Citation: Weicheng Feng, Jingcheng Yu, Yilan Yang, Yige Guo, Geng Zou, Xiaoju Liu, Zhou Chen, Kun Dong, Yuefeng Song, Guoxiong Wang, Xinhe Bao. Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230601. doi: 10.3866/PKU.WHXB202306013 shu

Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction

  • Corresponding author: Yuefeng Song,  Guoxiong Wang, 
  • Received Date: 5 June 2023
    Revised Date: 31 July 2023
    Accepted Date: 31 July 2023
    Available Online: 10 August 2023

    Fund Project: the National Key R & D Program of China 2021YFA1502400the National Natural Science Foundation of China 22272176the National Natural Science Foundation of China 22002166the National Natural Science Foundation of China 22125205the National Natural Science Foundation of China 22072146the National Natural Science Foundation of China 22002158the DNL Cooperation Fund, CAS DNL202007the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy YLU-DNL Fund 2022008the CAS Youth Innovation Promotion Y201938

  • Solid oxide electrolysis cells (SOECs) could convert CO2 to CO powered by clean electricity with low overpotential, high Faradaic efficiency, and high current density. Since the performance of SOEC is affected by sluggish oxygen evolution reaction (OER) kinetics at the anodes, the modification of anode materials is crucial for the further application of SOEC. Perovskites with high configurational entropy exhibit high catalytic activity in many reactions, but are rarely reported in SOECs. Herein, two kinds of high entropy perovskites (HEPs), with formulas of (Pr0.2La0.2Sm0.2Nd0.2Gd0.2)BaCo2O6−δ (A-HEP) and Pr(Ba0.2Sr0.2Ca0.2Na0.2K0.2) Co2O6−δ (A′-HEP), are synthesized by doping different rare earth metal, and alkaline metal or alkaline earth metal ions into A-site and A′-site of the double perovskites. Rietveld refinement of X-ray diffraction patterns and elemental maps of scanning electron microscope images confirm the successful synthesis of the two samples. The tetragonal double perovskite structure of A-HEP and the transformation to orthorhombic structure of A′-HEP due to the difference in average atomic radii and oxidation states of the doped ions are also detected. Co 2p X-ray photoelectron spectroscopy (XPS) and O K-edge X-ray absorption spectroscopy reveal that the average oxidation state of Co is lifted from +3.23 in Aʹ-HEP to +3.39 in A-HEP, and the hybridization of Co 2p and O 1s orbitals is also enhanced in A-HEP, which increase the electron transfer pathway and reduce the transfer barrier. Therefore, the electrical conductivity of A-HEP at 800 ℃ is higher than that of Aʹ-HEP. Moreover, the increased absorption oxygen species concentration of A-HEP in O 1s XPS and O2-temperature programmed desorption results indicates more surface oxygen vacancies, thus increasing active sites for the anodic OER. Consequently, the anodic polarization resistances related to oxygen transportation, electron transfer and surface reaction processes are decreased remarkably in A-HEP, resulting in a high current density of 1.76 A∙cm−2 at 800 ℃ and a stability of 200 h. This work presents a new method for designing high-performance HEPs as SOEC anode materials.
  • 加载中
    1. [1]

      Hauch, A.; Kungas, R.; Blennow, P.; Hansen, A. B.; Hansen, J. B.; Mathiesen, B. V.; Mogensen, M. B. Science 2020, 370, eaba6118. doi: 10.1126/science.aba6118  doi: 10.1126/science.aba6118

    2. [2]

      Zheng, Y.; Wang, J. C.; Yu, B.; Zhang, W. Q.; Chen, J.; Qiao, J. L.; Zhang, J. J. Chem. Soc. Rev. 2017, 46, 1427. doi: 10.1039/C6CS00403B  doi: 10.1039/C6CS00403B

    3. [3]

      Ebbesen, S.; Jensen, S.; Hauch, A.; Mogensen, M. Chem. Rev. 2014, 114, 10697. doi: 10.1021/cr5000865  doi: 10.1021/cr5000865

    4. [4]

      Song, Y. F.; Zhang, X. M.; Xie, K.; Wang, G. X.; Bao, X. H. Adv. Mater. 2019, 31, e1902033. doi: 10.1002/adma.201902033  doi: 10.1002/adma.201902033

    5. [5]

      Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Science 2017, 358, 751. doi: 10.1126/science.aam7092  doi: 10.1126/science.aam7092

    6. [6]

      Choi, J.; Park, S.; Han, H.; Kim, M.; Park, M.; Han, J.; Kim, W. B. J. Mater. Chem. A 2021, 9, 8740. doi: 10.1039/d0ta11328j  doi: 10.1039/d0ta11328j

    7. [7]

      Ai, N.; He, S.; Li, N.; Zhang, Q.; Rickard, W. D. A.; Chen, K. F.; Zhang, T.; Jiang, S. P. J. Power Sources 2018, 384, 125. doi: 10.1016/j.jpowsour.2018.02.082  doi: 10.1016/j.jpowsour.2018.02.082

    8. [8]

      Shao, Z. P.; Haile, S. M. Nature 2004, 431, 170. doi: 10.1038/nature02863  doi: 10.1038/nature02863

    9. [9]

      Jiang, S. P. Solid State Ionics 2002, 146, 1. doi: 10.1016/S0167-2738(01)00997-3  doi: 10.1016/S0167-2738(01)00997-3

    10. [10]

      Chen, K. F.; Ai, N.; Jiang, S. P. Int. J. Hydrogen Energy 2014, 39, 0349. doi: 10.1016/j.ijhydene.2014.05.013  doi: 10.1016/j.ijhydene.2014.05.013

    11. [11]

      Woodward, P. M.; Suard, E.; Karen, P. J. Am. Chem. Soc. 2003, 125, 8889. doi: 10.1021/ja034813+  doi: 10.1021/ja034813+

    12. [12]

      Woodward, P. M.; Karen, P. Inorg. Chem. 2003, 42, 1121. doi: 10.1021/ic026022z  doi: 10.1021/ic026022z

    13. [13]

      King, G.; Woodward, P. M. J. Mater. Chem. 2010, 20, 5785. doi: 10.1039/B926757C  doi: 10.1039/B926757C

    14. [14]

      Karen, P.; Woodward, P. M.; Lindén, J.; Vogt, T.; Studer, A.; Fischer, P. Phys. Rev. B 2001, 64, 214405. doi: 10.1103/PhysRevB.64.214405  doi: 10.1103/PhysRevB.64.214405

    15. [15]

      Karen, P.; M. Woodward, P. J. Mater. Chem. 1999, 9, 789. doi: 10.1039/A809302D  doi: 10.1039/A809302D

    16. [16]

      Zhukov, V. P.; Chulkov, E. V.; Politov, B. V.; Suntsov, A. Y.; Kozhevnikov, V. L. Phys. Chem. Chem. Phys. 2021, 23, 2313. doi: 10.1039/D0CP05497F  doi: 10.1039/D0CP05497F

    17. [17]

      Taskin, A. A.; Lavrov, A. N.; Ando, Y. Prog. Solid State Chem. 2007, 35, 481. doi: 10.1016/j.progsolidstchem.2007.01.014  doi: 10.1016/j.progsolidstchem.2007.01.014

    18. [18]

      Taskin, A. A.; Lavrov, A. N.; Ando, Y. Appl. Phys. Lett. 2005, 86, 091910. doi: 10.1063/1.1864244  doi: 10.1063/1.1864244

    19. [19]

      Shin, T. H.; Myung, J.-H.; Verbraeken, M.; Kim, G.; Irvine, J. T. S. Faraday Discuss. 2015, 182, 227. doi: 10.1039/C5FD00025D  doi: 10.1039/C5FD00025D

    20. [20]

      Seymour, I. D.; Tarancón, A.; Chroneos, A.; Parfitt, D.; Kilner, J. A.; Grimes, R. W. Solid State Ionics 2012, 216, 41. doi: 10.1016/j.ssi.2011.09.002  doi: 10.1016/j.ssi.2011.09.002

    21. [21]

      Kim, G.; Wang, S.; Jacobson, A. J.; Reimus, L.; Brodersen, P.; Mims, C. A. J. Mater. Chem. 2007, 17, 2500. doi: 10.1039/B618345J  doi: 10.1039/B618345J

    22. [22]

      Dong, F.; Ni, M.; Chen, Y.; Chen, D.; Tadé, M. O.; Shao, Z. J. Mater. Chem. A 2014, 2, 20520. doi: 10.1039/C4TA04372C  doi: 10.1039/C4TA04372C

    23. [23]

      Akande, S. O.; Boulfrad, S.; Schwingenschlö gl, U. J. Mater. Chem. A 2016, 4, 3560. doi: 10.1039/C5TA06858D  doi: 10.1039/C5TA06858D

    24. [24]

      Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J.-P. Nat. Commun. 2015, 6, 8485. doi: 10.1038/ncomms9485  doi: 10.1038/ncomms9485

    25. [25]

      Wright, A. J.; Wang, Q. Y.; Huang, C. Y.; Nieto, A.; Chen, R. K.; Luo, J. J. Eur. Ceram. Soc. 2020, 40, 2120. doi: 10.1016/j.jeurceramsoc.2020.01.015  doi: 10.1016/j.jeurceramsoc.2020.01.015

    26. [26]

      Jiang, S. Y.; Sun, D.; Zhang, Y. Q.; Wang, S. B.; Zhao, C. Z. J. Mater. Sci. 2017, 52, 3199. doi: 10.1007/s10853-016-0609-x  doi: 10.1007/s10853-016-0609-x

    27. [27]

      Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C.-L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y.; et al. Nat. Commun. 2020, 11, 3908. doi: 10.1038/s41467-020-17738-9  doi: 10.1038/s41467-020-17738-9

    28. [28]

      Chen, H.; Fu, J.; Zhang, P. F.; Peng, H. G.; Abney, C. W.; Jie, K. C.; Liu, X. M.; Chi, M. F.; Dai, S. J. Mater. Chem. A 2018, 6, 11129. doi: 10.1039/C8TA01772G  doi: 10.1039/C8TA01772G

    29. [29]

      Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. Adv. Mater. 2019, 31, e1806236. doi: 10.1002/adma.201806236  doi: 10.1002/adma.201806236

    30. [30]

      Shi, Y. C.; Ni, N.; Ding, Q.; Zhao, X. F. J. Mater. Chem. A 2022, 10, 2256. doi: 10.1039/d1ta07275g  doi: 10.1039/d1ta07275g

    31. [31]

      Yang, Q.; Wang, G. Q.; Wu, H. D.; Beshiwork, B. A.; Tian, D.; Zhu, S. Y.; Yang, Y.; Lu, X. Y.; Ding, Y. Z.; Ling, Y. H.; et al. J. Alloy. Compd. 2021, 872, 159633. doi: 10.1016/j.jallcom.2021.159633  doi: 10.1016/j.jallcom.2021.159633

    32. [32]

      He, F.; Zhou, Y.; Hu, T.; Xu, Y.; Hou, M.; Zhu, F.; Liu, D.; Zhang, H.; Xu, K.; Liu, M.; Chen, Y. Adv. Mater. 2023, 35, e2209469. doi: 10.1002/adma.202209469  doi: 10.1002/adma.202209469

    33. [33]

      Garcı́a-Muñoz, J. L.; Frontera, C.; Llobet, A.; Carrillo, A. E.; Caneiro, A.; Aranda, M. A. G.; Ritter, C.; Dooryee, E. Phys. B 2004, 350, e277. doi: 10.1016/j.physb.2004.03.069  doi: 10.1016/j.physb.2004.03.069

    34. [34]

      Brinks, H. W.; Fjellvåg, H.; Kjekshus, A.; Hauback, B. C. J. Solid State Chem. 1999, 147, 464. doi: 10.1006/jssc.1999.8384  doi: 10.1006/jssc.1999.8384

    35. [35]

      Guo, D.; Zhang, M.; Chen, Z.; Liu, X.-X. RSC Adv. 2018, 8, 33374. doi: 10.1039/C8RA07032F  doi: 10.1039/C8RA07032F

    36. [36]

      Xin, W.-L.; Lu, K.-K.; Zhu, D.-R.; Zeng, H.-B.; Zhang, X.-J.; Marks, R.-S.; Shan, D. Electrochim. Acta 2019, 307, 375. doi: 10.1016/j.electacta.2019.03.196  doi: 10.1016/j.electacta.2019.03.196

    37. [37]

      Zhao, K.; Shen, Y.; Huang, Z.; He, F.; Wei, G. Q.; Zheng, A. Q.; Li, H. B.; Zhao, Z. L. J. Energy Chem. 2017, 26, 501. doi: 10.1016/j.jechem.2016.11.016  doi: 10.1016/j.jechem.2016.11.016

    38. [38]

      Sunarso, J.; Hashim, S. S.; Zhu, N.; Zhou, W. Prog. Energy Combust. Sci. 2017, 61, 57. doi: 10.1016/j.pecs.2017.03.003  doi: 10.1016/j.pecs.2017.03.003

    39. [39]

      Suntivich, J.; Hong, W. T.; Lee, Y.-L.; Rondinelli, J. M.; Yang, W.; Goodenough, J. B.; Dabrowski, B.; Freeland, J. W.; Shao-Horn, Y. J. Phys. Chem. C 2014, 118, 1856. doi: 10.1021/jp410644j  doi: 10.1021/jp410644j

    40. [40]

      Miao, X.; Wu, L.; Lin, Y.; Yuan, X.; Zhao, J.; Yan, W.; Zhou, S.; Shi, L. Chem. Commun. 2019, 55, 1442. doi: 10.1039/c8cc08817a  doi: 10.1039/c8cc08817a

    41. [41]

      Luo, Q. X.; Lin, D.; Zhan, W. Q.; Zhang, W. Q.; Tang, L. L.; Luo, J. J.; Gao, Z.; Jiang, P.; Wang, M.; Hao, L. Y.; et al. ACS Appl. Energy Mater. 2020, 3, 7149. doi: 10.1021/acsaem.0c01192  doi: 10.1021/acsaem.0c01192

    42. [42]

      Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Nat. Chem. 2017, 9, 457. doi: 10.1038/nchem.2695  doi: 10.1038/nchem.2695

    43. [43]

      Xi, X.; Liu, J. W.; Luo, W. Z.; Fan, Y.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. Adv. Energy Mater. 2021, 11, 2102845. doi: 10.1002/aenm.202102845  doi: 10.1002/aenm.202102845

    44. [44]

      Li, J. W.; Fu, Z. M.; Wei, B.; Su, C. X.; Yue, X.; Lü, Z. J. Mater. Chem. A 2020, 8, 18778. doi: 10.1039/d0ta04857g  doi: 10.1039/d0ta04857g

    45. [45]

      Guan, F.; Zhang, X. M.; Song, Y. F.; Zhou, Y. J.; Bao, X. H. Chin. J. Catal. 2018, 39, 1484. doi: 10.1016/S1872-2067(18)63118-3  doi: 10.1016/S1872-2067(18)63118-3

    46. [46]

      Zhang, X. M.; Song, Y. F.; Guan, F.; Zhou, Y. J.; Lv, H. F.; Wang, G. X.; Bao, X. H. J. Catal. 2018, 359, 8. doi: 10.1016/j.jcat.2017.12.027  doi: 10.1016/j.jcat.2017.12.027

    47. [47]

      Li, Q.; Wu, J. B.; Wu, T.; Jin, H. R.; Zhang, N.; Li, J.; Liang, W. X.; Liu, M. L.; Huang, L.; Zhou, J. Adv. Funct. Mater. 2021, 31, 2102002. doi: 10.1002/adfm.202102002  doi: 10.1002/adfm.202102002

    48. [48]

      Song, Y. F.; Zhou, Z. W.; Zhang, X. M.; Zhou, Y. J.; Gong, H. M.; Lv, H. F.; Liu, Q. X.; Wang, G. X.; Bao, X. H. Angew. Chem. Int. Ed. 2019, 58, 4617. doi: 10.1002/anie.201814612  doi: 10.1002/anie.201814612

    49. [49]

      Wang, W. H.; Yang, Y.; Huan, D. M.; Wang, L. K.; Shi, N.; Xie, Y.; Xia, C. R.; Peng, R. R.; Lu, Y. L. J. Mater. Chem. A 2019, 7, 12538. doi: 10.1039/c9ta03099a  doi: 10.1039/c9ta03099a

    50. [50]

      Ciucci, F.; Chen, C. Electrochim. Acta 2015, 167, 439. doi: 10.1016/j.electacta.2015.03.123  doi: 10.1016/j.electacta.2015.03.123

    51. [51]

      Saccoccio, M.; Wan, T. H.; Chen, C.; Ciucci, F. Electrochim. Acta 2014, 147, 470. doi: 10.1016/j.electacta.2014.09.058  doi: 10.1016/j.electacta.2014.09.058

    52. [52]

      Li, Y. H.; Li, Y.; Wan, Y. H.; Xie, Y.; Zhu, J. F.; Pan, H. B.; Zheng, X. S.; Xia, C. R. Adv. Energy Mater. 2019, 9, 1803156. doi: 10.1002/aenm.201803156  doi: 10.1002/aenm.201803156

    53. [53]

      Lv, H. F.; Lin, L.; Zhang, X. M.; Song, Y. F.; Matsumoto, H.; Zeng, C. B.; Ta, N.; Liu, W.; Gao, D. F.; Wang, G. X.; et al. Adv. Mater. 2020, 32, e1906193. doi: 10.1002/adma.201906193  doi: 10.1002/adma.201906193

    54. [54]

      Song, Y. F.; Zhang, X. M.; Zhou, Y. J.; Lv, H. F.; Liu, Q. X.; Feng, W. F.; Wang, G. X.; Bao, X. H. J. Energy Chem. 2019, 35, 181. doi: 10.1016/j.jechem.2019.03.013  doi: 10.1016/j.jechem.2019.03.013

    55. [55]

      Zhang, X. M.; Song, Y. F.; Guan, F.; Zhou, Y. J.; Lv, H. F.; Liu, Q. X.; Wang, G. X.; Bao, X. H. J. Power Sources 2018, 400, 104. doi: 10.1016/j.jpowsour.2018.08.017  doi: 10.1016/j.jpowsour.2018.08.017

  • 加载中
    1. [1]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    4. [4]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    5. [5]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    6. [6]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    7. [7]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    8. [8]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    16. [16]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    18. [18]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    19. [19]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(4)
  • Abstract views(877)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return