, H.; Zhang, L.; Zhang, J. ACS Appl. Mater. Interfaces 2019, 11, 13168. doi: 10.1021/acsami.8b19052  doi: 10.1021/acsami.8b19052

    110. [110]

      Shin, H. C.; Liu, M. Chem. Mater. 2004, 16, 5460. doi: 10.1021/cm048887b  doi: 10.1021/cm048887b

    111. [111]

      Huan, T. N.; Simon, P.; Rousse, G.; Genois, I.; Artero, V.; Fontecave, M. Chem. Sci. 2017, 8, 742. doi: 10.1039/c6sc03194c  doi: 10.1039/c6sc03194c

    112. [112]

      Zhang, K.; Zou, R. Small 2021, 17, e2100129. doi: 10.1002/smll.202100129  doi: 10.1002/smll.202100129

    113. [113]

      Tong, Y.; Chen, P.; Zhou, T.; Xu, K.; Chu, W.; Wu, C.; Xie, Y. Angew. Chem. Int. Ed. 2017, 56, 7121. doi: 10.1002/anie.201702430  doi: 10.1002/anie.201702430

    114. [114]

      Tian, T.; Gao, H.; Zhou, X.; Zheng, L.; Wu, J.; Li, K.; Ding, Y. ACS Energy Lett. 2018, 3, 2150. doi: 10.1021/acsenergylett.8b01206  doi: 10.1021/acsenergylett.8b01206

    115. [115]

      Tao, S.; Yang, F.; Schuch, J.; Jaegermann, W.; Kaiser, B. ChemSusChem 2018, 11, 948. doi: 10.1002/cssc.201702138  doi: 10.1002/cssc.201702138

    116. [116]

      Li, X.; Wang, Y.; Wang, J.; Da, Y.; Zhang, J.; Li, L.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Adv. Mater. 2020, 32, e2003414. doi: 10.1002/adma.202003414  doi: 10.1002/adma.202003414

    117. [117]

      Huan, T. N.; Rousse, G.; Zanna, S.; Lucas, I. T.; Xu, X.; Menguy, N.; Mougel, V.; Fontecave, M. Angew. Chem. Int. Ed. 2017, 56, 4792. doi: 10.1002/anie.201700388  doi: 10.1002/anie.201700388

    118. [118]

      Cao, Y.; Chen, Z.; Ye, F.; Yang, Y.; Wang, K.; Wang, Z.; Yin, L.; Xu, C. J. Alloys Compd. 2022, 896, 163103. doi: 10.1016/j.jallcom.2021.163103  doi: 10.1016/j.jallcom.2021.163103

    119. [119]

      Liu, Q.; Gu, S.; Li, C. M. J. Power Sources 2015, 299, 342. doi: 10.1016/j.jpowsour.2015.09.027  doi: 10.1016/j.jpowsour.2015.09.027

    120. [120]

      Sun, Y.; Huang, C.; Shen, J.; Zhong, Y.; Ning, J.; Hu, Y. J. Colloid Interface Sci. 2020, 558, 1. doi: 10.1016/j.jcis.2019.09.090  doi: 10.1016/j.jcis.2019.09.090

    121. [121]

      Gao, S.; Zavabeti, A.; Wang, B.; Ren, R.; Yang, C.; Liu, Z.; Wang, Y. ACS Appl. Nano Mater. 2021, 4, 4542. doi: 10.1021/acsanm.1c00134  doi: 10.1021/acsanm.1c00134

    122. [122]

      Liu, M.; Yang, L.; Liu, T.; Tang, Y.; Luo, S.; Liu, C.; Zeng, Y. J. Mater. Chem. A 2017, 5, 8608. doi: 10.1039/c7ta01791j  doi: 10.1039/c7ta01791j

    123. [123]

      Chen, Y. X.; Chen, S. P.; Chen, Q. S.; Zhou, Z. Y.; Sun, S. G. Electrochim. Acta 2008, 53, 6938. doi: 10.1016/j.electacta.2008.02.024  doi: 10.1016/j.electacta.2008.02.024

    124. [124]

      Chen, Y. X.; Chen, S. P.; Zhou, Z. Y.; Tian, N.; Jiang, Y. X.; Sun, S. G.; Ding, Y.; Wang, Z. L. J. Am. Chem. Soc. 2009, 131, 10860. doi: 10.1021/ja904225q  doi: 10.1021/ja904225q

    125. [125]

      Chen, L. F.; Xie, A. Y.; Lou, Y. Y.; Tian, N.; Zhou, Z. Y.; Sun, S. G. J. Electroanal. Chem. 2022, 907, 116022. doi: 10.1016/j.jelechem.2022.116022  doi: 10.1016/j.jelechem.2022.116022

    126. [126]

      Li, X. Curr. Opin Electrochem. 2023, 39, 101289. doi: 10.1016/j.coelec.2023.101289  doi: 10.1016/j.coelec.2023.101289

    127. [127]

      Wu, W.; Eliaz, N.; Gileadi, E. J. Electrochem. Soc. 2014, 162, D20. doi: 10.1149/2.0281501jes  doi: 10.1149/2.0281501jes

    128. [128]

      Heusler, K. E. Electrochim. Acta 1996, 41, 411. doi: 10.1016/0013-4686(95)00321-5  doi: 10.1016/0013-4686(95)00321-5

    129. [129]

      Beermann, V.; Gocyla, M.; Kuhl, S.; Padgett, E.; Schmies, H.; Goerlin, M.; Erini, N.; Shviro, M.; Heggen, M.; Dunin-Borkowski, R. E.; et al. J. Am. Chem. Soc. 2017, 139, 16536. doi: 10.1021/jacs.7b06846  doi: 10.1021/jacs.7b06846

    130. [130]

      Gan, L.; Rudi, S.; Cui, C.; Heggen, M.; Strasser, P. Small 2016, 12, 3189. doi: 10.1002/smll.201600027  doi: 10.1002/smll.201600027

    131. [131]

      Wang, S.; Xiong, L.; Bi, J.; Zhang, X.; Yang, G.; Yang, S. ACS Appl. Mater. Interfaces 2018, 10, 27009. doi: 10.1021/acsami.8b07742  doi: 10.1021/acsami.8b07742

    132. [132]

      Zhu, H.; Zhang, S.; Guo, S.; Su, D.; Sun, S. J. Am. Chem. Soc. 2013, 135, 7130. doi: 10.1021/ja403041g  doi: 10.1021/ja403041g

    133. [133]

      Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134, 8535. doi: 10.1021/ja300756y  doi: 10.1021/ja300756y

    134. [134]

      Chang, Q.; Xu, Y.; Duan, Z.; Xiao, F.; Fu, F.; Hong, Y.; Kim, J.; Choi, S. I.; Su, D.; Shao, M. Nano Lett. 2017, 17, 3926. doi: 10.1021/acs.nanolett.7b01510  doi: 10.1021/acs.nanolett.7b01510

    135. [135]

      Zhang, C.; Hwang, S. Y.; Trout, A.; Peng, Z. J. Am. Chem. Soc. 2014, 136, 7805. doi: 10.1021/ja501293x  doi: 10.1021/ja501293x

    136. [136]

      Bu, L.; Ding, J.; Guo, S.; Zhang, X.; Su, D.; Zhu, X.; Yao, J.; Guo, J.; Lu, G.; Huang, X. Adv. Mater. 2015, 27, 7204. doi: 10.1002/adma.201502725  doi: 10.1002/adma.201502725

    137. [137]

      Wang, C.; Chi, M.; Wang, G.; van der Vliet, D.; Li, D.; More, K.; Wang, H.-H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Adv. Funct. Mater. 2011, 21, 147. doi: 10.1002/adfm.201001138  doi: 10.1002/adfm.201001138

    138. [138]

      Matsuda, Y.; Imahashi, K.; Yoshimoto, N.; Morita, M.; Haga, M. J. Alloys Compd. 1993, 193, 277. doi: 10.1016/0925-8388(93)90370-3  doi: 10.1016/0925-8388(93)90370-3

    139. [139]

      Liu, P.; Yang, Q.; Tong, Y.; Yang, Y. Electrochim. Acta 2000, 45, 2147. doi: 10.1016/S0013-4686(99)00434-X  doi: 10.1016/S0013-4686(99)00434-X

    140. [140]

      Yang, Q.; Liu, P.; Yang, Y.; Tong, Y. J. Electroanal. Chem. 1998, 456, 223. doi: 10.1016/S0022-0728(98)00283-6  doi: 10.1016/S0022-0728(98)00283-6

    141. [141]

      Monnens, W.; Deferm, C.; Binnemans, K.; Fransaer, J. Phys. Chem. Chem. Phys. 2020, 22, 24526. doi: 10.1039/d0cp03277h  doi: 10.1039/d0cp03277h

    142. [142]

      Shen, Q.; Xue, J.; Liu, X.; Jia, H.; Yang, X.; Xu, B. J. Solid State Electrochem. 2016, 21, 19. doi: 10.1007/s10008-016-3314-4  doi: 10.1007/s10008-016-3314-4

    143. [143]

      Li, G. R.; Zhang, Z. S.; Su, C. Y.; Tong, Y. X. J. Phys. Chem. C 2009, 113, 1227. doi: 10.1021/jp805051p  doi: 10.1021/jp805051p

    144. [144]

      Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170. doi: 10.1021/ja00469a029‚  doi: 10.1021/ja00469a029‚

    145. [145]

      Farmer, J. A.; Campbell, C. T. Science 2010, 329, 933. doi: 10.1126/science.1191778  doi: 10.1126/science.1191778

    146. [146]

      Rao, R. G.; Blume, R.; Hansen, T. W.; Fuentes, E.; Dreyer, K.; Moldovan, S.; Ersen, O.; Hibbitts, D. D.; Chabal, Y. J.; Schlogl, R.; et al. Nat. Commun. 2017, 8, 340. doi: 10.1038/s41467-017-00421-x  doi: 10.1038/s41467-017-00421-x

    147. [147]

      Yan, Q. Q.; Wu, D. X.; Chu, S. Q.; Chen, Z. Q.; Lin, Y.; Chen, M. X.; Zhang, J.; Wu, X. J.; Liang, H. W. Nat. Commun. 2019, 10, 4977. doi: 10.1038/s41467-019-12851-w  doi: 10.1038/s41467-019-12851-w

    148. [148]

      Zhao, L.; Guo, Y.; Fu, C.; Luo, L.; Wei, G.; Shen, S.; Zhang, J. Chin. J. Catal. 2021, 42, 2068. doi: 10.1016/s1872-2067(21)63860-3  doi: 10.1016/s1872-2067(21)63860-3

    149. [149]

      Zhao, L.; Fu, C.; Luo, L.; You, J.; An, L.; Yan, X.; Shen, S.; Zhang, J. Appl. Catal. B 2022, 318, 121831. doi: 10.1016/j.apcatb.2022.121831  doi: 10.1016/j.apcatb.2022.121831

    150. [150]

      Liu, F.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. J. Alloys Compd. 2016, 654, 163. doi: 10.1016/j.jallcom.2015.09.137  doi: 10.1016/j.jallcom.2015.09.137

    151. [151]

      Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248  doi: 10.1021/cr1003248

    152. [152]

      Singh, S. K.; Savoy, A. W. J. Mol. Liq. 2020, 297, 112038. doi: 10.1016/j.molliq.2019.112038  doi: 10.1016/j.molliq.2019.112038

    153. [153]

      Rogers, R. D.; Voth, G. A. Acc. Chem. Res. 2007, 40, 1077. doi: 10.1021/ar700221n  doi: 10.1021/ar700221n

    154. [154]

      Zhang, Q.; Hua, Y.; Xu, C.; Li, Y.; Li, J.; Dong, P. J. Rare Earths 2015, 33, 1017. doi: 10.1016/s1002-0721(14)60520-2  doi: 10.1016/s1002-0721(14)60520-2

    155. [155]

      Zhang, Q.; Wang, Q.; Zhang, S.; Lu, X.; Zhang, X. ChemPhysChem 2016, 17, 335. doi: 10.1002/cphc.201500713  doi: 10.1002/cphc.201500713

    156. [156]

      Wallace, A. G.; Symes, M. D. Trends Chem. 2019, 1, 247. doi: 10.1016/j.trechm.2019.03.003  doi: 10.1016/j.trechm.2019.03.003

    157. [157]

      Gao, M. Y.; Yang, C.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Hua, Y. X.; Xu, C. Y.; Li, Y. J. Electrochem. Soc. 2017, 164, D778. doi: 10.1149/2.1751712jes  doi: 10.1149/2.1751712jes

    158. [158]

      Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Chem. Soc. Rev. 2012, 41, 7108. doi: 10.1039/c2cs35178a  doi: 10.1039/c2cs35178a

    159. [159]

      Wu, J.; Liang, Q.; Yu, X.; Lü, Q. F.; Ma, L.; Qin, X.; Chen, G.; Li, B. Adv. Funct. Mater. 2021, 31, 2011102. doi: 10.1002/adfm.202011102  doi: 10.1002/adfm.202011102

    160. [160]

      Cojocaru, P.; Magagnin, L.; Gomez, E.; Vallés, E. Mater. Lett. 2011, 65, 3597. doi: 10.1016/j.matlet.2011.08.003  doi: 10.1016/j.matlet.2011.08.003

    161. [161]

      Yang, H.; Guo, X.; Birbilis, N.; Wu, G.; Ding, W. Appl. Surf. Sci. 2011, 257, 9094. doi: 10.1016/j.apsusc.2011.05.106  doi: 10.1016/j.apsusc.2011.05.106

    162. [162]

      Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. J. Am. Chem. Soc. 2004, 126, 9142. doi: 10.1021/ja048266j  doi: 10.1021/ja048266j

    163. [163]

      Renjith, A.; Lakshminarayanan, V. J. Mater. Chem. A 2015, 3, 3019. doi: 10.1039/c4ta05302h  doi: 10.1039/c4ta05302h

    164. [164]

      Sebastian, P.; Giannotti, M. I.; Gómez, E.; Feliu, J. M. ACS Appl. Energy Mater. 2018, 1, 1016. doi: 10.1021/acsaem.7b00177  doi: 10.1021/acsaem.7b00177

    165. [165]

      Zhang, J. M.; He, J. J.; Wang, X. Q.; Fan, Y. J.; Zhang, X. J.; Zhong, J. P.; Chen, W.; Sun, S. G. Int. J. Hydrogen Energy 2019, 44, 28709. doi: 10.1016/j.ijhydene.2019.09.104  doi: 10.1016/j.ijhydene.2019.09.104

    166. [166]

      Gao, M. Y.; Yang, C.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Hua, Y. X.; Xu, C. Y.; Dong, P. J. Mater. Chem. A 2017, 5, 5797. doi: 10.1039/c6ta10812a  doi: 10.1039/c6ta10812a

    167. [167]

      Mao, Y. J.; Liu, F.; Chen, Y. H.; Jiang, X.; Zhao, X. S.; Sheng, T.; Ye, J. Y.; Liao, H. G.; Wei, L.; Sun, S. G. J. Mater. Chem. A 2021, 9, 26277. doi: 10.1039/d1ta05515a  doi: 10.1039/d1ta05515a

    168. [168]

      Abbott, A. P.; El Ttaib, K.; Ryder, K. S.; Smith, E. L. Trans. IMF 2013, 86, 234. doi: 10.1179/174591908x327581  doi: 10.1179/174591908x327581

    169. [169]

      Li, R.; Hou, Y.; Liu, B.; Wang, D.; Liang, J. Electrochim. Acta 2016, 222, 1272. doi: 10.1016/j.electacta.2016.11.101  doi: 10.1016/j.electacta.2016.11.101

    170. [170]

      Wei, L.; Xu, C. D.; Huang, L.; Zhou, Z. Y.; Chen, S. P.; Sun, S. G. J. Phys. Chem. C 2015, 120, 15569. doi: 10.1021/acs.jpcc.5b03580  doi: 10.1021/acs.jpcc.5b03580

    171. [171]

      Wei, L.; Fan, Y. J.; Tian, N.; Zhou, Z. Y.; Zhao, X. Q.; Mao, B. W.; Sun, S. G. J. Phys. Chem. C 2011, 116, 2040. doi: 10.1021/jp209743h  doi: 10.1021/jp209743h

    172. [172]

      Zhong, J.; Li, L.; Waqas, M.; Wang, X.; Fan, Y.; Qi, J.; Yang, B.; Rong, C.; Chen, W.; Sun, S. Electrochim. Acta 2019, 322, 134677. doi: 10.1016/j.electacta.2019.134677  doi: 10.1016/j.electacta.2019.134677

    173. [173]

      Xiang, S.; Wang, L.; Huang, C. C.; Fan, Y. J.; Tang, H. G.; Wei, L.; Sun, S. G. J. Power Sources 2018, 399, 422. doi: 10.1016/j.jpowsour.2018.07.102  doi: 10.1016/j.jpowsour.2018.07.102

    174. [174]

      Wang, S.; Zou, X.; Lu, Y.; Rao, S.; Xie, X.; Pang, Z.; Lu, X.; Xu, Q.; Zhou, Z. Int. J. Hydrogen Energy 2018, 43, 15673. doi: 10.1016/j.ijhydene.2018.06.188  doi: 10.1016/j.ijhydene.2018.06.188

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    3. [3]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    4. [4]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    5. [5]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    6. [6]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    7. [7]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    10. [10]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    11. [11]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(2)
  • Abstract views(279)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return