Citation: Yuting Bai, Cenqi Yan, Zhen Li, Jiaqiang Qin, Pei Cheng. Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230601. doi: 10.3866/PKU.WHXB202306010 shu

Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method

  • Corresponding author: Zhen Li, 729431051@qq.com Jiaqiang Qin, jqqin@scu.edu.cn Pei Cheng, chengpei@scu.edu.cn
  • Received Date: 5 June 2023
    Revised Date: 26 July 2023
    Accepted Date: 27 July 2023
    Available Online: 8 August 2023

    Fund Project: the National Natural Science Foundation of China 51873127

  • Improving the thermal stability, chemical stability, and mechanical strength of battery separators is crucial to prevent safety incidents like thermal runaway in batteries. This significantly enhances the overall safety performance of batteries. Among various options, polyimide (PI) stands out as an ideal choice due to its outstanding thermal stability, excellent chemical stability, and high mechanical strength. However, existing preparation methods of PI separators, such as non-solvent induced phase separation (NIPS), template method, and electrospinning, often suffer from issues like inadequate mechanical strength. Therefore, this study focused on investigating a novel method to prepare thermoplastic PI porous films with thermally closed pores and enhanced mechanical strength. Several characterization techniques, including scanning electron microscopy (SEM), in situ Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analyzer (TGA)-FTIR coupling, were employed to understand the pore-forming mechanism of PI porous films. The findings revealed that the temperature range of triethylamine (TEA) removal was consistent with the main stage of the imidization reaction and pore formation. This indicated that the pore structure was formed in situ during the thermal imidization process when TEA was stripped out of the PI film. PI films with varying TEA contents were prepared to investigate the impact on pore structure, showing that pore size could be regulated by TEA content. A more regular reticulated small pore structure on the macroporous pore wall was observed when TEA content was ≥ 100%. SEM analysis showed that the films were thermally self-closed at a heat treatment temperature of 300 ℃. Additionally, TGA indicated that the thermal decomposition temperature of PI porous film reached 580 ℃. The mechanical strength of the PI films before and after pore closure was investigated, demonstrating excellent mechanical strength of approximately 120 MPa. The novel in situ pore formation method for PI porous films through the salt-formation method of poly (amic acid) (PAA) with the organic base TEA, followed by TEA release during thermal imidization, resulted in PI porous films with outstanding thermal stability and high mechanical strength. The self-closure of the PI porous film at high temperatures effectively isolates material and heat transport, providing robust safety assurance for batteries. This advancement has the potential to significantly improve battery safety and performance.
  • 加载中
    1. [1]

      Zhang, X.; Sun, Q.; Zhen, C.; Niu, Y.; Han, Y.; Zeng, G.; Chen, D.; Feng, C.; Chen, N.; Lv, W.; et al. Energy Storage Mater. 2021, 37, 628. doi: 10.1016/j.ensm.2021.02.042  doi: 10.1016/j.ensm.2021.02.042

    2. [2]

      Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Small 2019, 15 (33), 1901689. doi: 10.1002/smll.201901689  doi: 10.1002/smll.201901689

    3. [3]

      Costa, C. M.; Lee, Y. -H.; Kim, J. -H.; Lee, S. -Y.; Lanceros-Méndez, S. Energy Storage Mater. 2019, 22, 346. doi: 10.1016/j.ensm.2019.07.024  doi: 10.1016/j.ensm.2019.07.024

    4. [4]

      Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. J. Power Sources 2013, 226, 272. doi: 10.1016/j.jpowsour.2012.10.060  doi: 10.1016/j.jpowsour.2012.10.060

    5. [5]

      Sun, Y.; Liu, N.; Cui, Y. Nat. Energy 2016, 1 (7), 16071. doi: 10.1038/nenergy.2016.71  doi: 10.1038/nenergy.2016.71

    6. [6]

      Liu, X.; Ren, D.; Hsu, H.; Feng, X.; Xu, G. -L.; Zhuang, M.; Gao, H.; Lu, L.; Han, X.; Chu, Z.; et al. Joule 2018, 2 (10), 2047. doi: 10.1016/j.joule.2018.06.015  doi: 10.1016/j.joule.2018.06.015

    7. [7]

      Zhang, J.; Liu, Z.; Kong, Q.; Zhang, C.; Pang, S.; Yue, L.; Wang, X.; Yao, J.; Cui, G. ACS Appl. Mater. Interfaces 2013, 5 (1), 128. doi: 10.1021/am302290n  doi: 10.1021/am302290n

    8. [8]

      Costa, C. M.; Rodrigues, L. C.; Sencadas, V.; Silva, M. M.; Rocha, J. G.; Lanceros-Méndez, S. J. Membr. Sci. 2012, 407408, 193. doi: 10.1016/j.memsci.2012.03.044  doi: 10.1016/j.memsci.2012.03.044

    9. [9]

      Liu, X.; Song, K.; Lu, C.; Huang, Y.; Duan, X.; Li, S.; Ding, Y. J. Membr. Sci. 2018, 555, 1. doi: 10.1016/j.memsci.2018.03.027  doi: 10.1016/j.memsci.2018.03.027

    10. [10]

      Hu, S.; Lin, S.; Tu, Y.; Hu, J.; Wu, Y.; Liu, G.; Li, F.; Yu, F.; Jiang, T. J. Mater. Chem. A 2016, 4 (9), 3513. doi: 10.1039/C5TA08694A  doi: 10.1039/C5TA08694A

    11. [11]

      Ding, Y.; Hou, H.; Zhao, Y.; Zhu, Z.; Fong, H. Prog. Polym. Sci. 2016, 61, 67. doi: 10.1016/j.progpolymsci.2016.06.006  doi: 10.1016/j.progpolymsci.2016.06.006

    12. [12]

      Liaw, D. -J.; Wang, K. -L.; Huang, Y. -C.; Lee, K. -R.; Lai, J. -Y.; Ha, C. -S. Prog. Polym. Sci. 2012, 37 (7), 907. doi: 10.1016/j.progpolymsci.2012.02.005  doi: 10.1016/j.progpolymsci.2012.02.005

    13. [13]

      Ma, P.; Dai, C.; Wang, H.; Li, Z.; Liu, H.; Li, W.; Yang, C. Compos. Commun. 2019, 16, 84. doi: 10.1016/j.coco.2019.08.011  doi: 10.1016/j.coco.2019.08.011

    14. [14]

      Maeyoshi, Y.; Ding, D.; Kubota, M.; Ueda, H.; Abe, K.; Kanamura, K.; Abe, H. ACS Appl. Mater. Interfaces 2019, 11 (29), 25833. doi: 10.1021/acsami.9b05257  doi: 10.1021/acsami.9b05257

    15. [15]

      Lin, D.; Zhuo, D.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2016, 138 (34), 11044. doi: 10.1021/jacs.6b06324  doi: 10.1021/jacs.6b06324

    16. [16]

      Maeyoshi, Y.; Miyamoto, S.; Munakata, H.; Kanamura, K. J. Power Sources 2017, 350, 103. doi: 10.1016/j.jpowsour.2017.03.053  doi: 10.1016/j.jpowsour.2017.03.053

    17. [17]

      Li, M. N.; Zhang, Z. J.; Yin, Y. T.; Guo, W. C.; Bai, Y. G.; Zhang, F.; Zhao, B.; Shen, F.; Han, X. G. ACS Appl. Mater. Interfaces 2020, 12 (3), 3610. doi: 10.1021/acsami.9b19049  doi: 10.1021/acsami.9b19049

    18. [18]

      Lin, C. E.; Zhang, H.; Song, Y. Z.; Zhang, Y.; Yuan, J. J.; Zhu, B. K. J. Mater. Chem. A 2018, 6 (3), 991. doi: 10.1039/c7ta08702k  doi: 10.1039/c7ta08702k

    19. [19]

      Zhang, H.; Lin, C. -E.; Zhou, M. -Y.; John, A. E.; Zhu, B. -K. Electrochim. Acta 2016, 187, 125. doi: 10.1016/j.electacta.2015.11.028  doi: 10.1016/j.electacta.2015.11.028

    20. [20]

      Kong, L.; Yan, Y.; Qiu, Z.; Zhou, Z.; Hu, J. J. Membr. Sci. 2018, 549, 321. doi: 10.1016/j.memsci.2017.12.028  doi: 10.1016/j.memsci.2017.12.028

    21. [21]

      Wang, L. L.; Liu, F.; Shao, W. L.; Cui, S. Z.; Zhao, Y. M.; Zhou, Y. M.; He, J. X. Compos. Commun. 2019, 16, 150. doi: 10.1016/j.coco.2019.09.004  doi: 10.1016/j.coco.2019.09.004

    22. [22]

      Miao, Y. E.; Zhu, G. N.; Hou, H. Q.; Xia, Y. Y.; Liu, T. X. J. Power Sources 2013, 226, 82. doi: 10.1016/j.jpowsour.2012.10.027  doi: 10.1016/j.jpowsour.2012.10.027

    23. [23]

      Wang, Y.; Wang, S.; Fang, J.; Ding, L. -X.; Wang, H. J. Membr. Sci. 2017, 537, 248. doi: 10.1016/j.memsci.2017.05.023  doi: 10.1016/j.memsci.2017.05.023

    24. [24]

      Kim, J. -H.; Kim, J. -H.; Choi, K. -H.; Yu, H. K.; Kim, J. H.; Lee, J. S.; Lee, S. -Y. Nano Lett. 2014, 14 (8), 4438. doi: 10.1021/nl5014037  doi: 10.1021/nl5014037

    25. [25]

      Seo, Y.; Lee, S. M.; Kim, D. Y.; Kim, K. U. Macromolecules 1997, 30 (13), 3747. doi: 10.1021/ma961482v  doi: 10.1021/ma961482v

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    10. [10]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    18. [18]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(0)
  • Abstract views(844)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return